Patient-Derived Organoids as a Platform to Decipher and Overcome Radioresistance: From the Tumor Microenvironment to Radiosensitizer Discovery
Simple Summary
Abstract
1. Introduction
2. Patient-Derived Tumor Organoids: Establishment and Application
3. Reconstructing the Tumor Microenvironment in Organoids
3.1. Biomimetic ECM and Decellularized Matrices
3.2. Cancer-Associated Fibroblasts
| Study (Year) | Cancer Type | Core CAF Role | Key Pathway(s) | Intervention Strategy |
|---|---|---|---|---|
| Yang et al., 2023 [29] | ESCC | Collagen I deposition; epithelial–CAF CXCL1 positive feedback | Integrin/FAK–AKT–c-Myc/Chk1; CXCL1/CXCR2–STAT3 | Block collagen/FAK; inhibit CXCL1/CXCR2 |
| Meng et al., 2021 [30] | NSCLC | RT-induced senescent CAFs with SASP | SASP → JAK/STAT3 | Senolytics (e.g., FOXO4-DRI) |
| Xun et al., 2025 [31] | TNBC | CAF exosomal circRNA drives autophagy | circFOXO1–miR-27a-3p–BNIP3; autophagy | Block exosome release/uptake; target circFOXO1/miR-27a-3p |
| Zhang et al., 2025 [32] | NSCLC | CAF-derived FBLN5 impairs ferroptosis | Integrin αVβ5–Src–STAT3 → ACSL4 ↓ → ferroptosis ↓ | Target FBLN5/integrin αVβ5/Src/STAT3; restore ACSL4/ferroptosis |
| Guo et al., 2023 [33] | Breast | CAF-derived IL-6 activates tumor STAT3 | IL-6–JAK/STAT3 | Anti-IL-6/IL-6R; STAT3 inhibitors |
| Huang et al., 2021 [34] | NPC | Senescent CAF SASP with IL-8 promotes survival | IL-8–NF-κB | Block IL-8/CXCR; inhibit NF-κB |
| Zhang et al., 2023 [35] | NSCLC | CAF-driven glycolysis supports tumor DDR | Glycolysis (HK2) → ATM/BRCA1 (DDR) | Inhibit glycolysis + RT |
| Chen et al., 2020 [36] | CRC | CAF exosomal miR-590-3p suppresses CLCA4 | miR-590-3p–CLCA4–PI3K/AKT | Anti-miR-590-3p; restore CLCA4; block exosomes |
3.3. Immune Components: TIL–PDO Co-Cultures
3.4. Vascularization and Organoid-on-a-Chip(OoC) Platforms
4. Predicting Radiotherapy Response with PDOs
| Study (Year) | Cancer Type | PDO RT Assay/Readout | Linked Clinical Endpoint | Predictive Linkage (Concise) |
|---|---|---|---|---|
| Yao et al. (2020) [56] | LARC | Ex vivo CRT exposure; viability/colony formation; DNA damage/apoptosis readouts | Tumor regression grade (TRG, Dworak), clinical complete response (cCR) after neoadjuvant CRT | PDO sensitivity stratified clinical responders vs. non-responders; organoid readouts mirrored TRG/cCR grouping. |
| Ganesh et al. (2019) [57] | CRC | Dose response to RT ± chemo; survival/repair metrics | Tumor downsizing/response to preoperative therapy (endoscopic diameter shrinkage; near/complete clinical response strata) | Concordant ranking between PDO radioresponse and clinical shrinkage strata; proof-of-concept for individualized CRT planning. |
| Issing et al. (2025) [58] | HNSCC | Clonogenic survival after RT; growth rate metrics (GR/GRinf) | Local control/recurrence from linked longitudinal data | GRinf-based stratification associated with recurrence risk; poor radiosensitivity linked to recurrence, favorable linked to ≥2-year non-recurrence. |
| Li et al. (2025) [59] | HNSCC | 0–8 Gy viability dose response (CellTiter-Glo); AUC/curve | Case-level RT response | Case-level concordance observed; small sample size—predictive utility requires larger validation. |
| Mu et al. (2025) [55] | CRC | PDO radioresponse stratified by genotype (e.g., BRAFV600E) | External rectal cohorts: TRG and survival after CRT | BRAFV600E linked to PDO radioresistance; RAF inhibitor + CRT improved PDO response; clinical cohorts confirmed worse TRG and survival in BRAFV600E. |
5. Mechanisms of Radioresistance Elucidated by PDOs
5.1. DNA Damage Response and Repair Pathways
5.2. Cancer Stem Cells
5.3. Hypoxia, Redox Homeostasis, and Metabolic Adaptation
5.4. Immune Evasion and TIME Remodeling
5.5. Radiation-Induced Senescence in Cancers
5.6. Epigenetic Regulation of Radioresistance
6. PDO-Enabled Discovery of Radiosensitizers
6.1. Dual-Organoid Strategy for Efficacy–Toxicity Profiling
6.2. PDO-Guided Design of Nanoradiosensitizers
6.3. High-Throughput Organoid Screening for Radiosensitization
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BED | Biologically effective dose |
| CAF | Cancer-associated fibroblast |
| CIRT | Carbon-ion radiotherapy |
| CRT | Chemoradiotherapy |
| cCR | Clinical complete response |
| DDR | DNA damage response |
| DSB | Double-strand break |
| ECM | Extracellular matrix |
| ESCC | Esophageal Squamous Cell Carcinoma |
| FLASH | Ultra-high dose rate radiotherapy |
| GBM | Glioblastoma |
| GR | Growth rate |
| GRinf | Growth rate at infinite time |
| HNSCC | Head and neck squamous cell carcinoma |
| LARC | Local advanced rectal cancer |
| LET | Linear energy transfer |
| NPC | Nasopharyngeal carcinoma |
| NSCLC | Non-small-cell lung cancer |
| OoC | Organoid-on-a-chip |
| PBT | Proton beam therapy |
| PD-L1 | Programmed death-ligand 1 |
| PDO | Patient-derived organoid |
| PDX | Patient-derived xenograft |
| ROS | Reactive oxygen species |
| RT | Radiotherapy |
| SA-β-Gal | Senescence-associated β-galactosidase |
| SASP | Senescence-associated secretory phenotype |
| SF2 | Surviving fraction at 2 Gy |
| TAM | Tumor-associated macrophage |
| TNBC | Triple-negative Breast Cancer |
| TIL | Tumor-infiltrating lymphocyte |
| TIS | Therapy-induced senescence |
| TME | Tumor microenvironment |
| TF | Tissue factor (gene F3) |
| TRG | Tumor Regression Grade |
| γH2AX | Phosphorylated H2AX (Ser139), a DSB marker |
| D0 | Mean lethal dose (single-hit model) |
References
- An, L.; Li, M.; Jia, Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol. Cancer 2023, 22, 140. [Google Scholar] [CrossRef]
- Ma, X.; Yang, S.; Jiang, H.; Wang, Y.; Xiang, Z. Transcriptomic analysis of tumor tissues and organoids reveals the crucial genes regulating the proliferation of lung adenocarcinoma. J. Transl. Med. 2021, 19, 368. [Google Scholar] [CrossRef]
- Niklinska-Schirtz, B.J.; Venkateswaran, S.; Anbazhagan, M.; Kolachala, V.L.; Prince, J.; Dodd, A.; Chinnadurai, R.; Gibson, G.; Denson, L.A.; Cutler, D.J.; et al. Ileal Derived Organoids From Crohn’s Disease Patients Show Unique Transcriptomic and Secretomic Signatures. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1267–1280. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomed. 2021, 16, 1083–1102. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Vries, R.G.; Snippert, H.J.; Van De Wetering, M.; Barker, N.; Stange, D.E.; Van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 Stem Cells Build Crypt-Villus Structures in Vitro without a Mesenchymal Niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.J.; Van Es, J.H.; Van Den Brink, S.; Van Houdt, W.J.; Pronk, A.; Van Gorp, J.; Siersema, P.D.; et al. Long-term Expansion of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma, and Barrett’s Epithelium. Gastroenterology 2011, 141, 1762–1772. [Google Scholar] [CrossRef] [PubMed]
- Van De Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; Van Houdt, W.; Van Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef]
- Zu, M.; Hao, X.; Ning, J.; Zhou, X.; Gong, Y.; Lang, Y.; Xu, W.; Zhang, J.; Ding, S. Patient-derived organoid culture of gastric cancer for disease modeling and drug sensitivity testing. Biomed. Pharmacother. 2023, 163, 114751. [Google Scholar] [CrossRef]
- Lian, G.; Malagola, E.; Wei, C.; Shi, Q.; Zhao, J.; Hata, M.; Kobayashi, H.; Ochiai, Y.; Zheng, B.; Zhi, X.; et al. p53 mutation biases squamocolumnar junction progenitor cells towards dysplasia rather than metaplasia in Barrett’s oesophagus. Gut 2024, 74, 182–196. [Google Scholar] [CrossRef]
- Madorsky Rowdo, F.P.; Xiao, G.; Khramtsova, G.F.; Nguyen, J.; Martini, R.; Stonaker, B.; Boateng, R.; Oppong, J.K.; Adjei, E.K.; Awuah, B.; et al. Patient-derived tumor organoids with p53 mutations, and not wild-type p53, are sensitive to synergistic combination PARP inhibitor treatment. Cancer Lett. 2024, 584, 216608. [Google Scholar] [CrossRef]
- Raaijmakers, K.T.P.M.; Adema, G.J.; Bussink, J.; Ansems, M. Cancer-associated fibroblasts, tumor and radiotherapy: Interactions in the tumor micro-environment. J. Exp. Clin. Cancer Res. 2024, 43, 323. [Google Scholar] [CrossRef]
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef]
- Palucka, A.K.; Coussens, L.M. The basis of oncoimmunology. Cell 2016, 164, 1233–1247. [Google Scholar] [CrossRef] [PubMed]
- Fridman, W.H.; Zitvogel, L.; Sautès-Fridman, C.; Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. [Google Scholar] [CrossRef]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef]
- Garreta, E.; Moya-Rull, D.; Marco, A.; Amato, G.; Ullate-Agote, A.; Tarantino, C.; Gallo, M.; Esporrín-Ubieto, D.; Centeno, A.; Vilas-Zornoza, A.; et al. Natural Hydrogels Support Kidney Organoid Generation and Promote In Vitro Angiogenesis. Adv. Mater. 2024, 36, e2400306. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, M.J.; Kim, S.; Bareja, R.; Fang, Z.; Cai, S.; Pan, H.; Asad, M.; Martin, M.L.; Sigouros, M.; Rowdo, F.M.; et al. Extracellular Matrix in Synthetic Hydrogel-Based Prostate Cancer Organoids Regulate Therapeutic Response to EZH2 and DRD2 Inhibitors. Adv. Mater. 2021, 34, e2100096. [Google Scholar] [CrossRef]
- Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol. 2012, 196, 395–406. [Google Scholar] [CrossRef]
- Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Biondani, G.; Zeeberg, K.; Greco, M.R.; Cannone, S.; Dando, I.; Pozza, E.D.; Mastrodonato, M.; Forciniti, S.; Casavola, V.; Palmieri, M.; et al. Extracellular matrix composition modulates PDAC parenchymal and stem cell plasticity and behavior through the secretome. FEBS J. 2018, 285, 2104–2124. [Google Scholar] [CrossRef]
- Xu, R.; Zhou, X.; Wang, S.; Trinkle, C. Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol. Ther. 2020, 218, 107668. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.; Bao, Q.; Xu, X.; Xu, C.; Wang, S.; Liu, Q.; Liu, F.; Zeng, Y.; Wang, Y.; et al. Personalized Vascularized Tumor Organoid-on-a-Chip for Tumor Metastasis and Therapeutic Targeting Assessment. Adv. Mater. 2024, 37, e2412815. [Google Scholar] [CrossRef] [PubMed]
- Sensi, F.; Spagnol, G.; Repetto, O.; D’ANgelo, E.; Biccari, A.; Marangio, A.; Guerriero, A.; Castillo, A.A.M.; Vogliardi, A.; Zanrè, E.; et al. Patient-derived extracellular matrix from decellularized high-grade serous ovarian carcinoma tissues as a biocompatible support for organoid growth. Transl. Oncol. 2025, 61, 102523. [Google Scholar] [CrossRef] [PubMed]
- Naruse, M.; Ochiai, M.; Sekine, S.; Taniguchi, H.; Yoshida, T.; Ichikawa, H.; Sakamoto, H.; Kubo, T.; Matsumoto, K.; Ochiai, A.; et al. Re-expression of REG family and DUOXs genes in CRC organoids by co-culturing with CAFs. Sci. Rep. 2021, 11, 2077. [Google Scholar] [CrossRef]
- Koikawa, K.; Kibe, S.; Suizu, F.; Sekino, N.; Kim, N.; Manz, T.D.; Pinch, B.J.; Akshinthala, D.; Verma, A.; Gaglia, G.; et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell 2021, 184, 4753–4771.e27. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, F. Cancer-associated fibroblast-derived gene signatures predict radiotherapeutic survival in prostate cancer patients. J. Transl. Med. 2022, 20, 453. [Google Scholar] [CrossRef]
- Ohlund, D.; Handly-Santana, A.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvise, M.; Corbo, V.; Oni, T.E.; Hearn, S.A.; Lee, E.J.; et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 2017, 214, 579–596. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, X.; Zhang, S.; Fan, W.; Zhong, C.; Liu, T.; Cheng, G.; Zhu, L.; Liu, Q.; Xi, Y.; et al. Collagen 1-mediated CXCL1 secretion in tumor cells activates fibroblasts to promote radioresistance of esophageal cancer. Cell Rep. 2023, 42, 113270. [Google Scholar] [CrossRef]
- Meng, J.; Li, Y.; Wan, C.; Sun, Y.; Dai, X.; Huang, J.; Hu, Y.; Gao, Y.; Wu, B.; Zhang, Z.; et al. Targeting senescence-like fibroblasts radiosensitizes non–small cell lung cancer and reduces radiation-induced pulmonary fibrosis. J. Clin. Investig. 2021, 6, e146334. [Google Scholar] [CrossRef]
- Xun, X.; Hu, H.; Liu, Q.; Su, R.; Ai, J. CAFs exosomal circFOXO1 promotes TNBC autophagy and radioresistance via miR-27a-3p/BNIP3 axis. Sci. Rep. 2025, 15, 29273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yan, W.; Yuan, J.; Ma, Y.; Ren, Z.; Chen, X.; Lv, J.; Wu, M.; Yu, J.; Chen, D. Cancer-associated fibroblast-derived fibulin-5 promotes radioresistance in non-small-cell lung cancer. Cell Rep. 2025, 44, 116018. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, H.; Fu, Y.; Kuang, J.; Zhao, B.; Zhang, L.; Lin, J.; Lin, S.; Wu, D.; Xie, G. Cancer-associated fibroblasts induce growth and radioresistance of breast cancer cells through paracrine IL-6. Cell Death Discov. 2023, 9, 6. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, L.; Yang, M.; Wu, X.; Wang, X.; Huang, W.; Yuan, L.; Pan, H.; Wang, Y.; Wang, Z.; et al. Cancer-associated fibroblasts promote the survival of irradiated nasopharyngeal carcinoma cells via the NF-κB pathway. J. Exp. Clin. Cancer Res. 2021, 40, 87. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, K.; Qiu, L.; Yue, J.; Jiang, H.; Deng, Q.; Zhou, R.; Yin, Z.; Ma, S.; Ke, Y. Cancer-associated fibroblasts facilitate DNA damage repair by promoting the glycolysis in non-small cell lung cancer. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2023, 1869, 166670. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Zhang, Q.; Liu, B.; Cheng, Y.; Zhang, Y.; Sun, Y.; Liu, J. Exosomal miR-590-3p derived from cancer-associated fibroblasts confers radioresistance in colorectal cancer. Mol. Ther.—Nucleic Acids 2021, 24, 113–126. [Google Scholar] [CrossRef]
- Salimbeni, B.T.; Giudici, F.; Pescia, C.; Giachetti, P.P.M.B.; Scafetta, R.; Zagami, P.; Marra, A.; Trapani, D.; Esposito, A.; Scagnoli, S.; et al. Prognostic impact of tumor-infiltrating lymphocytes in HER2+ metastatic breast cancer receiving first-line treatment. npj Breast Cancer 2025, 11, 41. [Google Scholar] [CrossRef]
- Moreno, V.; Salazar, R.; Gruber, S. The prognostic value of TILs in stage III colon cancer must consider sidedness. Ann. Oncol. 2022, 33, 1094–1096. [Google Scholar] [CrossRef]
- Wu, S.-L.; Yu, X.; Mao, X.; Jin, F. Prognostic value of tumor-infiltrating lymphocytes in DCIS: A meta-analysis. BMC Cancer 2022, 22, 782. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Li, S.; He, L.; Chen, N. Prognostic implications of tumor-infiltrating lymphocytes in non-small cell lung cancer: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1476365. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, P.; Han, Y.; Shen, H.; Zeng, S. Combined tumour-infiltrating lymphocytes and microsatellite instability status as prognostic markers in colorectal cancer. Lancet Gastroenterol. Hepatol. 2024, 9, 787–788. [Google Scholar] [CrossRef]
- Ou, L.; Liu, S.; Wang, H.; Guo, Y.; Guan, L.; Shen, L.; Luo, R.; Elder, D.E.; Huang, A.C.; Karakousis, G.; et al. Patient-derived melanoma organoid models facilitate the assessment of immunotherapies. EBioMedicine 2023, 92, 104614. [Google Scholar] [CrossRef]
- Magré, L.; Verstegen, M.M.A.; Buschow, S.; van der Laan, L.J.W.; Peppelenbosch, M.; Desai, J. Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies. J. Immunother. Cancer 2023, 11, e006290. [Google Scholar] [CrossRef]
- Moral, J.A.; Leung, J.; Rojas, L.A.; Ruan, J.; Zhao, J.; Sethna, Z.; Ramnarain, A.; Gasmi, B.; Gururajan, M.; Redmond, D.; et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 2020, 579, 130–135. [Google Scholar] [CrossRef]
- Demaria, O.; Vivier, E. Immuno-Oncology beyond TILs: Unleashing TILCs. Cancer Cell 2020, 37, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Bi, D.; Xie, R.; Li, M.; Guo, J.; Liu, H.; Guo, X.; Fang, J.; Ding, T.; Zhu, H.; et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct. Target. Ther. 2021, 6, 398. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-I.; Jang, S.I.; Hong, J.; Kim, C.H.; Kwon, S.S.; Park, J.S.; Lim, J.-B. Cancer-initiating cells in human pancreatic cancer organoids are maintained by interactions with endothelial cells. Cancer Lett. 2021, 498, 42–53. [Google Scholar] [CrossRef]
- Xiang, D.; He, A.; Zhou, R.; Wang, Y.; Xiao, X.; Gong, T.; Kang, W.; Lin, X.; Wang, X.; Consortium, P.D.O.D.S.T.; et al. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics 2024, 14, 3300–3316. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Hogenson, T.L.; Xie, H.; Phillips, W.J.; Toruner, M.D.; Li, J.J.; Horn, I.P.; Kennedy, D.J.; Almada, L.L.; Marks, D.L.; Carr, R.M.; et al. Culture media composition influences patient-derived organoid ability to predict therapeutic responses in gastrointestinal cancers. J. Clin. Investig. 2022, 7, e158060. [Google Scholar] [CrossRef]
- Wang, H.-M.; Zhang, C.-Y.; Peng, K.-C.; Chen, Z.-X.; Su, J.-W.; Li, Y.-F.; Li, W.-F.; Gao, Q.-Y.; Zhang, S.-L.; Chen, Y.-Q.; et al. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep. Med. 2023, 4, 100911. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Yuan, Q.; Tang, S.; Guo, S.; Zhang, Y.; He, J.; Zhang, X.; Han, M.; Liu, Z.; et al. Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity. Nat. Commun. 2022, 13, 2169. [Google Scholar] [CrossRef]
- Beutel, A.K.; Schütte, L.; Scheible, J.; Roger, E.; Müller, M.; Perkhofer, L.; Kestler, A.M.T.U.; Kraus, J.M.; Kestler, H.A.; Barth, T.F.E.; et al. A Prospective Feasibility Trial to Challenge Patient–Derived Pancreatic Cancer Organoids in Predicting Treatment Response. Cancers 2021, 13, 2539. [Google Scholar] [CrossRef]
- Hsu, K.-S.; Adileh, M.; Martin, M.L.; Makarov, V.; Chen, J.; Wu, C.; Bodo, S.; Klingler, S.; Sauvé, C.-E.G.; Szeglin, B.C.; et al. Colorectal Cancer Develops Inherent Radiosensitivity That Can Be Predicted Using Patient-Derived Organoids. Cancer Res. 2022, 82, 2298–2312. [Google Scholar] [CrossRef] [PubMed]
