Association between Active Transportation and Public Transport with an Objectively Measured Meeting of Moderate-to-Vigorous Physical Activity and Daily Steps Guidelines in Adults by Sex from Eight Latin American Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Accelerometry Assessment
2.3. Active Transportation and Public Transport
2.4. Sociodemographic Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myers, J.; McAuley, P.; Lavie, C.J.; Despres, J.-P.; Arena, R.; Kokkinos, P. Physical Activity and Cardiorespiratory Fitness as Major Markers of Cardiovascular Risk: Their Independent and Interwoven Importance to Health Status. Prog. Cardiovasc. Dis. 2015, 57, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Paluch, A.E.; Gabriel, K.P.; Fulton, J.E.; Lewis, C.E.; Schreiner, P.J.; Sternfeld, B.; Sidney, S.; Siddique, J.; Whitaker, K.M.; Carnethon, M.R. Steps per Day and All-Cause Mortality in Middle-aged Adults in the Coronary Artery Risk Development in Young Adults Study. JAMA Netw. Open 2021, 4, e2124516. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Hu, L.; Hipp, J.A.; Imm, K.R.; Schutte, R.; Stubbs, B.; Colditz, G.A.; Smith, L. Cross-sectional associations of active transport, employment status and objectively measured physical activity: Analyses from the National Health and Nutrition Examination Survey. J. Epidemiol. Community Health 2018, 72, 764–769. [Google Scholar] [CrossRef] [Green Version]
- Saunders, L.E.; Green, J.; Petticrew, M.P.; Steinbach, R.; Roberts, H. What Are the Health Benefits of Active Travel? A Systematic Review of Trials and Cohort Studies. PLoS ONE 2013, 8, e69912. [Google Scholar] [CrossRef] [Green Version]
- Celis-Morales, C.A.; Lyall, D.M.; Welsh, P.; Anderson, J.; Steell, L.; Guo, Y.; Maldonado, R.; Mackay, D.F.; Pell, J.; Sattar, N.; et al. Association between active commuting and incident cardiovascular disease, cancer, and mortality: Prospective cohort study. BMJ 2017, 357, j1456. [Google Scholar] [CrossRef] [Green Version]
- Silfee, V.J.; Haughton, C.F.; Jake-Schoffman, D.; Lopez-Cepero, A.; May, C.N.; Sreedhara, M.; Rosal, M.C.; Lemon, S.C. Objective measurement of physical activity outcomes in lifestyle interventions among adults: A systematic review. Prev. Med. Rep. 2018, 11, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155,722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [Green Version]
- de Moraes Ferrari, G.L.; Kovalskys, I.; Fisberg, M.; Gómez, G.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Comparison of self-report versus accelerometer—Measured physical activity and sedentary behaviors and their association with body composition in Latin American countries. PLoS ONE 2020, 15, e0232420. [Google Scholar]
- Yang, C.C.; Hsu, Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef]
- de Moraes Ferrari, G.L.; Kovalskys, I.; Fisberg, M.; Gómez, G.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Socio-demographic patterns of public, private and active travel in Latin America: Cross-sectional findings from the ELANS study. J. Transp. Health 2020, 16, 100788. [Google Scholar]
- Boone-Heinonen, J.; Jacobs, D.R.; Sidney, S.; Sternfeld, B.; Lewis, C.E.; Gordon-Larsen, P. A Walk (or Cycle) to the Park: Active Transit to Neighborhood Amenities, the CARDIA Study. Am. J. Prev. Med. 2009, 37, 285–292. [Google Scholar] [CrossRef]
- Fisberg, M.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Cortés, L.Y.; Herrera-Cuenca, M.; Yépez, M.C.; Pareja, R.G.; Guajardo, V.; The ELANS Study Group; et al. Latin American Study of Nutrition and Health (ELANS): Rationale and study design. BMC Public Health 2016, 16, 93. [Google Scholar] [CrossRef]
- de Moraes Ferrari, G.L.; Kovalskys, I.; Fisberg, M.; Gómez, G.; Rigotti, A.; Sanabria, L.Y.C.; Yépez, M.C.; Pareja, R.G.; Herrera-Cuenca, M.; Zalcman, I.; et al. Methodological design for the assessment of physical activity and sedentary time in eight Latin American countries—The ELANS study. MethodsX 2020, 7. [Google Scholar] [CrossRef]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National Health and Nutrition Examination Survey: Analytic Guidelines, 1999–2010; Vital and health statistics. Series 10, Data from the National Health Survey; CDC Stacks: Atlanta, GA, USA, 2013; Stephen B. Thacker CDC Library collection. [Google Scholar]
- de Moraes Ferrari, G.L.; Kovalskys, I.; Fisberg, M.; Gómez, G.; Rigotti, A.; Sanabria, L.Y.C.; Yépez, M.C.; Pareja, R.G.; Herrera-Cuenca, M.; Zalcman, I.; et al. Socio-demographic patterning of objectively measured physical activity and sedentary behaviours in eight Latin American countries: Findings from the ELANS study. Eur. J. Sport Sci. 2020, 20, 670–681. [Google Scholar] [CrossRef]
- Batista, M.B.; Romanzini, C.L.P.; Barbosa, C.C.L.; Shigaki, G.B.; Romanzini, M.; Ronque, E.R.V. Participation in sports in childhood and adolescence and physical activity in adulthood: A systematic review. J. Sports Sci. 2019, 37, 2253–2262. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Physical Activity, Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; 4p. [Google Scholar]
- Colley, R.; Gorber, S.C.; Tremblay, M.S. Quality control and data reduction procedures for accelerometry-derived measures of physical activity. Health Rep. 2010, 21, 63. [Google Scholar]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Brond, J.C.; Arvidsson, D. Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts. J. Appl. Physiol. 2016, 120, 362–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyrstad, S.M.; Hansen, B.H.; Holme, I.M.; Anderssen, S.A. Comparison of self-reported versus accelerometer-measured physical activity. Med. Sci. Sports Exerc. 2014, 46, 99–106. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M.; on behalf of SBRN Terminology Consensus Project Participants. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; Mcdowell, M. Physical Activity in the United States Measured by Accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Melason, E.; Sirad, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sport Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef]
- Freedson, P.S.; Lyden, K.; Keadle, S.; Staudenmayer, J. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample. J. Appl. Physiol. 2011, 111, 1804–1812. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour: At a Glance; World Health Organization: Geneva, Switzerland, 2020; pp. 1–24. [Google Scholar]
- Chomistek, A.K.; Yuan, C.; Matthews, C.E.; Troiano, R.P.; Bowles, H.R.; Rood, J.; Barnett, J.B.; Willett, W.C.; Rimm, E.B.; Bassett, D.R. Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water. Med. Sci. Sports Exerc. 2017, 49, 1935–1944. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, a.; Sallis, J.F.; et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, G.; Werneck, A.O.; da Silva, D.R.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Sanabria, L.Y.C.; García, M.Y.; Pareja, R.G.; Herrera-Cuenca, M.; et al. Is the perceived neighborhood built environment associated with domain-specific physical activity in Latin American adults? An eight-country observational study. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Habinger, J.; Chávez, J.; Matsudo, S.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Sanabria, L.; García, M.; Pareja, R.; Herrera-Cuenca, M.; et al. Active transportation and obesity indicators in adults from Latin America: Elans multi-country study. Int. J. Environ. Res. Public Health 2020, 17, 6974. [Google Scholar] [CrossRef]
- Norwood, P.; Eberth, B.; Farrar, S.; Anable, J.; Ludbrook, A. Active travel intervention and physical activity behaviour: An evaluation. Soc. Sci. Med. 2014, 113, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Knell, G.; Durand, C.P.; Shuval, K.; Kohl, I.H.W.; Salvo, D.; Sener, I.N.; Gabriel, K.P. Transit use and physical activity: Findings from the Houston travel-related activity in neighborhoods (TRAIN) study. Prev. Med. Rep. 2017, 9, 55–61. [Google Scholar] [CrossRef]
- Ek, A.; Alexandrou, C.; Nyström, C.D.; Direito, A.; Eriksson, U.; Hammar, U.; Henriksson, P.; Maddison, R.; Lagerros, Y.T.; Löf, M. The Smart City Active Mobile Phone Intervention (SCAMPI) study to promote physical activity through active transportation in healthy adults: A study protocol for a randomised controlled trial. BMC Public Health 2018, 18, 880. [Google Scholar] [CrossRef] [Green Version]
- Parra, D.; Gomez, L.; Pratt, M.; Sarmiento, O.L.; Mosquera, J.; Triche, E. Policy and built environment changes in Bogotá and their importance in health promotion. Indoor Built Environ. 2007, 16, 344–348. [Google Scholar] [CrossRef]
- Gomez, L.F.; Sarmiento, R.; Ordoñez, M.F.; Pardo, C.F.; de Sá, T.H.; Mallarino, C.H.; Miranda, J.J.; Mosquera, J.; Parra, D.C.; Reis, R.; et al. Urban environment interventions linked to the promotion of physical activity: A mixed methods study applied to the urban context of Latin America. Soc. Sci. Med. 2015, 131, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento, O.L.; Torres, A.; Jacoby, E.; Pratt, M.; Schmid, T.L.; Stierling, G. The ciclovía-recreativa: A mass-recreational program with public health potential. J. Phys. Act. Health 2010, 7, S163–S180. [Google Scholar] [CrossRef] [Green Version]
- Wright, L. Sustainable Transport: A Sourcebook for Policy-Makers in Developing Cities Module 3b: Bus Rapid Transit; Deutsche Gesellschaft fuer Technische Zusammenarbeit (GTZ) GmbH: Eschborn, Germany, 2003; pp. 1–48. [Google Scholar]
- Sallis, J.F.; Frank, L.D.; Saelens, B.E.; Kraft, M. Active transportation and physical activity: Opportunities for collaboration on transportation and public health research. Transp. Res. Part A Policy Pr. 2004, 38, 249–268. [Google Scholar] [CrossRef]
- Sofia, D.; Gioiella, F.; Lotrecchiano, N.; Giuliano, A. Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res. 2020, 27, 19226–19235. [Google Scholar] [CrossRef]
- Rojas-Rueda, D.; de Nazelle, A.; Teixidó, O.; Nieuwenhuijsen, M.J. Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: A health impact assessment study. Environ. Int. 2012, 49, 100–109. [Google Scholar] [CrossRef]
- Ferrari, G.; Marques, A.; Barreira, T.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Cortés, L.; García, M.; Pareja, R.; Herrera-Cuenca, M.; et al. Accelerometer-measured daily step counts and adiposity indicators among Latin American adults: A multi-country study. Int. J. Environ. Res. Public Health 2021, 18, 4641. [Google Scholar] [CrossRef]
- Luis De Moraes Ferrari, G.; Kovalskys, I.; Fisberg, M.; Gómez, G.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Original research Socio-demographic patterning of self-reported physical activity and sitting time in Latin American countries: Findings from ELANS. BMC Public Health 2019, 19, 1723. [Google Scholar] [CrossRef] [Green Version]
- Werneck, A.O.; Sadarangani, K.P.; Ramírez-Vélez, R.; Baldew, S.-S.; Gomes, T.N.; Ferrari, G.; Szwarcwald, C.L.; Miranda, J.J.; Silva, D.R.; on Behalf of the South American Physical Activity and Sedentary Behavior Network (SAPASEN) Collaborators. Macroeconomic, demographic and human developmental correlates of physical activity and sitting time among South American adults. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 163. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.L.D.M.; Kovalskys, I.; Fisberg, M.; Gomez, G.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Anthropometry, dietary intake, physical activity and sitting time patterns in adolescents aged 15–17 years: An international comparison in eight Latin American countries. BMC Pediatr. 2020, 20, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Active Transportation (min/day) | Moderate-To-Vigorous Physical Activity (min/day) | Steps per Day | ||||
---|---|---|---|---|---|---|---|
n (%) | Men | Women | Men | Women | Men | Women | |
Overall | 2524 | 12.8 (2.8–30.0) | 12.9 (4.3–25.7) | 35.2 (20.6–56.8) | 23.7 (14.0–38.3) | 10291.8 (7032.1–14,606.1) | 9155.7 (6474.1–13,165.3) |
Country | |||||||
Argentina | 271 (10.7) | 11.1 (0.0–30.0) | 14.0 (4.3–30.0) | 28.7 (16.9–47.8) | 26.7 (14.6–43.9) | 7497.9 (5450.4–9956.8) | 7616.7 (5810.5–9566.3) |
Brazil | 524 (20.8) | 10.7 (0.0–30.0) | 8.6 (2.9–21.4) | 32.6 (18.7–54.8) | 22.7 (13.7–38.6) | 14,577.8 (10,562.7–18,625.3) | 13,324.0 (10,089.6–16,359.5) |
Chile | 274 (10.9) | 17.2 (4.3–30.0) | 12.0 (4.3–25.7) | 39.0 (25.0–60.8) | 31.2 (21.1–44.8) | 15,631.3 (12,954.4–18,618.1) | 14,111.6 (11,141.6–16,784.0) |
Colombia | 319 (12.6) | 17.1 (6.4–34.0) | 11.4 (4.5–23.9) | 36.7 (22.5–51.7) | 25.3 (12.0–39.4) | 7580.6 (5915.3–10,379.0) | 7490.8 (5663.5–9844.5) |
Costa Rica | 247 (9.8) | 17.1 (4.3–60.0) | 17.1 (8.6–40.0) | 33.4 (18.6–54.2) | 20.6 (9.9–35.2) | 7800.8 (5555.3–10,324.6) | 6747.0 (4945.9–8544.7) |
Ecuador | 249 (9.9) | 17.1 (8.6–30.0) | 16.1 (8.6–30.0) | 42.4 (24.1–64.8) | 23.4 (15.5–37.8) | 8753.8 (6365.4–11,189.2) | 6710.7 (5606.8–9130.1) |
Peru | 302 (12.0) | 12.9 (5.7–30.0) | 17.1 (6.4–30.0) | 38.9 (22.6–60.3) | 24.7 (15.5–39.2) | 8562.6 (6037.3–11,322.6) | 7415.5 (5947.5–9478.0) |
Venezuela | 338 (13.4) | 4.3 (0.0–15.0) | 6.1 (0.0–15.0) | 35.2 (17.0–55.4) | 19.3 (12.2–29.9) | 12,823.1 (9710.3–16,604.8) | 11,285.7 (7539.0–14,877.3) |
Age Group | |||||||
18–34 | 1134 (44.9) | 12.9 (2.9–30.0) | 14.3 (5.7–30.0) | 36.6 (23.3–58.1) | 24.4 (15.6–37.9) | 10,342.8 (7100.2–14,588.7) | 8827.3 (6350.1–12,657,2) |
35–49 | 782 (31.0) | 12.9 (0.0–30.0) | 10.7 (4.3–25.7) | 35.0 (18.8–59.1) | 25.4 (13.8–39.7) | 10,488.6 (7122.3–14,877.6) | 9147.0 (6647.8–13,361.9) |
50–65 | 608 (24.1) | 14.3 (4.3–32.1) | 11.1 (2.9–25.7) | 30.8 (17.8–52.1) | 21.3 (11.3–36.1) | 9899.2 (6503.0–14,292.5) | 9611.2 (6473.5–13,711.3) |
Socioeconomic Level | |||||||
Low | 1287 (51.0) | 12.6 (1.5–30.0) | 12.9 (4.3–25.0) | 37.0 (20.8–61.5) | 23.5 (13.8–37.3) | 10,790.6 (7544.9–15,125.8) | 8964.1 (6444.1–13,141.6) |
Middle | 980 (38.8) | 12.8 (2.8–30.0) | 12.0 (4.3–25.7) | 34.3 (20.6–54.5) | 24.9 (14.2–40.1) | 10,128.8 (6911.6–14,482.4) | 9523.7 (6510.7–13,358.7) |
High | 257 (10.2) | 14.3 (5.7–33.7) | 15.0 (5.0–30.0) | 31.3 (18.3–47.9) | 22.4 (14.0–46.3) | 8869.3 (6158.6–12,895.9) | 8828.9 (6417.3–12,550.0) |
Education Level | |||||||
Low | 1457 (57.7) | 12.9 (2.9–32.9) | 12.9 (4.3–25.7) | 34.8 (19.2–59.7) | 22.6 (12.9–37.5) | 10,222.3 (6903.7–14,869.9) | 8745.3 (6173.8–12,590.6) |
Middle | 794 (31.5) | 11.4 (1.7–26.4) | 12.6 (4.3–28.6) | 35.2 (21.5–55.3) | 26.8 (16.7–41.3) | 10,291.8 (7264.3–14,277.5) | 10,098.2 (7217.1–13,672.8) |
High | 273 (10.8) | 14.3 (1.2–30.0) | 11.4 (2.1–30.0) | 35.9 (21.8–52.4) | 23.0 (14.0–35.1) | 10,591.1 (7067.5–14,528.5) | 9084.3 (6882.8–13,627.4) |
Variables | Active (≥10 min) Transportation (%) (n = 1453) | Active (≥10 min) Transportation (%) plus Public Transport (n = 879) | Meeting Moderate-To-Vigorous Physical Activity Guidelines (n = 1213) 1 | Meeting Steps per Day Guidelines (n = 1828) 2 | ||||
---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | |
Overall | 680 (57.5) | 773 (57.6) | 379 (32.0) | 500 (37.3) * | 698 (59.0) | 515 (38.5) * | 892 (75.4) | 936 (69.9) * |
Country | ||||||||
Argentina | 62 (54.4) | 91 (58.0) | 29 (25.4) | 60 (38.2) * | 56 (49.1) | 69 (44.5) | 64 (56.1) | 92 (59.4) |
Brazil | 123 (53.2) | 143 (48.8) | 61 (26.4) | 85 (29.0) | 125 (54.1) | 103 (35.2) * | 211 (91.3) | 275 (93.9) |
Chile | 83 (65.4) | 89 (60.5) | 45 (35.4) | 61 (41.5) | 83 (65.4) | 79 (53.7) * | 126 (99.2) | 141 (95.9) |
Colombia | 110 (69.2) | 91 (56.9) * | 51 (32.1) | 44 (27.5) | 100 (62.9) | 68 (42.5) * | 91 (57.2) | 90 (56.3) |
Costa Rica | 72 (61.5) | 89 (68.5) | 33 (28.2) | 54 (41.5) * | 63 (53.8) | 44 (33.8) * | 71 (60.7) | 56 (43.1) * |
Ecuador | 88 (70.4) | 92 (74.2) | 68 (54.4) | 67 (54.0) | 84 (67.2) | 50 (40.3) * | 83 (66.4) | 58 (46.8) * |
Peru | 84 (59.2) | 109 (68.1) | 51 (35.9) | 80 (50.0) * | 90 (63.4) | 60 (37.5) * | 98 (69.0) | 91 (56.9) * |
Venezuela | 58 (34.5) | 69 (40.6) | 41 (24.4) | 49 (28.8) | 97 (57.7) | 42 (24.7) * | 148 (88.1) | 133 (78.2) * |
Age Group | ||||||||
18–34 | 328 (57.3) | 356 (63.3) * | 199 (34.8) | 245 (43.6) * | 365 (63.8) | 217 (38.6) * | 437 (76.4) | 302 (68.3) * |
35–49 | 198 (55.8) | 226 (52.9) | 101 (28.5) | 126 (29.5) | 204 (57.5) | 175 (41.1) * | 271 (76.3) | 302 (70.9) |
50–65 | 154 (60.2) | 191 (54.3) | 79 (30.9) | 129 (36.6) | 129 (50.4) | 123 (35.0) * | 184 (71.9) | 250 (71.2) |
Socioeconomic Level | ||||||||
Low | 337 (56.4) | 396 (57.5) | 198 (33.1) | 257 (37.1) | 363 (60.7) | 253 (36.7) * | 468 (78.3) | 479 (69.5) * |
Middle | 269 (57.8) | 297 (57.7) | 145 (31.2) | 191 (37.1) | 268 (57.6) | 210 (40.9) * | 346 (74.4) | 362 (70.4) |
High | 74 (61.7) | 80 (58.4) | 36 (30.0) | 52 (38.0) | 67 (55.8) | 52 (38.2) * | 78 (65.0) | 95 (69.9) |
Education Level | ||||||||
Low | 398 (58.7) | 461 (59.2) | 224 (33.0) | 274 (35.3) | 389 (57.4) | 279 (35.9) * | 502 (74.0) | 511 (65.7) * |
Middle | 204 (54.1) | 233 (55.9) | 115 (30.5) | 175 (42.0) * | 227 (60.2) | 182 (43.6) * | 292 (77.5) | 318 (76.3) |
High | 78 (60.9) | 79 (54.5) | 40 (31.3) | 51 (35.2) | 82 (64.1) | 54 (37.5) * | 98 (76.6) | 107 (74.3) |
Variables | Meeting Moderate-To-Vigorous Physical Activity Guidelines 1 | Meeting Steps per Day Guidelines 2 | ||
---|---|---|---|---|
OR (95%CI) | p-Value | OR (95%CI) | p-Value | |
Men | ||||
Active transportation | <0.001 * | 0.321 | ||
<10 min | 1 | 1 | ||
≥10 min | 2.01 (1.58–2.54) | 1.14 (0.87–1.49) | ||
Active transportation plus public transport | <0.001 * | 0.004 * | ||
<10 min | 1 | 1 | ||
≥10 min | 2.98 (2.31–3.91) | 1.55 (1.15–2.10) | ||
Women | ||||
Active transportation | <0.001 * | 0.332 | ||
<10 min | 1 | 1 | ||
≥10 min | 1.57 (1.25–196) | 0.12 (0.88–1.42) | ||
Active transportation plus public transport | <0.001 * | 0.062 | ||
<10 min | 1 | 1 | ||
≥10 min | 1.82 (1.45–2.29) | 1.26 (0.98–1.61) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herreros-Irarrázabal, D.; Guzmán-Habinger, J.; Mahecha Matsudo, S.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Cortés, L.Y.; Yépez García, M.C.; Pareja, R.G.; Herrera-Cuenca, M.; et al. Association between Active Transportation and Public Transport with an Objectively Measured Meeting of Moderate-to-Vigorous Physical Activity and Daily Steps Guidelines in Adults by Sex from Eight Latin American Countries. Int. J. Environ. Res. Public Health 2021, 18, 11553. https://doi.org/10.3390/ijerph182111553
Herreros-Irarrázabal D, Guzmán-Habinger J, Mahecha Matsudo S, Kovalskys I, Gómez G, Rigotti A, Cortés LY, Yépez García MC, Pareja RG, Herrera-Cuenca M, et al. Association between Active Transportation and Public Transport with an Objectively Measured Meeting of Moderate-to-Vigorous Physical Activity and Daily Steps Guidelines in Adults by Sex from Eight Latin American Countries. International Journal of Environmental Research and Public Health. 2021; 18(21):11553. https://doi.org/10.3390/ijerph182111553
Chicago/Turabian StyleHerreros-Irarrázabal, Diego, Juan Guzmán-Habinger, Sandra Mahecha Matsudo, Irina Kovalskys, Georgina Gómez, Attilio Rigotti, Lilia Yadira Cortés, Martha Cecilia Yépez García, Rossina G. Pareja, Marianella Herrera-Cuenca, and et al. 2021. "Association between Active Transportation and Public Transport with an Objectively Measured Meeting of Moderate-to-Vigorous Physical Activity and Daily Steps Guidelines in Adults by Sex from Eight Latin American Countries" International Journal of Environmental Research and Public Health 18, no. 21: 11553. https://doi.org/10.3390/ijerph182111553