Independent Validation of a Machine Learning Classifier for Predicting Mediastinal Lymph Node Metastases in Non-Small Cell Lung Cancer Using Routinely Obtainable [18F]FDG-PET/CT Parameters
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Imaging Procotol
2.3. [18F]FDG-PET/CT Image Reconstruction
2.4. Image Analysis
2.4.1. SUV Measurements
2.4.2. Visual PET Assessment
2.4.3. Short-Axis Measurement of Nodal Regions by CT
2.4.4. Standard PET/CT Criterion
2.4.5. Clinical Data Collection
2.5. Reference Standard
2.6. Application of the Machine Learning Classifier
2.7. Statistical Analysis
3. Results
3.1. Reference Standard
3.2. Diagnostic Performance
3.2.1. Charité Cohort
3.2.2. TCIA Cohort
3.3. Predictive Accuracy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADC | Adenocarcinoma |
| EBUS-TBNA | Endobronchial ultrasound-guided transbronchial needle aspiration |
| [18F]FDG | [18F]fluorodeoxyglucose |
| GBM | Gradient boosting model |
| IASLC | International Association for the Study of Lung Cancer |
| IQR | Interquartile range |
| LN | Lymph node |
| ML | Machine learning |
| NOS | Not otherwise specified |
| NSCLC | Non-small cell lung cancer |
| PET/CT | Positron emission tomography/computed tomography |
| RQS | Radiomics quality score |
| SCC | Squamous cell carcinoma |
| SUVmax | Maximum standardized uptake value |
| TCIA | The Cancer Imaging Archive |
| TOF | Time-of-flight |
| TRIPOD | Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis |
References
- Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S.; ESMO Guidelines Committee. Early and Locally Advanced Non-Small-Cell Lung Cancer (NSCLC): ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv1–iv21. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Hansen, M.; Baldwin, D.R.; Hasler, E.; Zamora, J.; Abraira, V.; Roqué I Figuls, M. PET-CT for Assessing Mediastinal Lymph Node Involvement in Patients with Suspected Resectable Non-Small Cell Lung Cancer. Cochrane Database Syst. Rev. 2014, 2014, CD009519. [Google Scholar] [CrossRef] [PubMed]
- Kubota, R.; Yamada, S.; Kubota, K.; Ishiwata, K.; Tamahashi, N.; Ido, T. Intratumoral Distribution of Fluorine-18-Fluorodeoxyglucose in Vivo: High Accumulation in Macrophages and Granulation Tissues Studied by Microautoradiography. J. Nucl. Med. 1992, 33, 1972–1980. [Google Scholar]
- Yamada, S.; Kubota, K.; Kubota, R.; Ido, T.; Tamahashi, N. High Accumulation of Fluorine-18-Fluorodeoxyglucose in Turpentine-Induced Inflammatory Tissue. J. Nucl. Med. 1995, 36, 1301–1306. [Google Scholar]
- Gunluoglu, M.Z.; Melek, H.; Medetoglu, B.; Demir, A.; Kara, H.V.; Dincer, S.I. The Validity of Preoperative Lymph Node Staging Guidelines of European Society of Thoracic Surgeons in Non-Small-Cell Lung Cancer Patients. Eur. J. Cardiothorac. Surg. 2011, 40, 287–290. [Google Scholar] [CrossRef]
- Rogasch, J.M.M.; Michaels, L.; Baumgärtner, G.L.; Frost, N.; Rückert, J.-C.; Neudecker, J.; Ochsenreither, S.; Gerhold, M.; Schmidt, B.; Schneider, P.; et al. A Machine Learning Tool to Improve Prediction of Mediastinal Lymph Node Metastases in Non-Small Cell Lung Cancer Using Routinely Obtainable [18F]FDG-PET/CT Parameters. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2140–2151. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef]
- Bakr, S.; Gevaert, O.; Echegaray, S.; Ayers, K.; Zhou, M.; Shafiq, M.; Zheng, H.; Zhang, W.; Leung, A.; Kadoch, M.; et al. Data for NSCLC Radiogenomics Collection (Version 4) [Data set]. The Cancer Imaging Archive. 2017. Available online: https://www.cancerimagingarchive.net/collection/nsclc-radiogenomics/ (accessed on 21 October 2022).
- Bakr, S.; Gevaert, O.; Echegaray, S.; Ayers, K.; Zhou, M.; Shafiq, M.; Zheng, H.; Benson, J.A.; Zhang, W.; Leung, A.N.C.; et al. A Radiogenomic Dataset of Non-Small Cell Lung Cancer. Sci. Data 2018, 5, 180202. [Google Scholar] [CrossRef]
- Surti, S.; Kuhn, A.; Werner, M.E.; Perkins, A.E.; Kolthammer, J.; Karp, J.S. Performance of Philips Gemini TF PET/CT Scanner with Special Consideration for Its Time-of-Flight Imaging Capabilities. J. Nucl. Med. 2007, 48, 471–480. [Google Scholar]
- Vandendriessche, D.; Uribe, J.; Bertin, H.; De Geeter, F. Performance Characteristics of Silicon Photomultiplier Based 15-Cm AFOV TOF PET/CT. EJNMMI Phys. 2019, 6, 8. [Google Scholar] [CrossRef]
- Toney, L.K.; Vesselle, H.J. Neural Networks for Nodal Staging of Non-Small Cell Lung Cancer with FDG PET and CT: Importance of Combining Uptake Values and Sizes of Nodes and Primary Tumor. Radiology 2014, 270, 91–98. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Ju, H.; Kim, K.; Kim, B.I.; Woo, S.-K. Graph Neural Network Model for Prediction of Non-Small Cell Lung Cancer Lymph Node Metastasis Using Protein-Protein Interaction Network and 18F-FDG PET/CT Radiomics. Int. J. Mol. Sci. 2024, 25, 698. [Google Scholar] [CrossRef]
- Zhong, Y.; She, Y.; Deng, J.; Chen, S.; Wang, T.; Yang, M.; Ma, M.; Song, Y.; Qi, H.; Wang, Y.; et al. Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non-Small Cell Lung Cancer. Radiology 2022, 302, 200–211. [Google Scholar] [CrossRef]
- Kidera, E.; Koyasu, S.; Hirata, K.; Hamaji, M.; Nakamoto, R.; Nakamoto, Y. Convolutional Neural Network-Based Program to Predict Lymph Node Metastasis of Non-Small Cell Lung Cancer Using 18F-FDG PET. Ann. Nucl. Med. 2024, 38, 71–80. [Google Scholar] [CrossRef]
- Tyagi, S.; Talbar, S.N. LCSCNet: A Multi-Level Approach for Lung Cancer Stage Classification Using 3D Dense Convolutional Neural Networks with Concurrent Squeeze-and-Excitation Module. Biomed. Signal Process. Control 2023, 80, 104391. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, D.; Kim, H.S.; Park, S.Y.; Kim, J.Y.; Cho, S.J.; Shin, J.H.; Kim, J.H. Quality of Science and Reporting of Radiomics in Oncologic Studies: Room for Improvement According to Radiomics Quality Score and TRIPOD Statement. Eur. Radiol. 2020, 30, 523–536. [Google Scholar] [CrossRef]
- Yoo, J.; Cheon, M.; Park, Y.J.; Hyun, S.H.; Zo, J.I.; Um, S.-W.; Won, H.-H.; Lee, K.-H.; Kim, B.-T.; Choi, J.Y. Machine Learning-Based Diagnostic Method of Pre-Therapeutic 18F-FDG PET/CT for Evaluating Mediastinal Lymph Nodes in Non-Small Cell Lung Cancer. Eur. Radiol. 2021, 31, 4184–4194. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, L.; Dai, Q.; Jin, M.; Huang, G. Developing a Primary Tumor and Lymph Node 18F-FDG PET/CT-Clinical (TLPC) Model to Predict Lymph Node Metastasis of Resectable T2-4 NSCLC. J. Cancer Res. Clin. Oncol. 2023, 149, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Laros, S.S.A.; Dieckens, D.; Blazis, S.P.; van der Heide, J.A. Machine Learning Classification of Mediastinal Lymph Node Metastasis in NSCLC: A Multicentre Study in a Western European Patient Population. EJNMMI Phys. 2022, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.A.; Shiri, I.; Ghaffarian, P.; Hajianfar, G.; Avval, A.H.; Seyfi, M.; Servaes, S.; Rosa-Neto, P.; Zaidi, H.; Ay, M.R. The Effect of Harmonization on the Variability of PET Radiomic Features Extracted Using Various Segmentation Methods. Ann. Nucl. Med. 2024, 38, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Kallos-Balogh, P.; Vas, N.F.; Toth, Z.; Szakall, S.; Szabo, P.; Garai, I.; Kepes, Z.; Forgacs, A.; Szatmáriné Egeresi, L.; Magnus, D.; et al. Multicentric Study on the Reproducibility and Robustness of PET-Based Radiomics Features with a Realistic Activity Painting Phantom. PLoS ONE 2024, 19, e0309540. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Amstutz, F.; Vuong, D.; Bogowicz, M.; Hüllner, M.; Foerster, R.; Basler, L.; Schröder, C.; Eboulet, E.I.; Pless, M.; et al. Preselection of Robust Radiomic Features Does Not Improve Outcome Modelling in Non-Small Cell Lung Cancer Based on Clinical Routine FDG-PET Imaging. EJNMMI Res. 2021, 11, 79. [Google Scholar] [CrossRef]
- Collins, G.S.; Moons, K.G.M.; Dhiman, P.; Riley, R.D.; Beam, A.L.; Van Calster, B.; Ghassemi, M.; Liu, X.; Reitsma, J.B.; Van Smeden, M.; et al. TRIPOD+AI Statement: Updated Guidance for Reporting Clinical Prediction Models That Use Regression or Machine Learning Methods. BMJ 2024, 385, e078378. [Google Scholar] [CrossRef] [PubMed]



| Parameter | Total Cohort | Charité Cohort | TCIA Cohort | p-Value |
|---|---|---|---|---|
| Number of patients | 211 | 87 | 124 | |
| Age [Years] | 68 (63–74) | 67 (61–72) | 70 (65–76) | 0.01 |
| Gender: male | 145 (69) | 54 (62) | 91 (73) | 0.097 |
| T stage | <0.001 | |||
| 92 (44) | 29 (33) | 63 (51) | |
| 66 (31) | 22 (25) | 44 (36) | |
| 32 (15) | 19 (22) | 13 (10) | |
| 21 (10) | 17 (20) | 4 (3) | |
| N stage | <0.001 | |||
| 139 (66) | 40 (46) | 99 (80) | |
| 22 (10) | 12 (14) | 10 (8) | |
| 34 (16) | 19 (22) | 15 (12) | |
| 16 (8) | 16 (18) | 0 | |
| 50 (24) | 35 (40) | 15 (12) | <0.001 |
| Type of reference standard | <0.001 | |||
| 176 (83) | 52 (60) | 124 (100) | |
| 29 (14) | 29 (33) | 0 | |
| 6 (3) | 6 (7) | 0 | |
| Primary tumor size [mm] | 34 (22–52) | 31 (19–50) | 38 (24–54) | 0.062 |
| Primary tumor SUVmax | 7.7 (3.5–12.5) | 11.1 (7.2–15) | 5.4 (2.5–10.2) | <0.001 |
| NSCLC subtype | 0.061 | |||
| 149 (70) | 55 (63) | 94 (76) | |
| 52 (25) | 25 (29) | 27 (22) | |
| 10 (5) | 7 (8) | 3 (2) | |
| Primary tumor lobe | 0.18 | |||
| 124 (59) | 46 (53) | 78 (63) | |
| 15 (7) | 5 (6) | 10 (8) | |
| 71 (34) | 35 (40) | 36 (29) | |
| 1 (1) | 1 (1) | 0 | |
| CT with contrast agent available | <0.001 | |||
| 158 (75) | 79 (91) | 79 (64) | |
| 53 (25) | 8 (9) | 45 (36) | |
| Grading | <0.001 | |||
| 38 (20) | 6 (7) | 32 (26) | |
| 105 (54) | 34 (39) | 71 (57) | |
| 46 (24) | 25 (29) | 21 (17) | |
| 4 (2) | 4 (5) | 0 | |
| 18 (9) | 18 (21) | 0 | |
| UICC stage | <0.001 | |||
| 108 (51) | 27 (30) | 81 (65) | |
| 30 (14) | 8 (10) | 22 (18) | |
| 43 (20) | 26 (30) | 17 (14) | |
| 30 (14) | 26 (30) | 4 (3) |
| Reference Standard | |||
|---|---|---|---|
| N0/1 | N2/3 | ||
| Charité cohort | |||
| Standard PET/CT criterion 1 | N0/1 | 31 | 1 |
| N2/3 | 21 | 34 | |
| Machine learning classifier | N0/1 | 34 | 1 |
| N2/3 | 18 | 34 | |
| TCIA cohort | |||
| Standard PET/CT criterion 1 | N0/1 | 76 | 10 |
| N2/3 | 33 | 5 | |
| Machine learning classifier | N0/1 | 98 | 11 |
| N2/3 | 11 | 4 | |
| Sensitivity % (95% CI) | Specificity % (95% CI) | Accuracy % (95% CI) | |
|---|---|---|---|
| Charité cohort | |||
| Standard PET/CT criterion | 97.1 (85–100) | 59.6 (45–73) | 74.7 (64–83) |
| Machine learning classifier | 97.1 (85–100) | 65.4 (51–78) | 78.2 (68–86) |
| p-value | 1 | 0.5 | 0.55 |
| TCIA cohort | |||
| Standard PET/CT criterion | 33.3 (12–62) | 69.7 (60–78) | 65.3 (56–74) |
| Machine learning classifier | 26.7 (8–55) | 89.9 (83–95) | 82.3 (74–89) |
| p-value | 1 | <0.001 | <0.001 |
| First Author | Methods | AUC | Sensitivity | Specificity | Accuracy |
|---|---|---|---|---|---|
| Ju [14] | Graph Neural Network to predict N+ vs. N0; PET + CT data | 0.88 | - | - | 83% |
| Zhong [15] | Residual neural network to predict occult N2 disease; CT data only | 0.81 | 50% | 84% | 81% |
| Kidera [16] | Convolutional neural network to predict N+ vs. N0; PET + CT data | - | 73% | 77% | 75% |
| Tyagi [17] | Multi-level 3D deep convolutional neural network to predict T, N and M stage; CT data only | - | - | - | 97% |
| Current model | GBM to predict N2/3 | - | 27% | 90% | 82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wdowiak, A.; Rogasch, J.M.M.; Baumgärtner, G.L.; Frost, N.; Rückert, J.-C.; Neudecker, J.; Ochsenreither, S.; Gerhold, M.; Schmidt, B.; Graff, M.; et al. Independent Validation of a Machine Learning Classifier for Predicting Mediastinal Lymph Node Metastases in Non-Small Cell Lung Cancer Using Routinely Obtainable [18F]FDG-PET/CT Parameters. Curr. Oncol. 2025, 32, 679. https://doi.org/10.3390/curroncol32120679
Wdowiak A, Rogasch JMM, Baumgärtner GL, Frost N, Rückert J-C, Neudecker J, Ochsenreither S, Gerhold M, Schmidt B, Graff M, et al. Independent Validation of a Machine Learning Classifier for Predicting Mediastinal Lymph Node Metastases in Non-Small Cell Lung Cancer Using Routinely Obtainable [18F]FDG-PET/CT Parameters. Current Oncology. 2025; 32(12):679. https://doi.org/10.3390/curroncol32120679
Chicago/Turabian StyleWdowiak, Agata, Julian M. M. Rogasch, Georg L. Baumgärtner, Nikolaj Frost, Jens-Carsten Rückert, Jens Neudecker, Sebastian Ochsenreither, Manuela Gerhold, Bernd Schmidt, Mareike Graff, and et al. 2025. "Independent Validation of a Machine Learning Classifier for Predicting Mediastinal Lymph Node Metastases in Non-Small Cell Lung Cancer Using Routinely Obtainable [18F]FDG-PET/CT Parameters" Current Oncology 32, no. 12: 679. https://doi.org/10.3390/curroncol32120679
APA StyleWdowiak, A., Rogasch, J. M. M., Baumgärtner, G. L., Frost, N., Rückert, J.-C., Neudecker, J., Ochsenreither, S., Gerhold, M., Schmidt, B., Graff, M., Amthauer, H., Penzkofer, T., & Furth, C. (2025). Independent Validation of a Machine Learning Classifier for Predicting Mediastinal Lymph Node Metastases in Non-Small Cell Lung Cancer Using Routinely Obtainable [18F]FDG-PET/CT Parameters. Current Oncology, 32(12), 679. https://doi.org/10.3390/curroncol32120679

