The Role of Immunotherapy in Pancreatic Cancer
Abstract
:1. Introduction
2. Immune Checkpoint Inhibitors
2.1. Introduction to ICI
2.2. ICI Monotherapy in PDAC
2.3. Dual ICI Therapy in PDAC
2.4. ICI Combined with Chemotherapy in PDAC
2.5. ICI Biomarkers in PDAC
2.6. Novel Combinations with ICI to Enhance Immunogenicity in PDAC
2.7. ICI and Radiation in PDAC
3. Adoptive Cellular Therapy
3.1. Introduction to Adoptive Cellular Therapy
3.2. CAR T-Cell Therapy in PDAC
3.3. Limitations and Future Directions of CAR T-Cell Therapy in PDAC
4. Vaccine Therapy
4.1. Vaccine Therapies in PDAC
4.2. Limitations and Future Directions of Vaccine Therapies in PDAC
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cancer Stat Facts: Pancreatic Cancer. NIH Surveillance, Epidemiology, and End Results Program. 2021. Available online: https://seer.cancer.gov/statfacts/html/pancreas.html (accessed on 9 May 2022).
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vacchelli, E.; Pedro, J.-M.B.-S.; Buqué, A.; Senovilla, L.; Baracco, E.E.; Bloy, N.; Castoldi, F.; Abastado, J.-P.; Agostinis, P.; et al. Classification of current anticancer immunotherapies. Oncotarget 2014, 5, 12472–12508. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Oh, D.-Y.; He, A.R.; Qin, S.; Chen, L.-T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Lee, M.A.; Kitano, M.; et al. A phase 3 randomized, double-blind, placebo-controlled study of durvalumab in combination with gemcitabine plus cisplatin (GemCis) in patients (pts) with advanced biliary tract cancer (BTC): TOPAZ-1. J. Clin. Oncol. 2022, 40, 378. [Google Scholar] [CrossRef]
- Chin, K.; Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.-Y.; Kadowaki, S.; Ahn, M.-J.; Hamamoto, Y.; Doki, Y.; et al. Three-year follow-up of ATTRACTION-3: A phase III study of nivolumab (Nivo) in patients with advanced esophageal squamous cell carcinoma (ESCC) that is refractory or intolerant to previous chemotherapy. J. Clin. Oncol. 2021, 39, 204. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.H.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Updated efficacy and safety of KEYNOTE-224: A phase II study of pembrolizumab (pembro) in patients with advanced hepatocellular carcinoma (HCC). J. Clin. Oncol. 2020, 38, 518. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet Lond. Engl. 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.-J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef]
- Lenz, H.-J.; Van Cutsem, E.; Luisa Limon, M.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Rudd, C.E.; Taylor, A.; Schneider, H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 2009, 229, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, O.S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E.M.; Baker, J.; Jeffery, L.E.; Kaur, S.; Briggs, Z.; et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell extrinsic function of CTLA-4. Science 2011, 332, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; et al. T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition. Science 2017, 355, 1428–1433. [Google Scholar] [CrossRef]
- Marron, T.U.; Ryan, A.E.; Reddy, S.M.; Kaczanowska, S.; Younis, R.H.; Thakkar, D.; Zhang, J.; Bartkowiak, T.; Howard, R.; Anderson, K.G.; et al. Considerations for treatment duration in responders to immune checkpoint inhibitors. J. Immunother. Cancer 2021, 9, e001901. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutiérrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef]
- Borcoman, E.; Kanjanapan, Y.; Champiat, S.; Kato, S.; Servois, V.; Kurzrock, R.; Goel, S.; Bedard, P.; Tourneau, C.L. Novel patterns of response under immunotherapy. Ann. Oncol. 2019, 30, 385–396. [Google Scholar] [CrossRef]
- Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016, 17, e542–e551. [Google Scholar] [CrossRef] [Green Version]
- Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Lowy, I.; et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother. 2010, 33, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Dirix, L.; De Vos, F.Y.F.L.; Allison, J.P.; Decoster, L.; Zaucha, R.; Park, J.O.; Vanderwalde, A.M.; Kataria, R.S.; Ferro, S.; et al. Efficacy and tolerability of tremelimumab in patients with metastatic pancreatic ductal adenocarcinoma. J. Clin. Oncol. 2018, 36, 470. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; Rasco, D.W.; Veeder, M.H.; Luke, J.J.; Chandler, J.; Balmanoukian, A.S.; George, T.J.; Munster, P.; Berlin, J.; Gutierrez, M.; et al. A multicenter study of the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib plus durvalumab in patients with relapsed/refractory (R/R) solid tumors. J. Clin. Oncol. 2018, 36, 2578. [Google Scholar] [CrossRef]
- O’Reilly, E.M.; Oh, D.-Y.; Dhani, N.; Renouf, D.J.; Lee, M.A.; Sun, W.; Fisher, G.; Hezel, A.; Chang, S.-C.; Vlahovic, G.; et al. Durvalumab With or Without Tremelimumab for Patients With Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1431–1438. [Google Scholar] [CrossRef]
- Bockorny, B.; Semenisty, V.; Macarulla, T.; Borazanci, E.; Wolpin, B.M.; Stemmer, S.M.; Golan, T.; Geva, R.; Borad, M.J.; Pedersen, K.S.; et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: The COMBAT trial. Nat. Med. 2020, 26, 878–885. [Google Scholar] [CrossRef]
- Overman, M.; Javle, M.; Davis, R.E.; Vats, P.; Kumar-Sinha, C.; Xiao, L.; Mettu, N.B.; Parra, E.R.; Benson, A.B.; Lopez, C.D.; et al. Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. J. Immunother. Cancer 2020, 8, e000587. [Google Scholar] [CrossRef]
- Zhen, D.B.; Whittle, M.; Ritch, P.S.; Hochster, H.S.; Coveler, A.L.; George, B.; Hendifar, A.E.; Dragovich, T.; Green, S.; Dion, B.; et al. Phase II study of PEGPH20 plus pembrolizumab for patients (pts) with hyaluronan (HA)-high refractory metastatic pancreatic adenocarcinoma (mPC): PCRT16-001. J. Clin. Oncol. 2022, 40, 576. [Google Scholar] [CrossRef]
- Reiss, K.A.; Mick, R.; Teitelbaum, U.R.; O’Hara, M.H.; Schneider, C.J.; Massa, R.C.; Karasic, T.B.; Onyiah, C.; Gosselin, M.K.; Donze, A.; et al. A randomized phase Ib/II study of niraparib (nira) plus nivolumab (nivo) or ipilimumab (ipi) in patients (pts) with platinum-sensitive advanced pancreatic cancer (aPDAC). J. Clin. Oncol. 2022, 40, 4021. [Google Scholar] [CrossRef]
- Naing, A.; Mamdani, H.; Barve, M.A.; Johnson, M.L.; Morgensztern, D.; Olszanski, A.J.; Wolff, R.A.; Pant, S.; Chaney, M.F.; Adebanjo, T.; et al. Efficacy and safety of NT-I7, long-acting interleukin-7, plus pembrolizumab in patients with advanced solid tumors: Results from the phase 2a study. J. Clin. Oncol. 2022, 40, 2514. [Google Scholar] [CrossRef]
- Padrón, L.J.; Maurer, D.M.; O’Hara, M.H.; O’Reilly, E.M.; Wolff, R.A.; Wainberg, Z.A.; Ko, A.H.; Fisher, G.; Rahma, O.; Lyman, J.P.; et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: Clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 2022, 28, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Renouf, D.J.; Knox, J.J.; Kavan, P.; Jonker, D.; Welch, S.; Couture, F.; Lemay, F.; Tehfe, M.; Harb, M.; Aucoin, N.; et al. LBA65 The Canadian Cancer Trials Group PA.7 trial: Results of a randomized phase II study of gemcitabine (GEM) and nab-paclitaxel (Nab-P) vs GEM, nab-P, durvalumab (D) and tremelimumab (T) as first line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC). Ann. Oncol. 2020, 31, S1195. [Google Scholar] [CrossRef]
- Ueno, M.; Morizane, C.; Ikeda, M.; Sudo, K.; Hirashima, Y.; Kuroda, M.; Fukuyama, Y.; Okusaka, T.; Furuse, J. A phase II study of nivolumab in combination with modified FOLFIRINOX for metastatic pancreatic cancer. J. Clin. Oncol. 2022, 40, 553. [Google Scholar] [CrossRef]
- Jin, G.; Guo, S.; Xu, J.; Liu, R.; Liang, Q.; Yang, Y.; Guo, B.; Xu, Y.; Xia, B.; Zhang, C.; et al. A multicenter, randomized, double-blind phase III clinical study to evaluate the efficacy and safety of KN046 combined with nab-paclitaxel and gemcitabine versus placebo combined with nab-paclitaxel and gemcitabine in patients with advanced pancreatic cancer (ENREACH-PDAC-01). J. Clin. Oncol. 2022, 40, TPS4189. [Google Scholar] [CrossRef]
- Chen, I.M.; Johansen, J.S.; Theile, S.; Hjaltelin, J.X.; Novitski, S.I.; Brunak, S.; Hasselby, J.P.; Willemoe, G.L.; Lorentzen, T.; Madsen, K.; et al. Randomized Phase II Study of Nivolumab With or Without Ipilimumab Combined With Stereotactic Body Radiotherapy for Refractory Metastatic Pancreatic Cancer (CheckPAC). J. Clin. Oncol. 2022, 40, 3180–3189. [Google Scholar] [CrossRef]
- Parikh, A.R.; Szabolcs, A.; Allen, J.N.; Clark, J.W.; Wo, J.Y.; Raabe, M.; Thel, H.; Hoyos, D.; Mehta, A.; Arshad, S.; et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat. Cancer 2021, 2, 1124–1135. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef]
- Noor, A.; Aguirre, L.E.; Blue, K.; Avriett, T.; Carballido, E.M.; Kim, R.D.; Kim, D.W. Investigate the efficacy of immunotherapy for treatment of pancreatic adenocarcinoma (PDAC) with mismatch repair deficiency (dMMR). J. Clin. Oncol. 2021, 39, 415. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Bucheit, L.A.; Starr, J.S.; Innis-Shelton, R.; Shergill, A.; Resta, R.; Wagner, S.A.; Kasi, P.M. Does detection of microsatellite instability-high (MSI-H) by plasma-based testing predict tumor response to immunotherapy (IO) in patients with pancreatic cancer (PC)? J. Clin. Oncol. 2022, 40, 607. [Google Scholar] [CrossRef]
- NCCN. NCCN Guidelines Version 1.2022 Pancreatic Adenocarcinoma. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 15 May 2022).
- Li, F.; Li, C.; Cai, X.; Xie, Z.; Zhou, L.; Cheng, B.; Zhong, R.; Xiong, S.; Li, J.; Chen, Z.; et al. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis. eClinicalMedicine 2021, 41, 101134. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, Z.A.; Hochster, H.S.; Kim, E.J.; George, B.; Kaylan, A.; Chiorean, E.G.; Waterhouse, D.M.; Guiterrez, M.; Parikh, A.; Jain, R.; et al. Open-label, Phase I Study of Nivolumab Combined with nab-Paclitaxel Plus Gemcitabine in Advanced Pancreatic Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 4814–4822. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.D.; Jiang, X.; Sullivan, K.M.; Jalikis, F.G.; Smythe, K.S.; Abbasi, A.; Vignali, M.; Park, J.O.; Daniel, S.K.; Pollack, S.M.; et al. Mobilization of CD8+ T Cells via CXCR4 Blockade Facilitates PD-1 Checkpoint Therapy in Human Pancreatic Cancer. Clin. Cancer Res. 2019, 25, 3934–3945. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.A.; Massagué, J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005, 8, 369–380. [Google Scholar] [CrossRef]
- Tan, M.C.B.; Goedegebuure, P.S.; Belt, B.A.; Flaherty, B.; Sankpal, N.; Gillanders, W.E.; Eberlein, T.J.; Hsieh, C.-S.; Linehan, D.C. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J. Immunol. 2009, 182, 1746–1755. [Google Scholar] [CrossRef]
- Kemp, S.B.; di Magliano, M.P.; Crawford, H.C. Myeloid Cell Mediated Immune Suppression in Pancreatic Cancer. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1531–1542. [Google Scholar] [CrossRef]
- Clark, C.E.; Hingorani, S.R.; Mick, R.; Combs, C.; Tuveson, D.A.; Vonderheide, R.H. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007, 67, 9518–9527. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Lou, E.; Xiu, J.; Baca, Y.; Walker, P.; Manji, G.A.; Gholami, S.; Saeed, A.; Philip, P.A.; Prakash, A.; Astsaturov, I.A.; et al. The tumor microenvironment and immune infiltration landscape of KRAS mutant pancreatic ductal adenocarcinomas (PDAC) compared to colorectal adenocarcinomas (CRC). J. Clin. Oncol. 2022, 40, 4142. [Google Scholar] [CrossRef]
- Lawrence, B.; Findlay, M. Systemic therapy for metastatic pancreatic adenocarcinoma. Ther. Adv. Med. Oncol. 2010, 2, 85–106. [Google Scholar] [CrossRef] [Green Version]
- Wang-Gillam, A.; Hubner, R.A.; Siveke, J.T.; Von Hoff, D.D.; Belanger, B.; de Jong, F.A.; Mirakhur, B.; Chen, L.-T. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. Eur. J. Cancer 2019, 108, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.K.; Lake, R.A.; Marzo, A.L.; Scott, B.; Heath, W.R.; Collins, E.J.; Frelinger, J.A.; Robinson, B.W.S. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J. Immunol. 2003, 170, 4905–4913. [Google Scholar] [CrossRef]
- Nowak, A.K.; Robinson, B.W.S.; Lake, R.A. Synergy between Chemotherapy and Immunotherapy in the Treatment of Established Murine Solid Tumors1. Cancer Res. 2003, 63, 4490–4496. [Google Scholar] [PubMed]
- Plate, J.M.D.; Plate, A.E.; Shott, S.; Bograd, S.; Harris, J.E. Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas. Cancer Immunol. Immunother. 2005, 54, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Aglietta, M.; Barone, C.; Sawyer, M.B.; Moore, M.J.; Miller, W.H.; Bagalà, C.; Colombi, F.; Cagnazzo, C.; Gioeni, L.; Wang, E.; et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25, 1750–1755. [Google Scholar] [CrossRef]
- Kalyan, A.; Kircher, S.M.; Mohindra, N.A.; Nimeiri, H.S.; Maurer, V.; Rademaker, A.; Benson, A.B.; Mulcahy, M.F. Ipilimumab and gemcitabine for advanced pancreas cancer: A phase Ib study. J. Clin. Oncol. 2016, 34, e15747. [Google Scholar] [CrossRef]
- Kamath, S.D.; Kalyan, A.; Kircher, S.; Nimeiri, H.; Fought, A.J.; Benson, A.; Mulcahy, M. Ipilimumab and Gemcitabine for Advanced Pancreatic Cancer: A Phase Ib Study. Oncologist 2020, 25, e808–e815. [Google Scholar] [CrossRef]
- Weiss, G.J.; Blaydorn, L.; Beck, J.; Bornemann-Kolatzki, K.; Urnovitz, H.; Schütz, E.; Khemka, V. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Investig. New Drugs 2018, 36, 96–102. [Google Scholar] [CrossRef]
- Renouf, D.J.; Loree, J.M.; Knox, J.J.; Kavan, P.; Jonker, D.J.; Welch, S.; Couture, F.; Lemay, F.; Tehfe, M.; Harb, M.; et al. Predictive value of plasma tumor mutation burden (TMB) in the CCTG PA.7 trial: Gemcitabine (GEM) and nab-paclitaxel (Nab-P) vs. GEM, nab-P, durvalumab (D) and tremelimumab (T) as first line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC). J. Clin. Oncol. 2021, 39, 411. [Google Scholar] [CrossRef]
- Hemmerich, A.; Edgerly, C.I.; Duncan, D.; Huang, R.; Danziger, N.; Frampton, G.M.; Elvin, J.A.; Vergilio, J.-A.; Killian, J.K.; Lin, D.I.; et al. PD-L1 expression, tumor mutational burden, and microsatellite instability status in 746 pancreas ductal adenocarcinomas. J. Clin. Oncol. 2020, 38, 757. [Google Scholar] [CrossRef]
- Seeber, A.; Kocher, F.; Pircher, A.; Puccini, A.; Baca, Y.; Xiu, J.; Zimmer, K.; Haybaeck, J.; Spizzo, G.; Goldberg, R.M.; et al. High CXCR4 expression in pancreatic ductal adenocarcinoma as characterized by an inflammatory tumor phenotype with potential implications for an immunotherapeutic approach. J. Clin. Oncol. 2021, 39, 4021. [Google Scholar] [CrossRef]
- Hsiehchen, D.; Hsieh, A.; Samstein, R.M.; Lu, T.; Beg, M.S.; Gerber, D.E.; Wang, T.; Morris, L.G.T.; Zhu, H. DNA Repair Gene Mutations as Predictors of Immune Checkpoint Inhibitor Response beyond Tumor Mutation Burden. Cell Rep. Med. 2020, 1, 100034. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.P.; Łuksza, M.; Zhao, J.N.; Makarov, V.; Moral, J.A.; Remark, R.; Herbst, B.; Askan, G.; Bhanot, U.; Senbabaoglu, Y.; et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017, 551, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.D.; Pillarisetty, V.G. T-cell programming in pancreatic adenocarcinoma: A review. Cancer Gene Ther. 2017, 24, 106–113. [Google Scholar] [CrossRef]
- Morosi, L.; Meroni, M.; Ubezio, P.; Fuso Nerini, I.; Minoli, L.; Porcu, L.; Panini, N.; Colombo, M.; Blouw, B.; Kang, D.W.; et al. PEGylated recombinant human hyaluronidase (PEGPH20) pre-treatment improves intra-tumour distribution and efficacy of paclitaxel in preclinical models. J. Exp. Clin. Cancer Res. 2021, 40, 286. [Google Scholar] [CrossRef]
- Algaze, S.; Hanna, D.L.; Azad, N.S.; Thomas, J.S.; Iqbal, S.; Habib, D.; Ning, Y.; Barzi, A.; Patel, R.; Lenz, H.-J.; et al. A phase Ib study of guadecitabine and durvalumab in patients with advanced hepatocellular carcinoma, pancreatic adenocarcinoma, and biliary cancers. J. Clin. Oncol. 2022, 40, 574. [Google Scholar] [CrossRef]
- Patel, M.R.; Naing, A.; Burris III, H.A.; Lin, C.-C.; Curigliano, G.; Thistlethwaite, F.; Minchom, A.R.; Ascierto, P.A.; De Braud, F.G.; Cecchini, M.; et al. A phase 1/2 open-label study of KY1044, an anti-ICOS antibody with dual mechanism of action, as single agent and in combination with atezolizumab, in adult patients with advanced malignancies. J. Clin. Oncol. 2021, 39, 2624. [Google Scholar] [CrossRef]
- Chung, V.M.; Borazanci, E.H.; Jameson, G.S.; Evans, R.; Downes, M.; Truitt, M.L.; Patel, H.; Lowy, A.M.; Roe, D.; Ansaldo, K.; et al. A SU2C catalyst randomized phase II trial of pembrolizumab with or without paricalcitol in patients with stage IV pancreatic cancer who have been placed in best possible response. J. Clin. Oncol. 2018, 36, TPS4154. [Google Scholar] [CrossRef]
- Halama, N.; Pruefer, U.; Frömming, A.; Beyer, D.; Eulberg, D.; Jungnelius, J.U.; Mangasarian, A. Evaluation of tumor biomarkers in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer treated with the CXCL12 inhibitor NOX-A12 and preliminary safety in combination with PD-1 checkpoint inhibitor pembrolizumab. J. Clin. Oncol. 2018, 36, e15094. [Google Scholar] [CrossRef]
- Bajor, D.L.; Gutierrez, M.; Vaccaro, G.M.; Masood, A.; Brown-Glaberman, U.; Grilley-Olson, J.E.; Kindler, H.L.; Zalupski, M.; Heath, E.I.; Piha-Paul, S.A.; et al. Preliminary results of a phase 1 study of sea-CD40, gemcitabine, nab-paclitaxel, and pembrolizumab in patients with metastatic pancreatic ductal adenocarcinoma (PDAC). J. Clin. Oncol. 2022, 40, 559. [Google Scholar] [CrossRef]
- Terrero, G.; Pollack, T.; Sussman, D.A.; Lockhart, A.C.; Hosein, P.J. Exceptional responses to ipilimumab/nivolumab (ipi/nivo) in patients (pts) with refractory pancreatic ductal adenocarcinoma (PDAC) and germline BRCA or RAD51 mutations. J. Clin. Oncol. 2020, 38, 754. [Google Scholar] [CrossRef]
- Liu, J.; Kang, R.; Kroemer, G.; Tang, D. Targeting HSP90 sensitizes pancreas carcinoma to PD-1 blockade. Oncoimmunology 2022, 11, 2068488. [Google Scholar] [CrossRef] [PubMed]
- Falcomatà, C.; Bärthel, S.; Widholz, S.A.; Schneeweis, C.; Montero, J.J.; Toska, A.; Mir, J.; Kaltenbacher, T.; Heetmeyer, J.; Swietlik, J.J.; et al. Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment. Nat. Cancer 2022, 3, 318–336. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Knolhoff, B.L.; Meyer, M.A.; Nywening, T.M.; West, B.L.; Luo, J.; Wang-Gillam, A.; Goedegebuure, S.P.; Linehan, D.C.; DeNardo, D.G. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014, 74, 5057–5069. [Google Scholar] [CrossRef] [PubMed]
- Nywening, T.M.; Wang-Gillam, A.; Sanford, D.E.; Belt, B.A.; Panni, R.Z.; Cusworth, B.M.; Toriola, A.T.; Nieman, R.K.; Worley, L.A.; Yano, M.; et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016, 17, 651–662. [Google Scholar] [CrossRef]
- Good, L.; Benner, B.; Carson, W.E. Bruton’s tyrosine kinase: An emerging targeted therapy in myeloid cells within the tumor microenvironment. Cancer Immunol. Immunother. 2021, 70, 2439–2451. [Google Scholar] [CrossRef]
- Ngwa, W.; Irabor, O.C.; Schoenfeld, J.D.; Hesser, J.; Demaria, S.; Formenti, S.C. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 2018, 18, 313–322. [Google Scholar] [CrossRef]
- Yasmin-Karim, S.; Bruck, P.T.; Moreau, M.; Kunjachan, S.; Chen, G.Z.; Kumar, R.; Grabow, S.; Dougan, S.K.; Ngwa, W. Radiation and Local Anti-CD40 Generate an Effective in situ Vaccine in Preclinical Models of Pancreatic Cancer. Front. Immunol. 2018, 9, 2030. [Google Scholar] [CrossRef]
- Xie, C.; Duffy, A.G.; Brar, G.; Fioravanti, S.; Mabry-Hrones, D.; Walker, M.; Bonilla, C.M.; Wood, B.J.; Citrin, D.E.; Gil Ramirez, E.M.; et al. Immune Checkpoint Blockade in Combination with Stereotactic Body Radiotherapy in Patients with Metastatic Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2020, 26, 2318–2326. [Google Scholar] [CrossRef]
- Sadelain, M. CAR therapy: The CD19 paradigm. J. Clin. Investig. 2015, 125, 3392–3400. [Google Scholar] [CrossRef] [Green Version]
- Sadelain, M.; Brentjens, R.; Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013, 3, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.E.; Adusumilli, P.S. Next frontiers in CAR T-cell therapy. Mol. Ther.-Oncolytics 2016, 3, 16028. [Google Scholar] [CrossRef] [PubMed]
- Beatty, G.L.; Haas, A.R.; Maus, M.V.; Torigian, D.A.; Soulen, M.C.; Plesa, G.; Chew, A.; Zhao, Y.; Levine, B.L.; Albelda, S.M.; et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2014, 2, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Brentjens, R.J.; Rivière, I.; Park, J.H.; Davila, M.L.; Wang, X.; Stefanski, J.; Taylor, C.; Yeh, R.; Bartido, S.; Borquez-Ojeda, O.; et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011, 118, 4817–4828. [Google Scholar] [CrossRef] [PubMed]
- Delm, C.; Tano, Z.E.; Varghese, A.M.; Adusumilli, P.S. CAR T-cell Therapy for Pancreatic Cancer. J. Surg. Oncol. 2017, 116, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Tsuchikawa, T.; Takeuchi, S.; Nakamura, T.; Shichinohe, T.; Hirano, S. Clinical impact of chemotherapy to improve tumor microenvironment of pancreatic cancer. World J. Gastrointest. Oncol. 2016, 8, 786–792. [Google Scholar] [CrossRef]
- Argani, P.; Rosty, C.; Reiter, R.E.; Wilentz, R.E.; Murugesan, S.R.; Leach, S.D.; Ryu, B.; Skinner, H.G.; Goggins, M.; Jaffee, E.M.; et al. Discovery of new markers of cancer through serial analysis of gene expression: Prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 2001, 61, 4320–4324. [Google Scholar]
- Haas, A.R.; Tanyi, J.L.; O’Hara, M.H.; Gladney, W.L.; Lacey, S.F.; Torigian, D.A.; Soulen, M.C.; Tian, L.; McGarvey, M.; Nelson, A.M.; et al. Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Mol. Ther. 2019, 27, 1919–1929. [Google Scholar] [CrossRef]
- Beatty, G.L.; O’Hara, M.H.; Lacey, S.F.; Torigian, D.A.; Nazimuddin, F.; Chen, F.; Kulikovskaya, I.M.; Soulen, M.C.; McGarvey, M.; Nelson, A.M.; et al. Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology 2018, 155, 29–32. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Wu, Z.; Tong, C.; Dai, H.; Guo, Y.; Liu, Y.; Huang, J.; Lv, H.; Luo, C.; et al. CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. Oncoimmunology 2018, 7, e1440169. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Wu, Z.; Feng, K.; Tong, C.; Wang, Y.; Dai, H.; Shi, F.; Yang, Q.; Han, W. Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: A phase I clinical trial. Cytotherapy 2020, 22, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Liu, Y.; Guo, Y.; Qiu, J.; Wu, Z.; Dai, H.; Yang, Q.; Wang, Y.; Han, W. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell 2018, 9, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Ko, A.H.; Jordan, A.C.; Tooker, E.; Lacey, S.F.; Chang, R.B.; Li, Y.; Venook, A.P.; Tempero, M.; Damon, L.; Fong, L.; et al. Dual Targeting of Mesothelin and CD19 with Chimeric Antigen Receptor-Modified T Cells in Patients with Metastatic Pancreatic Cancer. Mol. Ther. J. Am. Soc. Gene Ther. 2020, 28, 2367–2378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhao, S.; Wu, C.; Li, J.; Li, Z.; Wen, C.; Hu, S.; An, G.; Meng, H.; Zhang, X.; et al. Effects of CSF1R-targeted chimeric antigen receptor-modified NK92MI & T cells on tumor-associated macrophages. Immunotherapy 2018, 10, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Cherkassky, L.; Morello, A.; Villena-Vargas, J.; Feng, Y.; Dimitrov, D.S.; Jones, D.R.; Sadelain, M.; Adusumilli, P.S. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Investig. 2016, 126, 3130–3144. [Google Scholar] [CrossRef]
- Chong, E.A.; Melenhorst, J.J.; Lacey, S.F.; Ambrose, D.E.; Gonzalez, V.; Levine, B.L.; June, C.H.; Schuster, S.J. PD-1 blockade modulates chimeric antigen receptor (CAR)–modified T cells: Refueling the CAR. Blood 2017, 129, 1039–1041. [Google Scholar] [CrossRef]
- Heczey, A.; Louis, C.U.; Savoldo, B.; Dakhova, O.; Durett, A.; Grilley, B.; Liu, H.; Wu, M.F.; Mei, Z.; Gee, A.; et al. CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Mol. Ther. J. Am. Soc. Gene Ther. 2017, 25, 2214–2224. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Fan, M.H.; Miao, C.H.; Liao, Y.J.; Yuan, R.-H.; Liu, C.L. Engineering Chimeric Antigen Receptor T Cells against Immune Checkpoint Inhibitors PD-1/PD-L1 for Treating Pancreatic Cancer. Mol. Ther. Oncolytics 2020, 17, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Luo, Y.; Da, T.; Guedan, S.; Ruella, M.; Scholler, J.; Keith, B.; Young, R.M.; Engels, B.; Sorsa, S.; et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 2018, 3, 99573. [Google Scholar] [CrossRef]
- Thistlethwaite, F.C.; Gilham, D.E.; Guest, R.D.; Rothwell, D.G.; Pillai, M.; Burt, D.J.; Byatte, A.J.; Kirillova, N.; Valle, J.W.; Sharma, S.K.; et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol. Immunother. 2017, 66, 1425–1436. [Google Scholar] [CrossRef]
- Raj, D.; Nikolaidi, M.; Garces, I.; Lorizio, D.; Castro, N.M.; Caiafa, S.G.; Moore, K.; Brown, N.F.; Kocher, H.M.; Duan, X.; et al. CEACAM7 Is an Effective Target for CAR T-cell Therapy of Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2021, 27, 1538–1552. [Google Scholar] [CrossRef]
- Anurathapan, U.; Chan, R.C.; Hindi, H.F.; Mucharla, R.; Bajgain, P.; Hayes, B.C.; Fisher, W.E.; Heslop, H.E.; Rooney, C.M.; Brenner, M.K.; et al. Kinetics of tumor destruction by chimeric antigen receptor-modified T cells. Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 623–633. [Google Scholar] [CrossRef]
- Zhang, E.; Yang, P.; Gu, J.; Wu, H.; Chi, X.; Liu, C.; Wang, Y.; Xue, J.; Qi, W.; Sun, Q.; et al. Recombination of a dual-CAR-modified T lymphocyte to accurately eliminate pancreatic malignancy. J. Hematol. Oncol.J Hematol Oncol 2018, 11, 102. [Google Scholar] [CrossRef]
- Katz, S.C.; Prince, E.; Cunetta, M.; Guha, P.; Moody, A.; Armenio, V.; Wang, L.J.; Espat, N.J.; Junghans, R.P. Abstract CT109: HITM-SIR: Phase Ib trial of CAR-T hepatic artery infusions and selective internal radiation therapy for liver metastases. Cancer Res. 2017, 77, CT109. [Google Scholar] [CrossRef]
- Leao, I.C.; Ganesan, P.; Armstrong, T.D.; Jaffee, E.M. Effective depletion of regulatory T cells allows the recruitment of mesothelin-specific CD8 T cells to the antitumor immune response against a mesothelin-expressing mouse pancreatic adenocarcinoma. Clin. Transl. Sci. 2008, 1, 228–239. [Google Scholar] [CrossRef]
- Aida, K.; Miyakawa, R.; Suzuki, K.; Narumi, K.; Udagawa, T.; Yamamoto, Y.; Chikaraishi, T.; Yoshida, T.; Aoki, K. Suppression of Tregs by anti-glucocorticoid induced TNF receptor antibody enhances the antitumor immunity of interferon-α gene therapy for pancreatic cancer. Cancer Sci. 2014, 105, 159–167. [Google Scholar] [CrossRef]
- Slawin, K.M.; Mahendravada, A.; Shinners, N.; Chang, P.; Lu, A.; Crisostomo, J.; Morschl, E.; Shaw, J.; Saha, S.; Spencer, D.M.; et al. Inducible MyD88/CD40 to allow rimiducid-dependent activation for control of proliferation and survival of chimeric antigen receptor (CAR) T cells targeting prostate stem cell antigen (PSCA). J. Clin. Oncol. 2016, 34, 206. [Google Scholar] [CrossRef]
- Bunt, S.K.; Mohr, A.M.; Bailey, J.M.; Grandgenett, P.M.; Hollingsworth, M.A. Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer. Cancer Immunol. Immunother. 2013, 62, 225–236. [Google Scholar] [CrossRef]
- Eikawa, S.; Nishida, M.; Mizukami, S.; Yamazaki, C.; Nakayama, E.; Udono, H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl. Acad. Sci. USA 2015, 112, 1809–1814. [Google Scholar] [CrossRef]
- Li, C.; Yang, N.; Li, H.; Wang, Z. Robo1-specific chimeric antigen receptor natural killer cell therapy for pancreatic ductal adenocarcinoma with liver metastasis. J. Cancer Res. Ther. 2020, 16, 393–396. [Google Scholar] [CrossRef]
- Amaria, R.N.; Bernatchez, C.; Forget, M.-A.; Haymaker, C.L.; Conley, A.P.; Livingston, J.A.; Varadhachary, G.R.; Javle, M.M.; Maitra, A.; Tzeng, C.-W.D.; et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with sarcomas, ovarian, and pancreatic cancers. J. Clin. Oncol. 2019, 37, TPS2650. [Google Scholar] [CrossRef]
- Seery, T.E.; Nangia, C.S.; McKean, H.A.; Bhar, P.; Sender, L.S.; Reddy, S.K.; Soon-Shiong, P. Phase 2 Quilt 88 trial of DAMP inducers combined with IL15 superagonist, N-803, and anti–PD-L1 NK cell therapy more than doubles historical overall survival in patients with third- to sixth-line advanced pancreatic cancer. J. Clin. Oncol. 2022, 40, 4147. [Google Scholar] [CrossRef]
- Gjertsen, M.K.; Bakka, A.; Breivik, J.; Saeterdal, I.; Gedde-Dahl, T.; Stokke, K.T.; Sølheim, B.G.; Egge, T.S.; Søreide, O.; Thorsby, E.; et al. Ex vivo ras peptide vaccination in patients with advanced pancreatic cancer: Results of a phase I/II study. Int. J. Cancer 1996, 65, 450–453. [Google Scholar] [CrossRef]
- Gjertsen, M.K.; Buanes, T.; Rosseland, A.R.; Bakka, A.; Gladhaug, I.; Søreide, O.; Eriksen, J.A.; Møller, M.; Baksaas, I.; Lothe, R.A.; et al. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: Clinical and immunological responses in patients with pancreatic adenocarcinoma. Int. J. Cancer 2001, 92, 441–450. [Google Scholar] [CrossRef]
- Toubaji, A.; Achtar, M.; Provenzano, M.; Herrin, V.E.; Behrens, R.; Hamilton, M.; Bernstein, S.; Venzon, D.; Gause, B.; Marincola, F.; et al. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol. Immunother. 2008, 57, 1413–1420. [Google Scholar] [CrossRef]
- Wedén, S.; Klemp, M.; Gladhaug, I.P.; Møller, M.; Eriksen, J.A.; Gaudernack, G.; Buanes, T. Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras. Int. J. Cancer 2011, 128, 1120–1128. [Google Scholar] [CrossRef]
- Palmer, D.H.; Valle, J.W.; Ma, Y.T.; Faluyi, O.; Neoptolemos, J.P.; Jensen Gjertsen, T.; Iversen, B.; Amund Eriksen, J.; Møller, A.-S.; Aksnes, A.-K.; et al. TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas (CT TG01-01): A single-arm, phase 1/2 trial. Br. J. Cancer 2020, 122, 971–977. [Google Scholar] [CrossRef]
- Muscarella, P.; Bekaii-Saab, T.; McIntyre, K.; Rosemurgy, A.; Ross, S.B.; Richards, D.A.; Fisher, W.E.; Flynn, P.J.; Mattson, A.; Coeshott, C.; et al. A Phase 2 Randomized Placebo-Controlled Adjuvant Trial of GI-4000, a Recombinant Yeast Expressing Mutated RAS Proteins in Patients with Resected Pancreas Cancer. J. Pancreat. Cancer 2021, 7, 8–19. [Google Scholar] [CrossRef]
- Bernhardt, S.L.; Gjertsen, M.K.; Trachsel, S.; Møller, M.; Eriksen, J.A.; Meo, M.; Buanes, T.; Gaudernack, G. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/II study. Br. J. Cancer 2006, 95, 1474–1482. [Google Scholar] [CrossRef]
- Buanes, T.; Maurel, J.; Liauw, W.; Hebbar, M.; Nemunaitis, J. A randomized phase III study of gemcitabine (G) versus GV1001 in sequential combination with G in patients with unresectable and metastatic pancreatic cancer (PC). J. Clin. Oncol. 2009, 27, 4601. [Google Scholar] [CrossRef]
- Middleton, G.; Silcocks, P.; Cox, T.; Valle, J.; Wadsley, J.; Propper, D.; Coxon, F.; Ross, P.; Madhusudan, S.; Roques, T.; et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial. Lancet Oncol. 2014, 15, 829–840. [Google Scholar] [CrossRef]
- Shima, H.; Tsurita, G.; Wada, S.; Hirohashi, Y.; Yasui, H.; Hayashi, H.; Miyakoshi, T.; Watanabe, K.; Murai, A.; Asanuma, H.; et al. Randomized phase II trial of survivin 2B peptide vaccination for patients with HLA-A24-positive pancreatic adenocarcinoma. Cancer Sci. 2019, 110, 2378–2385. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.; Marshall, J.; Karasek, P.; Figer, A.; Oettle, H.; Couture, F.; Jeziorski, K.; Broome, P.; Hawkins, R. G17DT+gemcitabine [Gem] versus placebo+Gem in untreated subjects with locally advanced, recurrent, or metastatic adenocarcinoma of the pancreas: Results of a randomized, double-blind, multinational, multicenter study. J. Clin. Oncol. 2005, 23, LBA4012. [Google Scholar] [CrossRef]
- Gilliam, A.D.; Broome, P.; Topuzov, E.G.; Garin, A.M.; Pulay, I.; Humphreys, J.; Whitehead, A.; Takhar, A.; Rowlands, B.J.; Beckingham, I.J. An international multicenter randomized controlled trial of G17DT in patients with pancreatic cancer. Pancreas 2012, 41, 374–379. [Google Scholar] [CrossRef]
- Yamaue, H.; Tsunoda, T.; Tani, M.; Miyazawa, M.; Yamao, K.; Mizuno, N.; Okusaka, T.; Ueno, H.; Boku, N.; Fukutomi, A.; et al. Randomized phase II/III clinical trial of elpamotide for patients with advanced pancreatic cancer: PEGASUS-PC Study. Cancer Sci. 2015, 106, 883–890. [Google Scholar] [CrossRef]
- Yanagimoto, H.; Shiomi, H.; Satoi, S.; Mine, T.; Toyokawa, H.; Yamamoto, T.; Tani, T.; Yamada, A.; Kwon, A.-H.; Komatsu, N.; et al. A phase II study of personalized peptide vaccination combined with gemcitabine for non-resectable pancreatic cancer patients. Oncol. Rep. 2010, 24, 795–801. [Google Scholar] [CrossRef]
- Asahara, S.; Takeda, K.; Yamao, K.; Maguchi, H.; Yamaue, H. Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J. Transl. Med. 2013, 11, 291. [Google Scholar] [CrossRef]
- Miyazawa, M.; Katsuda, M.; Maguchi, H.; Katanuma, A.; Ishii, H.; Ozaka, M.; Yamao, K.; Imaoka, H.; Kawai, M.; Hirono, S.; et al. Phase II clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant treatment for surgically resected pancreatic cancer patients. Int. J. Cancer 2017, 140, 973–982. [Google Scholar] [CrossRef]
- Laheru, D.; Lutz, E.; Burke, J.; Biedrzycki, B.; Solt, S.; Onners, B.; Tartakovsky, I.; Nemunaitis, J.; Le, D.; Sugar, E.; et al. Allogeneic GM-CSF Secreting Tumor Immunotherapy (GVAX®) Alone or in Sequence with Cyclophosphamide for Metastatic Pancreatic Cancer: A Pilot Study of Safety, Feasibility and Immune Activation. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 1455–1463. [Google Scholar] [CrossRef]
- Lutz, E.; Yeo, C.J.; Lillemoe, K.D.; Biedrzycki, B.; Kobrin, B.; Herman, J.; Sugar, E.; Piantadosi, S.; Cameron, J.L.; Solt, S.; et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase II trial of safety, efficacy, and immune activation. Ann. Surg. 2011, 253, 328–335. [Google Scholar] [CrossRef]
- Hardacre, J.M.; Mulcahy, M.; Small, W.; Talamonti, M.; Obel, J.; Krishnamurthi, S.; Rocha-Lima, C.S.; Safran, H.; Lenz, H.-J.; Chiorean, E.G. Addition of algenpantucel-L immunotherapy to standard adjuvant therapy for pancreatic cancer: A phase 2 study. J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract 2013, 17, 94–100, discussion p. 100-101. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Yuan, Y.-Y.; Liu, S.-P.; Shi, J.-J.; Long, X.-A.; Niu, L.-Z.; Chen, J.-B.; Li, Q.; Xu, K.-C. Prospective study of the safety and efficacy of a pancreatic cancer stem cell vaccine. J. Cancer Res. Clin. Oncol. 2015, 141, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Heumann, T.R.; Judkins, C.; Lim, S.J.; Wang, H.; Parkinson, R.; Gai, J.; Celiker, B.; Durham, J.N.; Laheru, D.A.; De Jesus-Acosta, A.; et al. Neoadjuvant and adjuvant antitumor vaccination alone or combination with PD1 blockade and CD137 agonism in patients with resectable pancreatic adenocarcinoma. J. Clin. Oncol. 2022, 40, 558. [Google Scholar] [CrossRef]
- Hewitt, D.B.; Nissen, N.; Hatoum, H.; Musher, B.; Seng, J.; Coveler, A.L.; Al-Rajabi, R.; Yeo, C.J.; Leiby, B.; Banks, J.; et al. A Phase 3 Randomized Clinical Trial of Chemotherapy with or without Algenpantucel-L (HyperAcute-Pancreas) Immunotherapy in Subjects with Borderline Resectable or Locally Advanced Unresectable Pancreatic Cancer. Ann. Surg. 2022, 275, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Wang-Gillam, A.; Picozzi, V.; Greten, T.F.; Crocenzi, T.; Springett, G.; Morse, M.; Zeh, H.; Cohen, D.; Fine, R.L.; et al. Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 1325–1333. [Google Scholar] [CrossRef]
- Le, D.T.; Picozzi, V.J.; Ko, A.H.; Wainberg, Z.A.; Kindler, H.; Wang-Gillam, A.; Oberstein, P.; Morse, M.A.; Zeh, H.J.; Weekes, C.; et al. Results from a Phase IIb, Randomized, Multicenter Study of GVAX Pancreas and CRS-207 Compared with Chemotherapy in Adults with Previously Treated Metastatic Pancreatic Adenocarcinoma (ECLIPSE Study). Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 5493–5502. [Google Scholar] [CrossRef]
- Dalgleish, A.G.; Stebbing, J.; Adamson, D.J.; Arif, S.S.; Bidoli, P.; Chang, D.; Cheeseman, S.; Diaz-Beveridge, R.; Fernandez-Martos, C.; Glynne-Jones, R.; et al. Randomised, open-label, phase II study of gemcitabine with and without IMM-101 for advanced pancreatic cancer. Br. J. Cancer 2016, 115, 789–796. [Google Scholar] [CrossRef]
- Noonan, A.M.; Farren, M.R.; Geyer, S.M.; Huang, Y.; Tahiri, S.; Ahn, D.; Mikhail, S.; Ciombor, K.K.; Pant, S.; Aparo, S.; et al. Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. Mol. Ther. J. Am. Soc. Gene Ther. 2016, 24, 1150–1158. [Google Scholar] [CrossRef]
- Cao, J.; Jin, Y.; Li, W.; Zhang, B.; He, Y.; Liu, H.; Xia, N.; Wei, H.; Yan, J. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice. BMC Immunol. 2013, 14, 39. [Google Scholar] [CrossRef]
- Rong, Y.; Qin, X.; Jin, D.; Lou, W.; Wu, L.; Wang, D.; Wu, W.; Ni, X.; Mao, Z.; Kuang, T.; et al. A phase I pilot trial of MUC1-peptide-pulsed dendritic cells in the treatment of advanced pancreatic cancer. Clin. Exp. Med. 2012, 12, 173–180. [Google Scholar] [CrossRef]
- Mehrotra, S.; Britten, C.D.; Chin, S.; Garrett-Mayer, E.; Cloud, C.A.; Li, M.; Scurti, G.; Salem, M.L.; Nelson, M.H.; Thomas, M.B.; et al. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J. Hematol. Oncol. J. Hematol. Oncol. 2017, 10, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koido, S.; Homma, S.; Okamoto, M.; Takakura, K.; Mori, M.; Yoshizaki, S.; Tsukinaga, S.; Odahara, S.; Koyama, S.; Imazu, H.; et al. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms’ tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 4228–4239. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Yun, M.M.; Xu, M.B.; Wang, Y.Z.; Yun, S. Pancreatic carcinoma-specific immunotherapy using synthesised alpha-galactosyl epitope-activated immune responders: Findings from a pilot study. Int. J. Clin. Oncol. 2013, 18, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, Y.; Itoh, A.; Kawashima, H.; Hara, K.; Nonogaki, K.; Kasugai, T.; Ohno, E.; Ishikawa, T.; Matsubara, H.; Ishigami, M.; et al. A combination therapy of gemcitabine with immunotherapy for patients with inoperable locally advanced pancreatic cancer. Pancreas 2009, 38, e69–e74. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ueno, T.; Kawaoka, T.; Hazama, S.; Fukui, M.; Suehiro, Y.; Hamanaka, Y.; Ikematsu, Y.; Imai, K.; Oka, M.; et al. MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res. 2005, 25, 3575–3579. [Google Scholar] [PubMed]
- Ramanathan, R.K.; Lee, K.M.; McKolanis, J.; Hitbold, E.; Schraut, W.; Moser, A.J.; Warnick, E.; Whiteside, T.; Osborne, J.; Kim, H.; et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother. 2005, 54, 254–264. [Google Scholar] [CrossRef]
- Geynisman, D.M.; Zha, Y.; Kunnavakkam, R.; Aklilu, M.; Catenacci, D.V.; Polite, B.N.; Rosenbaum, C.; Namakydoust, A.; Karrison, T.; Gajewski, T.F.; et al. A randomized pilot phase I study of modified carcinoembryonic antigen (CEA) peptide (CAP1-6D)/montanide/GM-CSF-vaccine in patients with pancreatic adenocarcinoma. J. Immunother. Cancer 2013, 1, 8. [Google Scholar] [CrossRef]
- Zhuang, K.; Yan, Y.; Zhang, X.; Zhang, J.; Zhang, L.; Han, K. Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway. Oncol. Rep. 2016, 36, 1369–1376. [Google Scholar] [CrossRef]
- Osborne, N.; Sundseth, R.; Gay, M.D.; Cao, H.; Tucker, R.D.; Nadella, S.; Wang, S.; Liu, X.; Kroemer, A.; Sutton, L.; et al. Vaccine against gastrin, a polyclonal antibody stimulator, decreases pancreatic cancer metastases. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G682–G693. [Google Scholar] [CrossRef]
- Lutz, E.R.; Wu, A.A.; Bigelow, E.; Sharma, R.; Mo, G.; Soares, K.; Solt, S.; Dorman, A.; Wamwea, A.; Yager, A.; et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol. Res. 2014, 2, 616–631. [Google Scholar] [CrossRef]
- Jaffee, E.M.; Hruban, R.H.; Biedrzycki, B.; Laheru, D.; Schepers, K.; Sauter, P.R.; Goemann, M.; Coleman, J.; Grochow, L.; Donehower, R.C.; et al. Novel Allogeneic Granulocyte-Macrophage Colony-Stimulating Factor–Secreting Tumor Vaccine for Pancreatic Cancer: A Phase I Trial of Safety and Immune Activation. J. Clin. Oncol. 2001, 19, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Soares, K.C.; Rucki, A.A.; Wu, A.A.; Olino, K.; Xiao, Q.; Chai, Y.; Wamwea, A.; Bigelow, E.; Lutz, E.; Liu, L.; et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J. Immunother. 2015, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, N.; Quezada, S.A.; Kuroiwa, J.M.Y.; Zhang, L.; Jaffee, E.M.; Steinman, R.M.; Wang, B. Anti-CTLA-4 synergizes with dendritic cell-targeted vaccine to promote IL-3-dependent CD4+ effector T cell infiltration into murine pancreatic tumors. Ann. N. Y. Acad. Sci. 2019, 1445, 62–73. [Google Scholar] [CrossRef] [PubMed]
Immune Checkpoint Inhibitor | Monoclonal Antibody Target |
---|---|
Pembrolizumab | PD-1 |
Nivolumab | PD-1 |
Avelumab | PD-1 |
Cemiplimab | PD-1 |
Dostarlimab-gxly | PD-1 |
Atezolizumab | PD-L1 |
Durvalumab | PD-L1 |
Ipilimumab | CTLA4 |
Relatlimab | LAG-3 |
Study Reference (Phase) | Population (Line of Treatment) | Intervention | ORR | DCR | mPFS (mo) | mOS (mo) |
---|---|---|---|---|---|---|
ICI MONOTHERAPY | ||||||
[33] (2) | mPDAC/LAPC n = 27 | ipi | 0% (2 pts with minor response) | - | - | No benefit |
[34] (2) | mPDAC (2nd+) n = 20 | treme | 0% (18/20 POD) | 0% | - | 4.0 |
KEYNOTE-158 [35] (2) | Advanced PDAC (2nd) n = 22 (100% MSI-H/dMMR) | pembro | 18.2% (1 CR, 3 PR, mDOR 13.4 mo [8.1–16+ mo]) | - | 2.1 | 4.0 |
ICI + OTHER TARGETED THERAPY | ||||||
[36] (1/2) | Advanced PDAC (2nd+) n = 49 | durvalumab + ibrutinib (Bruton tyrosine kinase inhibitor) | 2% (1 PR, DOR 10 mo) | - | 2 | 4.0 |
[37] (2) | mPDAC (2nd) n = 65 | Randomized to: | At 3 mo: | |||
treme + durva | 3.1% (1 PR in an MSI-H pt, DOR 55 weeks) | 9.4% | 1.5 | 3.1 | ||
durva | 0% | 6.1% | 1.5 | 3.6 | ||
COMBAT [38] (2) | Cohort 1 | |||||
mPDAC (2nd +) n = 37 | pembro + motixafortide (CXCR4 antagonist) | 3.4% (1 PR) | 34.5% (9 SD, 1 PR) | - | 3.3 (ITT), 7.5 (2nd line only) | |
Cohort 2 | ||||||
n = 22 | pembro + chemo + motixafortide | 32% (7 PR) | 77% (10 SD, 7 PR) | |||
[39] (2) | LAPC/m PDAC (2nd +) n = 77 | acalabrutinib (Bruton tyrosine kinase inhibitor) | 0% | 14.3% | 1.4 | 3.6 |
pembro + acalabrutinib | 7.9% (all PR) | 21.1% (mDOR 3 mo) | 1.4 | 3.8 | ||
PCRT16-001 [40] (2) | Hyaluronan-high, mPDAC (3rd +) n = 8 | pembro + PEGPH20 (human recombinant PH20 hyaluronidase) | 0% | 25% (2 SD [DOR 2.2 and 9 mo, each]) | 1.5 | 7.2 |
[41] (1/2) | Advanced PDAC (without progression >4 mo on platinum) n = 91 | nivo + niraparib (PARP inhibitor) | 7.1% | - | 1.9 | 14.0 |
ipi + niraparib | 15.4% | - | 8.1 | 17.3 | ||
[42] (2) | Advanced PDAC (relapsed/refractory) n = 32 | pembro + NT-17 (long-acting interleukin-7) | 8% (2/26, best tumor reduction 100% and 72%, respectively) | DOR >1.35 mo and 6.64 mo respectively | - | - |
[43] (2) | Advanced PDAC (1st) n = 105 | nivo + chemo | - | 74% (mDOR 7.4 mo) | 6.4 | 16.7 |
sotigalimab (anti-CD40) + chemo | 33% | 78% (mDOR 5.6 mo) | 7.3 | 11.4 | ||
nivo + sotigalimab + chemo | 31% | 69% (mDOR 7.9 mo) | 6.7 | 10.1 | ||
ICI + CHEMOTHERAPY | ||||||
[44] (2) | mPDAC (1st) n = 180 | Randomized (2:1) to: | ||||
durva + treme + gemcitabine + nab-paclitaxel | 30.3% | 70.6% | 5.5 | 9.8 | ||
gemcitabine + nab-paclitaxel | 23.0% | 57.4% | 5.4 | 8.8 | ||
[45] (2) | Advanced PDAC (1st) n = 31 | nivo + mFOLFIRINOX | 32.3% (all PR, mDOR 7.36 mo [3.5–20.1+ mo]) | - | 7.39 | 13.4 |
[46] (2) | Advanced PDAC n = 53 | KN046 (bispecific antibody targeting PD-1/PD-L1 and CTLA-4) + gemcitabine + nab-paclitaxel | 45.2% | 93.5% | - | - |
Advanced PDAC n = 53 | KN046 (bispecific antibody targeting PD-1/PD-L1 and CTLA-4) + gemcitabine + nab-paclitaxel | 45.2% | 93.5% | - | - | |
ICI + LOCAL THERAPY | ||||||
CheckPAC [47] (2) | Refractory mPDAC (2nd line +) n = 84 | Randomized to: | ||||
SBRT (15 Gy) + nivo (100% pMMR) | 2.4% (0% CR, 2.4% PR, 14.6% SD, 68.3% POD), mDOR 4.6 mo | 17.1% | 1.7 (1.6–1.8) | 3.8 (3.1–5.8) | ||
SBRT (15 Gy) + nivo/ipi (97.7% pMMR, 2.3% unknown) | 14.0% (0% CR, 14% PR, 23.3% SD, 53.5% POD), mDOR 5.4 mo (4.2-NR) | 37.2% | 1.6 (1.6–2.8) | 3.8 (2.8–6.5) | ||
[48] (2) | mPDAC N = 25 (100% MSS) | Radiation + nivo + ipi | ITT: 12% | 20% | 2.5 | 4.2 |
Per-protocol: 18% | 29% | 2.7 | 6.1 |
Target | Phase | CAR Cells (Additional Therapy) | Institution | Study Identifier |
---|---|---|---|---|
Claudin 18.2 | I | T-cells | PLA General Hospital, Beijing, China | NCT05275062 |
I | T-cells | University of Southern California, Los Angeles, CA; University Of California San Diego, San Diego, CA; Moffit Cancer Center, Tampa, FL; Mayo Cancer Hospital, Rochester, MN; Baylor Charles Sammons Cancer Center, Dallas, TX; MD Anderson Cancer Center, Houston, TX | NCT04404595 | |
I/II | T-cells | Beijing Cancer Hospital, Beijing, China; Henan Tumor Hospital, Zhengzhou, China; Ruijin Hospital, Shanghai, China | NCT04581473 | |
I | T-cells | The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China | NCT04966143 | |
I | T-cells | Shenzhen Luohu Hospital, Shenzhen, China | NCT05277987 | |
I | T-cells | Peking University Cancer Hospital, Beijing, China | NCT05393986 | |
I | T-cells | Peking University Cancer Hospital, Beijing, China | NCT03874897 | |
PSCS | I/II | T-cells (Rimiducid) | Moffit Cancer Center, Tampa, FL; Emory Winship Cancer Institute, Atlanta, GA; John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ; Columbia University Medical Center, New York, NY; Baylor Charles Sammons Cancer Center, Dallas, TX; MD Anderson Cancer Center, Houston, TX | NCT02744287 |
HER2 | I | T-cells (intra-tumoral CAdVEC oncolytic adenovirus injection) | Baylor St Luke’s Medical Center, Houston, TX | NCT03740256 |
I | Macrophages | City of Hope National Medical Center, Duarte, CA; University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC; Abramson Cancer Center, Philadelphia, PA; Sarah Cannon Research Institute, Nashville, TN; MD Anderson Cancer Center, Houston, TX | NCT04660929 | |
ROR2 | I | T-cells (cyclophosphamide and fludarabine lymphodepletion) | Zhongshan Hospital, Shanghai, China | NCT03960060 |
GUCYC | I | T-cells | Beijing Cancer Hospital, Beijing, China | NCT05287165 |
I/II | T-cells | Chingqing University Cancer Hospital, Chongqing, China | NCT04348643 | |
I | T-cells | Zhejiang University, Zhejiang China | NCT05396300 | |
EpCAM | I/II | T-cells | Chengdu Medical College, Chendu, China | NCT03013712 |
I | T-cells | Zhejiang University, Hangzhou, China | NCT05028933 | |
EpCAM, | NA | T-cells (anti-TM4SF1 CAR T-cells) | Institution for National Drug Clinical Trials, Tangdu Hospital, Tangdu, China | NCT04151186 |
CD70 | I/II | T-cells (non-myeloablative, lymphodepleting regimen + aldesleukin) | National Institutes of Health, Bethesda, MD | NCT02830724 |
CD276 | I/II | T-cells | Shenzhen University General Hospital, Guangdong, China | NCT05143151 |
Mesothelin | I/II | T-cells | Shanghai Tumor Hospital, Shanghai, China | NCT02959151 |
I | T-cells | First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China | NCT03497819 | |
NA | T-cells (cyclophosphamide lymphodepletion) | Nanjing First Hospital, Nanjing, China | NCT03638193 | |
I/II | T-cells | First Affiliated Hospital of Zhengzhou Medical University, Zhengzhou, China | NCT03638206 | |
I | T-cells | PLA General Hospital, Beijing, China | NCT02580747 | |
I | Renji Hospital, Shanghai, China | NCT02706782 | ||
I | T-cells | University of Pennsylvania, Philadelphia, PA | NCT03323944 | |
I | T-cells (VCN-01 oncolytic adenovirus) | University of Pennsylvania, Philadelphia, PA | NCT05057715 | |
Mesothelin/PSCA/CEA/HER 2/MUC1/EGFR | I | T-cells | Harbin Medical University, Harbin, China | NCT03267173 |
MUC1 | I/II | Natural killer cells | The First People Hospital of Hefei, Hefei, China | NCT02839954 |
I/II | T-cells | The First People Hospital of Hefei, Hefei, China | NCT02587689 | |
I | T-cells (Rimiducid) | Sarah Cannon Research Institute, Denver, CO; NEXT Oncology, San Antonio, TX | NCT05239143 |
Study Citation (Phase) | Treatment Setting | Intervention | ORR | mPFS/ mDFS | mOS | Comments |
---|---|---|---|---|---|---|
PEPTIDES | ||||||
[125] (1/2) | -Advanced | -RAS-loaded APC | -0% (60% SD) | - | 10.5 mo (if T-cell response) vs. 4.5 mo (no T-cell response) | -40% T-cell responses |
[126] (1/2) | -Adjuvant | -RAS + GM-CSF | - | -4/10 pts remained NED at 22–39 mo | -25.6 mo | - |
-Advanced | -0% (32% SD) | -NA | -mDOR in responders 10.2 mo | |||
[127] (2) | -Adjuvant | -RAS + DETOX adjuvant | - | - 11–64+ mo | -20–47+ mo | -60% immune responses, all experienced ongoing DFS. -Those without immune response had POD. |
[128] (2) | -Adjuvant | -RAS + GM-CSF | - | - | -27.5 mo (all) -28 mo (immune responders) | -85% immune responses (3 pts had memory response up to 9 years) -10-year survival 20% vs. 0% in vaccinated vs. non-vaccinated cohort |
[129] (1/2) | -Adjuvant | -TG01 (KRAS) + GM-CSF + gemcitabine | - | -13.9 mo | -33.1 mo | -92% immune response -Favorable DFS and OS compared to historic adjuvant controls with gemcitabine |
[130] (2) | -Adjuvant | Randomized to: | ||||
KRAS (expressed on inactivated yeast) + gemcitabine | - | In R1 group: -523.5 days | -159 day improvement in OS in R1 pts (p = 0.872) | |||
-placebo + gemcitabine | - | -443.5 days | -Increased immune responders with the vaccine (40% vs. 8%, p = 0.062) | |||
[131] (1/2) | -Advanced | -GV1001 (telomerase) + GM-CSF | - | - | -7.2 mo for immune responders vs. 2.9 mo for non-responders (p = 0.001) | 63% immune response |
[132] (3) | Advanced, treatment-naïve | Randomized to: | ||||
-gemcitabine | - | -3.7 mo | -7.3 mo | -PFS HR 0.5; 95% CI 0.4–0.7 -OS HR 0.8; 95% CI 0.6–1.0 -Vaccine did not improve OS | ||
-GV1001 + GM-CSF + concurrent gemcitabine if POD | - | -1.9 mo | -5.9 mo | |||
[133] (3) | -Advanced, treatment-naïve | Randomized to: | ||||
-chemotherapy (gemcitabine + capecitabine) | 14.03% collectively | - | -7.9 mo | -Vaccine did not improve survival | ||
-chemotherapy→ GV1001 + GM-CSF | -6.9 mo | |||||
-chemotherapy + concurrent GV1001 + GM-CSF | -8.4 mo | |||||
[134] (2) | -Advanced, treatment-refractory | Randomized to: | ||||
-survivin + IFNβ + Freund’s adjuvant | -no difference in DCRs between groups | -no difference between groups | -no difference between groups | -Vaccine did not improve PFS but did show an immunologic reaction | ||
-survivin + Freund’s adjuvant | ||||||
-placebo | ||||||
[135] (2/3) | -Advanced | Randomized to: | ||||
-G17DT + gemcitabine | - | -similar PFS 3.9 mo | -5.8 mo | -Vaccine did not improve PFS/OS | ||
-placebo + gemcitabine | - | -similar PFS 3.9 mo | -6.6 mo | |||
[136] (3) | -Advanced | Randomized to: | -mOS was improved with the vaccine (p = 0.03) -73.8% with anti-G17DT responses, associated with longer survival | |||
-G17DT | - | - | -151 days | |||
-placebo | - | - | -82 days | |||
[137] (2/3) | -Locally advanced, advanced, treatment-naïve | Randomized to: | ||||
-VEGF2 + Freund’s adjuvant + gemcitabine | -59.6% DCR | -3.71 mo | -8.36 mo | -Vaccine did not improve PFS/OS | ||
-placebo + gemcitabine | -60.4% DCR | -3.75 mo p = 0.313 | -8.54 mo p = 0.918 | |||
[138] (2) | -Advanced, treatment-naïve | -Personalized reactive peptides + Freund’s adjuvant + gemcitabine | -33% (all PR, 43% SD, 76% DCR) | - | -9 mo | 56% immune responses (associated with improved survival) |
[139] (2/3) | -Advanced, treatment-refractory | - KIF20A-66 + Freund’s adjuvant | -0% (72% SD, 72% DCR) | -56 days | -142 days | -27.6% objective tumor responses (but not by RECIST criteria) -1 pt with SD achieved CR over time -OS improved when compared to control, non-vaccinated group (p = 0.002) |
[140] (2) | -Adjuvant | -VEGFR1, VEGFR2, KIF20A + gemcitabine | - | -15.8 mo | NR (18 mo follow-up) | -Survival was improved in KIF20A-expressing pts compared to non-expressors |
TUMOR CELLS | ||||||
[141] (Pilot, feasibility) | -Advanced | Randomized to: | -Adding Cy induced more T-cell responses and was associated with longer ORR/OS | |||
-GVAX | -16.7% SD | -2.3 mo | ||||
-Cy + GVAX | -40% SD | -4.3 mo | ||||
[142] (2) | -Advanced | -GVAX followed by 5-FU-based chemoradiation | - | - 17.3 mo | -24.8 mo | -Enhanced T-cell responses were associated with DFS |
-1-y DFS 67.4% | -1-y OS 85% | |||||
[143] (2) | -Adjuvant | -Algenpantucel-L + gemcitabine + 5-FU-based chemoradiation | - | -12-mo DFS 62% | 12-mo OS 86% | -Survival compares favorably to historical adjuvant data at the time |
-mDFS 14.1 mo | -mOS NR | |||||
[144] (1/2) | -Adjuvant | -Pancreatic CSC vaccine | - | - | - | -CSC-specific immunity and lysis were higher post-vaccination -CSC-non-specific responses were also increased. |
[145] (2) | -Resectable | Enrolled to neoadjuvant + adjuvant tx arms: | -No DFS benefit to adding nivolumab to GVAX alone (p = 0.96), and triplet was marginally significantly improved compared to GVAX alone (p = 0.097) | |||
-GVAX | -14.82 mo | -25.0 mo | ||||
-GVAX + nivolumab | -16.23 mo | -26.4 mo | ||||
-GVAX + nivolumab + CD137 agonist | -NR | -NR | ||||
[146] (3) | -Borderline resectable or locally advanced | Randomized to neoadjuvant treatment arms: | HAPa immunotherapy did not improve PFS/OS | |||
-allogenic pancreas cancer cells expressing murine ɑ(1,3)GT gene (HAPa) + chemotherapy +chemoradiation | - | -12.4 mo | -14.3 mo | |||
-chemotherapy + chemoradiation | - | -13.4 mo p = 0.59 | -14.9 mo p = 0.98 | |||
TUMOR CELLS + BACTERIA | ||||||
[147] (2) | -Advanced | Randomized to: | ||||
-Cy + GVAX + CRS-207 (live-attenuated mesothelin-expressing Listeria monocytogenes) | -0% (31% SD) | -No difference in PFS between arms | -6.1 mo | -First study to demonstrate a survival advantage with IO in PDAC | ||
-Cy/GVAX | -0% (24% SD) | -3.9 mo (HR 0.59, p < 0.02) | -Enhanced mesothelin-specific T-cell responses were associated with OS | |||
[148] (2) | -Advanced, previously treated | Randomized to: | -Cy + GVAX + CRS-207 and CRS-207 monotherapy did not improve survival over chemotherapy | |||
-Cy + GVAX + CRS-207 | -1.5% (1 PR, DCR 23.5%) | -2.3 mo | -3.7 mo | |||
-CRS-207 | -0% 13.8% (DCR 13.8%) | -2.1 mo | -5.4 mo | |||
-Single-agent physician choice chemotherapy | -0% (DCR 11.6%) | -2.1 mo | -4.6 mo | |||
BACTERIA VECTORS | ||||||
[149] (2) | -Advanced | Randomized to: | -Subgroup analysis: metastatic subgroup (84%), OS improved from 4.4 to 7 mo with the addition of IMM-101 (p = 0.01) | |||
-IMM-101 (heat-killed Mycobacterium obuense) + gemcitabine | -10.7% (all PR) | -4.1 mo | -6.7 mo | |||
-Gemcitabine | -2.9% (all PR) (p = 0.164) | -2.4 mo (p = 0.016) | -5.6 mo (p = 0.074) | |||
VIRAL VECTORS | ||||||
[150] (2) | -Advanced, treatment-naïve | Randomized to: | ||||
-Pelareorep (reovirus targeting RAS-activated tumors) + carboplatin + paclitaxel | -19% (all PR, 53% SD, 556% DCR) | -4.9 mo | -7.3 mo | -KRAS mutational status did not predict survival -Virus did not improve PFS/OS | ||
-19% (all PR, 49% SD, 59% DCR) | -19% (all PR, 49% SD, 59% DCR) | -5.2 mo (p = 0.6) | -8.8 mo (p = 0.68) | -Increased NK-cells and B-cells were associated with improved DCR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherji, R.; Debnath, D.; Hartley, M.L.; Noel, M.S. The Role of Immunotherapy in Pancreatic Cancer. Curr. Oncol. 2022, 29, 6864-6892. https://doi.org/10.3390/curroncol29100541
Mukherji R, Debnath D, Hartley ML, Noel MS. The Role of Immunotherapy in Pancreatic Cancer. Current Oncology. 2022; 29(10):6864-6892. https://doi.org/10.3390/curroncol29100541
Chicago/Turabian StyleMukherji, Reetu, Dipanjan Debnath, Marion L. Hartley, and Marcus S. Noel. 2022. "The Role of Immunotherapy in Pancreatic Cancer" Current Oncology 29, no. 10: 6864-6892. https://doi.org/10.3390/curroncol29100541
APA StyleMukherji, R., Debnath, D., Hartley, M. L., & Noel, M. S. (2022). The Role of Immunotherapy in Pancreatic Cancer. Current Oncology, 29(10), 6864-6892. https://doi.org/10.3390/curroncol29100541