Next Article in Journal
Evaluating the Effect of a Novel Molluscicide in the Endemic Schistosomiasis Japonica Area of China
Next Article in Special Issue
The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells
Previous Article in Journal
Measuring Quality of Mental Health Care: An International Comparison
Previous Article in Special Issue
A Dose-Response Relationship between Organic Mercury Exposure from Thimerosal-Containing Vaccines and Neurodevelopmental Disorders
Open AccessArticle

The Impact of Different Proportions of a Treated Effluent on the Biotransformation of Selected Micro-Contaminants in River Water Microcosms

Department Applied Geology, Geoscience Centre of the University of Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany
*
Author to whom correspondence should be addressed.
Int. J. Environ. Res. Public Health 2014, 11(10), 10390-10405; https://doi.org/10.3390/ijerph111010390
Received: 19 August 2014 / Revised: 24 September 2014 / Accepted: 29 September 2014 / Published: 10 October 2014
(This article belongs to the Special Issue Emerging Contaminants in the Environment)
Attenuation of micro-contaminants is a very complex field in environmental science and evidence suggests that biodegradation rates of micro-contaminants in the aqueous environment depend on the water matrix. The focus of the study presented here is the systematic comparison of biotransformation rates of caffeine, carbamazepine, metoprolol, paracetamol and valsartan in river water microcosms spiked with different proportions of treated effluent (0%, 0.1%, 1%, and 10%). Biotransformation was identified as the dominating attenuation process by the evolution of biotransformation products such as atenolol acid and valsartan acid. Significantly decreasing biotransformation rates of metoprolol were observed at treated effluent proportions ≥0.1% whereas significantly increasing biotransformation rates of caffeine and valsartan were observed in the presence of 10% treated effluent. Potential reasons for the observations are discussed and the addition of adapted microorganisms via the treated effluent was suggested as the most probable reason. The impact of additional phosphorus on the biodegradation rates was tested and the experiments revealed that phosphorus-limitation was not responsible. View Full-Text
Keywords: biodegradation; pharmaceuticals; caffeine; river water; treated effluent; valsartan acid biodegradation; pharmaceuticals; caffeine; river water; treated effluent; valsartan acid
Show Figures

Figure 1

MDPI and ACS Style

Nödler, K.; Tsakiri, M.; Licha, T. The Impact of Different Proportions of a Treated Effluent on the Biotransformation of Selected Micro-Contaminants in River Water Microcosms. Int. J. Environ. Res. Public Health 2014, 11, 10390-10405.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop