New Bioactive Polyketides from the Mangrove-Derived Fungus Daldinia eschscholzii HJX1P2
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Determination
2.2. Bioactivity Assay
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation and Extraction
3.4. Isolation and Purification
3.5. Spectroscopic Data of Compounds
3.6. ECD Computation Section
3.7. Biological Assay Protocols
3.7.1. Anti-Inflammation Activity Assay
3.7.2. Antioxidant Activity Assay
3.7.3. Antibacterial Activity Assay
3.8. Molecular Docking Studies
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, X.B.; Gao, D.Z.; Zheng, P.F.; Sun, D.Y.; Hu, W.F.; Tian, D.F.; Du, W. The effects of mangrove growth on sediment nitrogen mineralization and immobilization are more intense on sandy coasts compared to muddy coasts. Catena 2024, 243, 108172. [Google Scholar] [CrossRef]
- Nagahawatta, D.P.; Liyanage, N.M.; Thilina, U.J.; Jayawardhana, H.H.A.C.K.; Jeong, S.H.; Kwon, H.J.; Jeon, Y.J. Role of marine natural products in the development of antiviral agents against SARS-CoV-2: Potential and prospects. Mar. Life Sci. Technol. 2024, 6, 280–297. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Yang, W.C.; Chen, T.; Liu, Z.M.; Chen, Y.; Li, T.B.; Said, G.; Sun, B.; Wang, B.; She, Z.G. Griseofulvin enantiomers and bromine-containing griseofulvin derivatives with antifungal activity produced by the mangrove endophytic fungus Nigrospora sp. QQYB1. Mar. Life Sci. Technol. 2024, 6, 102–114. [Google Scholar] [CrossRef]
- Lv, H.W.; Su, H.B.; Xue, Y.X.; Jia, J.; Bi, H.K.; Wang, S.B.; Zhang, J.K.; Zhu, M.D.; Emam, M.; Wang, H.; et al. Polyketides with potential bioactivities from the mangrove-derived fungus Talaromyces sp. WHUF0362. Mar. Life Sci. Technol. 2023, 5, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yu, M.; Chen, W.; Chen, S.; Qiu, Y.; Xu, Z.; Wang, Y.; Huang, G.; Zheng, C. Recent discovery of nitrogen heterocycles from marine-derived Aspergillus species. Mar. Drugs 2024, 22, 321. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, S.; Yu, M.; Shi, J.; Liu, J.; Li, X.; Chen, J.; Sun, X.; Huang, G.; Zheng, C. Natural products from marine-derived fungi with anti-inflammatory activity. Mar. Drugs 2024, 22, 433. [Google Scholar] [CrossRef]
- Yu, M.; Chen, S.J.; Shi, J.Y.; Chen, W.K.; Qiu, Y.K.; Lan, J.; Qu, S.Y.; Feng, J.Y.; Wang, R.; Lin, F.R.; et al. Structures and biological activities of secondary metabolites from Daldinia spp. J. Fungi 2024, 10, 833. [Google Scholar] [CrossRef]
- Buchanan, M.S.; Hashimoto, T.; Asakawa, Y. Five 10-phenyl-[11]-cytochalasans from a Dalinia fungal species. Phytochemistry 1995, 40, 135–140. [Google Scholar] [CrossRef]
- Chen, J.X.; Yang, X.Q.; Wang, X.Y.; Han, H.L.; Cai, Z.J.; Xu, H.; Yang, Y.B.; Ding, Z.T. Antifeedant, antifungal cryptic polyketides with six structural frameworks from tea endophyte Daldinia eschscholtzii propelled by the antagonistic coculture with phytopathogen Colletotrichum pseudomajus and different culture methods. J. Agric. Food Chem. 2024, 72, 378–389. [Google Scholar] [CrossRef]
- Lee, S.; Park, I.G.; Choi, J.W.; Son, J.Y.; Lee, J.W.; Hur, J.S.; Kim, Y.; Nam, S.J.; Kang, H.S.; Deyrup, S.T.; et al. Daldipyrenones A-C: Caged [6,6,6,6,6] polyketides derived from an endolichenic fungus Daldinia pyrenaica 047188. Org. Lett. 2023, 25, 6725–6729. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Feng, T.; Wen, Z.C.; Li, Q.; Chen, B.T.; Liu, P.H.; Xu, J. New naphthalene derivatives from the mangrove endophytic fungus Daldinia eschscholzii MCZ-18. Mar. Drugs 2024, 22, 242. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ge, H.M.; Zhao, W.; Dong, H.; Xu, Q.; Li, S.H.; Li, J.; Zhang, J.; Song, Y.C.; Tan, R.X. Unprecedented immunosuppressive polyketides from Daldinia eschscholzii, a mantis-associated fungus. Angew. Chem. Int. Ed. 2008, 47, 5823–5826. [Google Scholar] [CrossRef]
- Gong, D.W.; Xie, B.P.; Sun, Y.J.; Cheng, Y.Y.; Tian, X.F.; Zhou, Z.Z.; Tian, L.W. Daldiconoids A-G: 3,4-secolanostane triterpenoids from the fruiting bodies of Daldinia concentrica and their anti-inflammatory activity. Phytochemistry 2024, 225, 114201. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.X.; Zheng, C.J.; Huang, G.L.; Mei, R.Q.; Nong, X.H.; Shao, T.M.; Chen, G.Y.; Wang, C.Y. Bioactive polyketide derivatives from the mangrove-derived fungus Daldinia eschscholtzii HJ004. J. Nat. Prod. 2019, 82, 2211–2219. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Zheng, C.J.; Nong, X.H.; Zhou, X.M.; Luo, Y.P.; Chen, G.Y. Four new insecticidal xanthene derivatives from the mangrove-derived fungus Penicillium sp. JY246. Mar. Drugs 2019, 17, 649. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Huang, G.L.; Mei, R.Q.; Wang, B.; Luo, Y.P.; Nong, X.H.; Chen, G.Y.; Zheng, C.J. Bioactive lactones from the mangrove-derived fungus Penicillium sp. TGM112. Mar. Drugs 2019, 17, 433. [Google Scholar] [CrossRef]
- Bai, M.; Zheng, C.J.; Chen, G.Y. Austins-type meroterpenoids from a mangrove-derived Penicillium sp. J. Nat. Prod. 2021, 84, 2104–2110. [Google Scholar] [CrossRef]
- Bai, M.; Zheng, C.J.; Huang, G.L.; Mei, R.Q.; Wang, B.; Luo, Y.P.; Zheng, C.; Niu, Z.G.; Chen, G.Y. Bioactive meroterpenoids and isocoumarins from the mangrove-derived fungus Penicillium sp. TGM112. J. Nat. Prod. 2019, 82, 1155–1164. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.H.; Xu, Z.F.; Bai, Q.Q.; Zhou, X.M.; Zheng, C.J.; Bai, M.; Chen, G.Y. Biological secondary metabolites from the Lumnitzera littorea-derived fungus Penicillium oxalicum HLLG-13. Mar. Drugs 2023, 21, 22. [Google Scholar] [CrossRef]
- Dai, J.Q.; Krohn, K.; Draeger, S.; Schulz, B. New naphthalene-chroman coupling products from the endophytic fungus, Nodulisporium sp. from Erica arborea. Eur. J. Org. Chem. 2009, 2009, 1564–1569. [Google Scholar] [CrossRef]
- Hainan Normal University. Preparation of Chromogen Ketone Crystal Form in Rhizophora Apiculata-Derived Fungi And Its Application Assignee. CN115724816 A, 3 March 2023. (In Chinese). [Google Scholar]
- Luo, Y.P.; Zheng, C.J.; Chen, G.Y.; Song, X.P.; Wang, Z. Three new polyketides from a mangrove-derived fungus Colletotrichum gloeosporioides. J. Antibiot. 2019, 72, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Chang, H.S.; Cheng, M.J.; