Clinical, Morphological, and Molecular Study on Grade 2 and 3 Pleomorphic Xanthoastrocytoma
Abstract
:1. Introduction
2. Methods
2.1. Case Selection
2.2. DNA Extraction
2.3. BRAF V600E Analysis
2.4. TERT Promoter Mutation Analysis
2.5. Fluorescence In Situ Hybridization
3. Statistical Analysis
4. Results
4.1. Patient Demographics
4.2. Morphologic Patterns of PXA
4.3. Molecular Results
5. Survival
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. Anaplastic Pleomorphic Xanthoastrocytoma. In WHO Classification of Tumors of the Central Nervous System; Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Eds.; International Agency for Research on Cancer: Lyon, France, 2021; pp. 330–363. [Google Scholar]
- Alexandrescu, S.; Korshunov, A.; Lai, S.H.; Dabiri, S.; Patil, S.; Li, R.; Shih, C.-S.; Bonnin, J.M.; Baker, J.A.; Du, E.; et al. Epithelioid glioblastomas and anaplastic epithelioid pleomorphic xanthoastrocytoma—Same entity or first cousins? Brain Pathol. 2016, 26, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, N.; Brahmbhatt, N.; Kruser, T.J.; Kam, K.L.; Appin, C.L.; Wadhwani, N.; Chandler, J.; Kumthekar, P.; Lukas, R.V. Pleomorphic xanthoastrocytoma: A brief review. CNS Oncol. 2019, 8, CNS39. [Google Scholar] [CrossRef] [Green Version]
- Furuta, T.; Miyoshi, H.; Komaki, S.; Arakawa, F.; Morioka, M.; Ohshima, K.; Nakada, M.; Sugita, Y. Clinicopathological and genetic association between epithelioid glioblastoma and pleomorphic xanthoastrocytoma. Neuropathology 2018, 38, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Ida, C.M.; Rodriguez, F.J.; Burger, P.C.; Caron, A.A.; Jenkins, S.M.; Spears, G.M.; Aranguren, D.L.; Lachance, D.H.; Giannini, C. Pleomorphic xanthoastrocytoma: Natural History and long-term follow-up. Brain Pathol. 2015, 25, 575–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koelsche, C.; Sahm, F.; Wöhrer, A.; Jeibmann, A.; Schittenhelm, J.; Kohlhof, P.; Preusser, M.; Romeike, B.; Dohmen-Scheufler, H.; Hartmann, C.; et al. BRAF-mutated pleomorphic xanthoastrocytoma is associated with temporal location, reticulin fiber deposition and CD34 expression. Brain Pathol. 2014, 24, 221–229. [Google Scholar] [CrossRef]
- Schmidt, Y.; Kleinschmidt-DeMasters, B.K.; Aisner, D.L.; Lillehei, K.O.; Damek, D. Anaplastic PXA in adults: Case series with clinicopathologic and molecular features. J. Neurooncol. 2013, 111, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaubel, R.A.; Caron, A.A.; Yamada, S.; Decker, P.A.; Passow, J.E.E.; Rodriguez, F.J.; Rao, A.A.N.; Lachance, D.; Parney, I.; Jenkins, R.; et al. Recurrent copy number alterations in low-grade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation. Brain Pathol. 2018, 28, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Vaubel, R.; Zschernack, V.; Tran, Q.T.; Jenkins, S.; Caron, A.; Milosevic, D.; Smadbeck, J.; Vasmatzis, G.; Kandels, D.; Gnekow, A.; et al. Biology and grading of Pleomorphic xanthoastrocytoma-what have we learned about it? Brain Pathol. 2021, 31, 20–32. [Google Scholar] [CrossRef]
- Weber, R.G.; Hoischen, A.; Ehrler, M.; Zipper, P.; Kaulich, K.; Blaschke, B.; Becker, A.J.; Weber-Mangal, S.; Jauch, A.; Radlwimmer, B.; et al. Frequent loss of chromosome 9, homozygous CDKN2A/p 14 ARF/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene 2007, 26, 1008–1097. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.J.; Gong, H.; Chen, K.; Joseph, N.M.; van Ziffle, J.; Bastian, B.C.; Grenert, J.P.; Kline, C.N.; Mueller, S.; Banerjee, A.; et al. The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathol. 2019, 29, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Lohkamp, L.-N.; Schinz, M.; Gehlhaar, C.; Guse, K.; Thomale, U.-W.; Vajkoczy, P.; Heppner, F.L.; Koch, A. MGMT Promoter Methylation and BRAF V600E Mutations Are Helpful Markers to Discriminate Pleomorphic Xanthoastrocytoma from Giant Cell Glioblastoma. PLoS ONE 2016, 11, e0156422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, C.; Scheithauer, B.W.; Burger, P.C.; Brat, D.B.; Wollan, P.C.; Lach, B.; O’Neill, B.P. Pleomorphic xanthoastrocytoma: What do we really know about it? Cancer 1999, 85, 2033–2045. [Google Scholar] [CrossRef]
- Akanksha, S.; Jerome, J.G. Overview of prognostic factors in adult gliomas. Ann. Palliat. Med. 2021, 10, 863–874. [Google Scholar] [CrossRef]
- Pallud, J.; Audureau, E.; Blonski, M.; Sanai, N.; Bauchet, L.; Fontaine, D.; Mandonnet, E.; Dezamis, E.; Psimaras, D.; Guyotat, J.; et al. Epileptic seizures in diffuse low-grade gliomas in adults. Brain 2014, 137 Pt 2, 449–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, S.M.; Mitra, N.; Fei, W.; Shinohara, E.T. Patterns of care and outcomes of patients with pleomorphic xanthoastrocytoma: A SEER analysis. J. Neurooncol. 2012, 110, 99–104. [Google Scholar] [CrossRef]
- Ma, C.; Feng, R.; Chen, H.; Hameed, N.F.; Aibaidula, A.; Song, Y.; Wu, J. BRAF V600E, TERT, and IDH2 mutations in pleomorphic xanthoastrocytoma: Observations from a large case-series study. World Neurosurg. 2018, 120, e1225–e1233. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Korshunov, A.; Reifenberger, G.; Capper, D.; Felsberg, J.; Trisolini, E.; Pollo, B.; Calatozzolo, C.; Prinz, M.; Staszewski, O.; et al. Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival. Acta Neuropathol. Commun. 2022, 10, 5. [Google Scholar] [CrossRef]
- Tabouret, E.; Bequet, C.; Denicolai, E.; Barrié, M.; Nanni, I.; Metellus, P.; Dufour, H.; Chinot, O.; Figarella-Branger, D. BRAF mutation and anaplasia may be predictive factors of progression-free survival in adult pleomorphic xanthoastrocytoma. Eur. J. Surg. Oncol. 2015, 41, 1685–1690. [Google Scholar] [CrossRef]
- Matsumura, N.; Nakajima, N.; Yamazaki, T.; Nagano, T.; Kagoshima, K.; Nobusawa, S.; Ikota, H.; Yokoo, H. Concurrent TERT promoter and BRAF V600E mutation in epithelioid glioblastoma and concomitant low-grade astrocytoma. Neuropathology 2017, 37, 58–63. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, T.; Zhu, G.; Xing, M. Regulation of mutant TERT by BRAF V600E/MAP kinase pathway through FOS/GABP in human cancer. Nat. Commun. 2018, 9, 579. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Duan, Y.; Wei, D.; Zhang, Y.; Dai, J.; Li, J.; Li, X.; Zhou, J.; Liu, Z.; Jin, Z.; et al. Molecular features of pleomorphic xanthoastrocytoma. Hum. Pathol. 2019, 86, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmidt-DeMasters, B.K.; Aisner, D.L.; Foreman, N. BRAF VE1 immunoreactivity patterns in epithelioid glioblastomas positive for BRAF V600E mutation. Am. J. Surg. Pathol. 2015, 39, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Stichel, D.; Ebrahimi, A.; Reuss, D.; Schrimpf, D.; Ono, T.; Shirahata, M.; Reifenberger, G.; Weller, M.; Hänggi, D.; Wick, W.; et al. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol. 2018, 136, 793–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinschmidt-DeMasters, B.K.; Alassiri, A.H.; Birks, D.K.; Newell, K.L.; Moore, W.; Lillehei, K.O. Epithelioid versus rhabdoid glioblastomas are distinguished by monosomy 22 and immunohistochemical expression of INI-1 but not Gaudin 6. Am. J. Surg. Pathol. 2010, 34, 341–354. [Google Scholar] [CrossRef]
- Eckel-Passow, J.E.; Lachance, D.H.; Molinaro, A.M.; Walsh, K.M.; Decker, P.A.; Sicotte, H.; Pekmezci, M.; Rice, T.W.; Kosel, M.L.; Smirnov, I.V.; et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N. Engl. J. Med. 2015, 372, 2499–2508. [Google Scholar] [CrossRef] [Green Version]
- Diplas, B.H.; He, X.; Brosnan-Cashman, J.A.; Liu, H.; Chen, L.H.; Wang, Z.; Moure, C.J.; Killela, P.J.; Loriaux, D.B.; Lipp, E.S.; et al. The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat. Commun. 2018, 9, 2087. [Google Scholar] [CrossRef]
- Hosono, J.; Nitta, M.; Masui, K.; Maruyama, T.; Komori, T.; Yokoo, H.; Saito, T.; Muragaki, T.; Kawamata, T. Role of a promoter mutation in TERT in Malignant Transformation of pleomorphic xanthoastrocytoma. World Neurosurg. 2019, 126, 624–630. [Google Scholar] [CrossRef]
- Xing, M.; Liu, R.; Liu, X.; Murugan, A.K.; Zhu, G.; Zeiger, M.A.; Pai, S.; Bishop, J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with the highest recurrence. J. Clin. Oncol. 2014, 32, 2718–2726. [Google Scholar] [CrossRef] [Green Version]
Clinical Pathological Features | PXA G2 n (%) | PXA G3 n (%) | ALL, n (%) | p Value |
---|---|---|---|---|
Total numbers of patients | 36 | 17 | 53 | |
Gender | 0.25 | |||
Male | 15 (42%) | 10 (59%) | 25 (47%) | |
Female | 21 (58%) | 7 (41%) | 28 (53%) | |
Age at diagnosis (years) | ||||
Median | 27 (5–59) | 37 (13–74) | 32 (5–74) | |
≤18 y | 9 (11%) | 4 (5%) | 13 (9%) | 0.9 |
>18 y | 27 (89%) | 13 (95%) | 40 (91%) | |
Location | ||||
Temporal lobe | 26 (72%) | 6 (35%) | 32 (60%) | 0.009 * |
Non-temporal lobe | 10 (28%) | 11 (65%) | 21 (40%) | |
Radiology | ||||
Contrast enhancement | 0.08 | |||
Present | 15 (63%) | 14 (88%) | 29 (72%) | |
Absent | 9 (37%) | 2 (12%) | 11 (28%) | |
Cystic changes | 0.36 | |||
Present | 13 (54%) | 11 (69%) | 24 (40%) | |
Absent | 11 (46%) | 5 (31%) | 16 (40%) | |
Surrounding edema | 0.01 * | |||
Present | 6 (25%) | 10 (63%) | 16 (40%) | |
Absent | 18 (75%) | 6 (37%) | 24 (60%) | |
Superficial | 0.001 * | |||
Present | 24 (100%) | 10 (63%) | 34 (85%) | |
Absent | 0 | 6 (37%) | 6 (15%) | |
Seizures | ||||
Present | 17 (47%) | 3 (18%) | 20 (37%) | 0.04 * |
Absent | 19 (51) | 14 (82%) | 33 (63%) | |
Extent of surgery | ||||
Gross total resection | 20 (71%) | 12 (71%) | 32 (60%) | 0.85 |
Subtotal resection | 8 (29%) | 5 (29%) | 13 (40%) |
Histological Features | PXA G2 n (%) | PXA G3 n (%) | ALL n (%) | p-Value |
---|---|---|---|---|
Total number of tumors | 37 | 20 | 57 | |
Predominant cell type | ||||
Spindle cells | 31 (84%) | 12 (60%) | 43 (75%) | 0.11 |
Pleomorphic (multinucleated) cells | 6 (16%) | 5 (25%) | 11 (19%) | 0.23 |
Epithelioid cells | 0.0003 * | |||
Present | 6 (22%) | 12 (75%) | 18 (42%) | |
Absent | 21 (78%) | 4 (25%) | 25 (58%) | |
Multinucleated cells | 0.03 * | |||
Present | 35 (94%) | 15 (75%) | 50 (88%) | |
Absent | 2 (6%) | 5 (25%) | 7 (12%) | |
Xanthoma cells | 0.04 * | |||
Present | 25 (67%) | 7 (35%) | 32 (56%) | |
Absent | 12 (33%) | 14 (65%) | 25 (44%) | |
Eosinophilic granular bodies | 0.01 * | |||
Present | 27 (73%) | 9 (45%) | 36 (63%) | |
Absent | 10 (37%) | 11 (55%) | 21 (37%) | |
Perivascular lymphocytes | 0.70 | |||
Present | 24 (65%) | 13 (65%) | 37 (65%) | |
Absent | 13 (35%) | 7 (35%) | 20 (35%) | |
Microvascular proliferation | ||||
Present | 0 | 0 | 0 | |
Absent | 37 (100%) | 20 (100%) | 57 (100%) | |
Necrosis | 0.0007 * | |||
Present | 3 (8%) | 8 (40%) | 11 (19%) | |
Absent | 34 (92%) | 12 (60%) | 46 (81%) |
Gene/Chromosome Status | PXA G2 n (%) | PXA G3 n (%) | ALL n (%) | p-Value |
---|---|---|---|---|
Total number of cases | 37 | 20 | 57 | |
BRAF V600E mut | 30 (81%) | 13 (65%) | 43 (75.4%) | 0.18 |
CDKN2A homo-del | 9 (24%) | 7 (35%) | 16 (28%) | 0.4 |
IDH1/2 mut | 0 | 0 | 0 | |
pTERT mut | 1 (3%) | 7 (35%) | 8 (14%) | 0.0005 * |
Gain +7 | 8 (22%) | 4 (20%) | 12 (21%) | 0.88 |
Loss −10 | 3 (8%) | 4 (20%) | 7 (12%) | 0.19 |
EGFR amp | 0 | 0 | 0 | |
PTEN del | 3 (8%) | 5 (25%) | 8 (14%) | 0.08 |
MGMT methylation | 0 | 2 (10%) | 2 (3.5%) | 0.051 |
★Molecular events | 4 (11%) | 6 (30%) | 10 (18%) | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ma, X.-J.; Xiang, X.-P.; Wang, Q.-Y.; Tang, J.-L.; Yu, X.-Y.; Xu, J.-H. Clinical, Morphological, and Molecular Study on Grade 2 and 3 Pleomorphic Xanthoastrocytoma. Curr. Oncol. 2023, 30, 2405-2416. https://doi.org/10.3390/curroncol30020183
Zhang H, Ma X-J, Xiang X-P, Wang Q-Y, Tang J-L, Yu X-Y, Xu J-H. Clinical, Morphological, and Molecular Study on Grade 2 and 3 Pleomorphic Xanthoastrocytoma. Current Oncology. 2023; 30(2):2405-2416. https://doi.org/10.3390/curroncol30020183
Chicago/Turabian StyleZhang, Hui, Xiao-Jing Ma, Xue-Ping Xiang, Qi-Yuan Wang, Jin-Long Tang, Xiao-Yan Yu, and Jing-Hong Xu. 2023. "Clinical, Morphological, and Molecular Study on Grade 2 and 3 Pleomorphic Xanthoastrocytoma" Current Oncology 30, no. 2: 2405-2416. https://doi.org/10.3390/curroncol30020183
APA StyleZhang, H., Ma, X. -J., Xiang, X. -P., Wang, Q. -Y., Tang, J. -L., Yu, X. -Y., & Xu, J. -H. (2023). Clinical, Morphological, and Molecular Study on Grade 2 and 3 Pleomorphic Xanthoastrocytoma. Current Oncology, 30(2), 2405-2416. https://doi.org/10.3390/curroncol30020183