- Mu, P.; Mo, S.; He, X.; Zhang, H.; Lv, T.; Xu, R.; He, L.; Xia, F.; Zhou, S.; Chen, Y.; et al. Unveiling radiobiological traits and therapeutic responses of BRAFV600E-mutant colorectal cancer via patient-derived organoids. J. Exp. Clin. Cancer Res. 2025, 44, 92. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Xu, X.; Yang, L.; Zhu, J.; Wan, J.; Shen, L.; Xia, F.; Fu, G.; Deng, Y.; Pan, M.; et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell 2020, 26, 17–26.E16. [Google Scholar] [CrossRef]
- Ganesh, K.; Wu, C.; O’rOurke, K.P.; Szeglin, B.C.; Zheng, Y.; Sauvé, C.-E.G.; Adileh, M.; Wasserman, I.; Marco, M.R.; Kim, A.S.; et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 2019, 25, 1607–1614. [Google Scholar] [CrossRef] [PubMed]
- Issing, C.; Menche, C.; Richter, M.R.; Mosa, M.H.; von der Grün, J.; Fleischmann, M.; Thoenissen, P.; Winkelmann, R.; Darvishi, T.; Loth, A.G.; et al. Head and neck tumor organoid biobank for modelling individual responses to radiation therapy according to the TP53/HPV status. J. Exp. Clin. Cancer Res. 2025, 44, 85. [Google Scholar] [CrossRef]
- Li, W.; Nishino, M.; Reed, E.; Akshinthala, D.; Pasha, H.A.; Anderson, E.S.; Huang, L.; Hebestreit, H.; Monti, S.; Gomez, E.D.; et al. Head and neck tumor organoid grown under simplified media conditions model tumor biology and chemoradiation responses. Sci. Rep. 2025, 15, 24221. [Google Scholar] [CrossRef]
- Jiang, K.; Yin, X.; Zhang, Q.; Yin, J.; Tang, Q.; Xu, M.; Wu, L.; Shen, Y.; Zhou, Z.; Yu, H.; et al. STC2 activates PRMT5 to induce radioresistance through DNA damage repair and ferroptosis pathways in esophageal squamous cell carcinoma. Redox Biol. 2023, 60, 102626. [Google Scholar] [CrossRef]
- Smith, H.L.; Southgate, H.; Tweddle, D.A.; Curtin, N.J. DNA damage checkpoint kinases in cancer. Expert. Rev. Mol. Med. 2020, 22, e2. [Google Scholar] [CrossRef]
- Dai, L.; Dai, Y.; Han, J.; Huang, Y.; Wang, L.; Huang, J.; Zhou, Z. Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin. Mol. Cell 2021, 81, 2765–2777.e6. [Google Scholar] [CrossRef]
- Prakash, R.; Zhang, Y.; Feng, W.; Jasin, M. Homologous Recombination and Human Health: The Roles of BRCA1, BRCA2, and Associated Proteins. Cold Spring Harb. Perspect. Biol. 2015, 7, a016600. [Google Scholar] [CrossRef]
- Jazayeri, A.; Falck, J.; Lukas, C.; Bartek, J.; Smith, G.C.M.; Lukas, J.; Jackson, S.P. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 2006, 8, 37–45. [Google Scholar] [CrossRef]
- Greenberg, R.A. Recognition of DNA double strand breaks by the BRCA1 tumor suppressor network. Chromosoma 2008, 117, 305–317. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Liu, W.; Yan, H.; Zhang, Y.; Cheung, A.H.K.; Zhang, J.; Chen, B.; Liang, L.; Zhou, Z.; et al. MCM6 is a critical transcriptional target of YAP to promote gastric tumorigenesis and serves as a therapeutic target. Theranostics 2022, 12, 6509–6526. [Google Scholar] [CrossRef]
- Kallio, P.; Bessone, C.; Seyednasrollah, F.; Brodkin, J.; Lassila, M.; Högström, J.; González-Loyola, A.; Petrova, T.V.; Haglund, C.; Alitalo, K. A Multipotent PROX1+ Tumor Stem/Progenitor Cell Population Emerges During Intestinal Tumorigenesis and Mediates Radioresistance in Colorectal Cancer. Cancer Res. 2025. Online ahead of print. [Google Scholar] [CrossRef]
- Andel, D.; Nouwens, A.J.; Klaassen, S.; Laoukili, J.; Viergever, B.; Verheem, A.; Intven, M.P.W.; Zandvliet, M.; Hagendoorn, J.; Rinkes, I.H.M.B.; et al. Rational design of alternative treatment options for radioresistant rectal cancer using patient-derived organoids. Br. J. Cancer 2025, 132, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Martincuks, A.; Zhang, C.; Austria, T.; Li, Y.-J.; Huang, R.; Santiago, N.L.; Kohut, A.; Zhao, Q.; Borrero, R.M.; Shen, B.; et al. Targeting PARG induces tumor cell growth inhibition and antitumor immune response by reducing phosphorylated STAT3 in ovarian cancer. J. Immunother. Cancer 2024, 12, e007716. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Dobrolecki, L.E.; Sallas, C.; Zhang, X.; Li, Y.; Khazaei, S.; Ghosh, S.; Jeter, C.R.; Liu, J.; Mills, G.B.; et al. UBA1 inhibition sensitizes cancer cells to PARP inhibitors. Cell Rep. Med. 2024, 5, 101834. [Google Scholar] [CrossRef] [PubMed]
- Caggiano, C.; Petrera, V.; Ferri, M.; Pieraccioli, M.; Cesari, E.; Di Leone, A.; Sanchez, M.A.; Fabi, A.; Masetti, R.; Naro, C.; et al. Transient splicing inhibition causes persistent DNA damage and chemotherapy vulnerability in triple-negative breast cancer. Cell Rep. 2024, 43, 114751. [Google Scholar] [CrossRef]
- Dreyer, S.B.; Upstill-Goddard, R.; Paulus-Hock, V.; Paris, C.; Lampraki, E.-M.; Dray, E.; Serrels, B.; Caligiuri, G.; Rebus, S.; Plenker, D.; et al. Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology 2021, 160, 362–377.e13. [Google Scholar] [CrossRef] [PubMed]
- Visvader, J.E.; Lindeman, G.J. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat. Rev. Cancer 2008, 8, 755–768. [Google Scholar] [CrossRef]
- Gillespie, M.S.; Ward, C.M.; Davies, C.C. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers 2023, 15, 1897. [Google Scholar] [CrossRef]
- Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020, 9, 1651. [Google Scholar] [CrossRef]
- Clara, J.A.; Monge, C.; Yang, Y.; Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update. Nat. Rev. Clin. Oncol. 2019, 17, 204–232. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, F.; Gao, W.; Wang, Q.; Li, X.; Li, X.; Li, W.; Liu, J.; Zhou, H.; Luo, A.; et al. Bismuth Sulfide Nanoflowers Facilitated miR339 Delivery to Overcome Stemness and Radioresistance through Ubiquitin-Specific Peptidase 8 in Esophageal Cancer. ACS Nano 2024, 18, 19232–19246. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Fan, H.; Deng, J.; Jiang, K.; Liao, J.; Zhang, X.; Chen, Y.; Yu, M.; Peng, Z. BMI1 Silencing Liposomes Suppress Postradiotherapy Cancer Stemness against Radioresistant Hepatocellular Carcinoma. ACS Nano 2023, 17, 23405–23421. [Google Scholar] [CrossRef]
- Wu, C.X.; Xu, A.; Zhang, C.C.; Olson, P.; Chen, L.; Lee, T.K.; Cheung, T.T.; Lo, C.M.; Wang, X.Q. Notch Inhibitor PF-03084014 Inhibits Hepatocellular Carcinoma Growth and Metastasis via Suppression of Cancer Stemness due to Reduced Activation of Notch1–Stat3. Mol. Cancer Ther. 2017, 16, 1531–1543. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Chen, X.; Wu, S.; Fang, H.; Hong, L.; Shao, L.; Wang, L.; Wu, J. Deciphering colorectal cancer radioresistance and immune microenvironment: Unraveling the role of EIF5A through single-cell RNA sequencing and machine learning. Front. Immunol. 2024, 15, 1466226. [Google Scholar] [CrossRef]
- Guo, D.; Ji, X.; Xie, H.; Ma, J.; Xu, C.; Zhou, Y.; Chen, N.; Wang, H.; Fan, C.; Song, H. Targeted Reprogramming of Vitamin B3 Metabolism as a Nanotherapeutic Strategy towards Chemoresistant Cancers. Adv. Mater. 2023, 35, e2301257. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Kondo, J.; Onuma, K.; Ohue, M.; Inoue, M. Small subset of Wnt-activated cells is an initiator of regrowth in colorectal cancer organoids after irradiation. Cancer Sci. 2020, 111, 4429–4441. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.L.; Adileh, M.; Hsu, K.-S.; Hua, G.; Lee, S.G.; Li, C.; Fuller, J.D.; Rotolo, J.A.; Bodo, S.; Klingler, S.; et al. Organoids Reveal That Inherent Radiosensitivity of Small and Large Intestinal Stem Cells Determines Organ Sensitivity. Cancer Res. 2020, 80, 1219–1227. [Google Scholar] [CrossRef]
- Ding, L.; Yang, Y.; Lu, Q.; Qu, D.; Chandrakesan, P.; Feng, H.; Chen, H.; Chen, X.; Liao, Z.; Du, J.; et al. Bufalin Inhibits Tumorigenesis, Stemness, and Epithelial–Mesenchymal Transition in Colorectal Cancer through a C-Kit/Slug Signaling Axis. Int. J. Mol. Sci. 2022, 23, 13354. [Google Scholar] [CrossRef]
- Hill, R.M.; Fok, M.; Grundy, G.; Parsons, J.L.; Rocha, S. The role of autophagy in hypoxia-induced radioresistance. Radiother. Oncol. 2023, 189, 109951. [Google Scholar] [CrossRef]
- Shi, Z.; Hu, C.; Zheng, X.; Sun, C.; Li, Q. Feedback loop between hypoxia and energy metabolic reprogramming aggravates the radioresistance of cancer cells. Exp. Hematol. Oncol. 2024, 13, 55. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, K.; Yang, Z.; Zhou, Y.; Xia, Z.; Ren, J.; Zhao, Y.; Wu, G.; Liu, C. Hypoxia-Induced Autophagy Is Involved in Radioresistance via HIF1A-Associated Beclin-1 in Glioblastoma Multiforme. Heliyon 2023, 9, e12820. [Google Scholar] [CrossRef]
- Hubert, C.G.; Rivera, M.; Spangler, L.C.; Wu, Q.; Mack, S.C.; Prager, B.C.; Couce, M.; McLendon, R.E.; Sloan, A.E.; Rich, J.N. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res. 2016, 76, 2465–2477. [Google Scholar] [CrossRef]
- Sharabi, A.B.; Lim, M.; DeWeese, T.L.; Drake, C.G. Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015, 16, e498–e509. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Shao, Z.; Wen, X.; Qu, D.; Liu, Z.; Chen, Z.; Zhang, X.; Ding, X.; Zhang, L. HMGB1/TREM2 positive feedback loop drives the development of radioresistance and immune escape of glioblastoma by regulating TLR4/Akt signaling. J. Transl. Med. 2024, 22, 688. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Li, L.; Ye, Z.; Liu, J.; Chen, Y.; Hu, B.; Tang, J.; Feng, G.; Li, Z.; et al. Susceptibility of Mitophagy-Deficient Tumors to Ferroptosis Induction by Relieving the Suppression of Lipid Peroxidation. Adv. Sci. 2024, 12, e2412593. [Google Scholar] [CrossRef]
- Weichselbaum, R.R.; Liang, H.; Deng, L.; Fu, Y.-X. Radiotherapy and immunotherapy: A beneficial liaison? Nat. Rev. Clin. Oncol. 2017, 14, 365–379. [Google Scholar] [CrossRef]
- Diamond, J.M.; Vanpouille-Box, C.; Spada, S.; Rudqvist, N.-P.; Chapman, J.R.; Ueberheide, B.M.; Pilones, K.A.; Sarfraz, Y.; Formenti, S.C.; Demaria, S. Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs. Cancer Immunol. Res. 2018, 6, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, L.; Ye, S.; Mai, M.; Liu, Y.; Jiang, X.; Feng, X.; Yang, Z. Targeting SIRT2 induces MLH1 deficiency and boosts antitumor immunity in preclinical colorectal cancer models. Sci. Transl. Med. 2025, 17, eadv0766. [Google Scholar] [CrossRef]
- Bharti, V.; Kumar, A.; Wang, Y.; Roychowdhury, N.; Bellan, D.d.L.; Kassaye, B.B.; Watkins, R.; Capece, M.; Chung, C.G.; Hilinski, G.; et al. TTK inhibitor OSU13 promotes immunotherapy responses by activating tumor STING. J. Clin. Investig. 2024, 9, e177523. [Google Scholar] [CrossRef]
- Guo, S.; Yao, Y.; Tang, Y.; Xin, Z.; Wu, D.; Ni, C.; Huang, J.; Wei, Q.; Zhang, T. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct. Target. Ther. 2023, 8, 205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Chen, D.; Yu, J. Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct. Target. Ther. 2022, 7, 258. [Google Scholar] [CrossRef]
- Votanopoulos, K.I.; Forsythe, S.; Sivakumar, H.; Mazzocchi, A.; Aleman, J.; Miller, L.; Levine, E.; Triozzi, P.; Skardal, A. Model of Patient-Specific Immune-Enhanced Organoids for Immunotherapy Screening: Feasibility Study. Ann. Surg. Oncol. 2019, 27, 1956–1967. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Hoshi, H.; Higa, A.; Hiyama, G.; Tamura, H.; Ogawa, M.; Takagi, K.; Goda, K.; Okabe, N.; Muto, S.; et al. An In Vitro System for Evaluating Molecular Targeted Drugs Using Lung Patient-Derived Tumor Organoids. Cells 2019, 8, 481. [Google Scholar] [CrossRef]
- Schoetz, U.; Klein, D.; Hess, J.; Shnayien, S.; Spoerl, S.; Orth, M.; Mutlu, S.; Hennel, R.; Sieber, A.; Ganswindt, U.; et al. Early senescence and production of senescence-associated cytokines are major determinants of radioresistance in head-and-neck squamous cell carcinoma. Cell Death Dis. 2021, 12, 1162. [Google Scholar] [CrossRef]
- Wang, B.; Kohli, J.; Demaria, M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer 2020, 6, 838–857. [Google Scholar] [CrossRef]
- Jeon, H.-M.; Kim, J.-Y.; Cho, H.J.; Lee, W.J.; Nguyen, D.; Kim, S.S.; Oh, Y.T.; Kim, H.-J.; Jung, C.-W.; Pinero, G.; et al. Tissue factor is a critical regulator of radiation therapy-induced glioblastoma remodeling. Cancer Cell 2023, 41, 1480–1497.e9. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, L.; Cai, L.; Zheng, W.; Liu, X.; Xiao, Y.; Jin, X.; Bai, Y.; Lai, M.; Li, H.; et al. Cellular senescence-associated gene IFI16 promotes HMOX1-dependent evasion of ferroptosis and radioresistance in glioblastoma. Nat. Commun. 2025, 16, 1212. [Google Scholar] [CrossRef]
- Yang, R.; Kwan, W.; Du, Y.; Yan, R.; Zang, L.; Li, C.; Zhu, Z.; Cheong, I.H.; Kozlakidis, Z.; Yu, Y. Drug-induced senescence by aurora kinase inhibitors attenuates innate immune response of macrophages on gastric cancer organoids. Cancer Lett. 2024, 598, 217106. [Google Scholar] [CrossRef]
- Shishido, K.; Reinders, A.; Asuthkar, S. Epigenetic regulation of radioresistance: Insights from preclinical and clinical studies. Expert. Opin. Investig. Drugs 2022, 31, 1359–1375. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Miao, D.; Liu, R.; Li, M.; Dong, Z.; Liu, Y.; Yang, C.; Yang, H.; Wang, K.; Xiong, Z.; et al. Epigenetically silenced KAT2B suppresses de novo lipogenesis through destroying HDAC5/LSD1 complex assembly in renal cell carcinoma. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
- Millner, T.O.; Panday, P.; Xiao, Y.; Nicholson, J.G.; Boot, J.R.; Arpe, Z.; Stevens, P.A.; Rahman, N.N.; Zhang, X.; Mein, C.; et al. Disruption of DNA methylation underpins the neuroinflammation induced by targeted CNS radiotherapy. Brain 2025, 148, 3137–3152. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kwon, J.; Shin, H.J.; Moon, S.M.; Kim, S.B.; Shin, U.S.; Han, Y.H.; Kim, Y. Butyrate enhances the efficacy of radiotherapy via FOXO3A in colorectal cancer patient-derived organoids. Int. J. Oncol. 2020, 57, 1307–1318. [Google Scholar] [CrossRef]
- Nag, D.; Bhanja, P.; Riha, R.; Sanchez-Guerrero, G.; Kimler, B.F.; Tsue, T.T.; Lominska, C.; Saha, S. Auranofin Protects Intestine against Radiation Injury by Modulating p53/p21 Pathway and Radiosensitizes Human Colon Tumor. Clin. Cancer Res. 2019, 25, 4791–4807. [Google Scholar] [CrossRef]
- Yin, M.; Yuan, Y.; Huang, Y.; Liu, X.; Meng, F.; Luo, L.; Tian, S.; Liu, B. Carbon–Iodine Polydiacetylene Nanofibers for Image-Guided Radiotherapy and Tumor-Microenvironment-Enhanced Radiosensitization. ACS Nano 2024, 18, 8325–8336. [Google Scholar] [CrossRef]
- Zhang, A.; Gao, L. The Refined Application and Evolution of Nanotechnology in Enhancing Radiosensitivity During Radiotherapy: Transitioning from Gold Nanoparticles to Multifunctional Nanomaterials. Int. J. Nanomed. 2023, 18, 6233–6256. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Shao, Z.; Chen, X.; Liu, H.; Qiu, H.; Ding, X.; Qu, D.; Wang, H.; Wang, A.Z.; Zhang, L. A multifunctional targeted nano-delivery system with radiosensitization and immune activation in glioblastoma. Radiat. Oncol. 2024, 19, 119. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Arora, V.; Kumari, S.; Sarkar, A.; Kumaran, S.S.; Chaturvedi, S.; Jain, T.K.; Agrawal, G. Imaging application and radiosensitivity enhancement of pectin decorated multifunctional magnetic nanoparticles in cancer therapy. Int. J. Biol. Macromol. 2021, 189, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhu, R.; Liang, R.; Wang, W.; Li, J.; Zhao, S.; Wu, Y.; Cao, J.; Yang, S.; Sun, Y. Molecular simulation-aided self-adjuvanting nanoamplifier for cancer photoimmunotherapy. Theranostics 2025, 15, 2451–2469. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, S.; Pang, E.; Tang, Y.; Zhu, P.; Gao, W.; Diao, Q.; Yu, J.; Zeng, J.; Lan, M.; et al. Indacenodithienothiophene-based A-D-A-type phototheranostics for immuno-phototherapy. J. Nanobiotechnol. 2025, 23, 309. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Yuan, Y.; Chen, H.; Zhang, L.; Xiao, H.; Chen, J.; Zhao, Y.; Chang, J.; Guo, W.; et al. Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair–inhibiting (HYDRI) nanomedicine. Sci. Adv. 2021, 7, eabc5267. [Google Scholar] [CrossRef]
- Xiao, Q.; Riedesser, J.E.; Mulholland, T.; Li, Z.; Buchloh, J.; Albrecht, P.; Yang, X.; Li, M.; Venkatachalam, N.; Skabkina, O.; et al. Combined MEK and PARP inhibition enhances radiation response in rectal cancer. Cell Rep. Med. 2025, 6, 102284. [Google Scholar] [CrossRef]

| Feature | 2D Cell Lines | PDOs | PDXs |
|---|---|---|---|
| Structure | Flat monolayer | 3D tissue-like | Patient tumor in mouse |
| TME components | None | Minimal | Mouse stroma |
| Heterogeneity | Very low | High | High |
| Scalability/Throughput | Very high | Moderate | Low |
| Cost/Time | Low/Fast | Moderate/Medium | High/Slow |
| Relevance to human RT | Low | High | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, D.; Hong, X.; Wang, X.; Ding, W.; Wang, C.; Qian, J.; Zhou, Y.; Sun, C.; Wu, Z. Patient-Derived Organoids as a Platform to Decipher and Overcome Radioresistance: From the Tumor Microenvironment to Radiosensitizer Discovery. Curr. Oncol. 2025, 32, 680. https://doi.org/10.3390/curroncol32120680
Yin D, Hong X, Wang X, Ding W, Wang C, Qian J, Zhou Y, Sun C, Wu Z. Patient-Derived Organoids as a Platform to Decipher and Overcome Radioresistance: From the Tumor Microenvironment to Radiosensitizer Discovery. Current Oncology. 2025; 32(12):680. https://doi.org/10.3390/curroncol32120680
Chicago/Turabian StyleYin, Dashan, Xiujuan Hong, Xiaoqi Wang, Wenjia Ding, Chenli Wang, Jin Qian, Yi Zhou, Chuan Sun, and Zhibing Wu. 2025. "Patient-Derived Organoids as a Platform to Decipher and Overcome Radioresistance: From the Tumor Microenvironment to Radiosensitizer Discovery" Current Oncology 32, no. 12: 680. https://doi.org/10.3390/curroncol32120680
APA StyleYin, D., Hong, X., Wang, X., Ding, W., Wang, C., Qian, J., Zhou, Y., Sun, C., & Wu, Z. (2025). Patient-Derived Organoids as a Platform to Decipher and Overcome Radioresistance: From the Tumor Microenvironment to Radiosensitizer Discovery. Current Oncology, 32(12), 680. https://doi.org/10.3390/curroncol32120680

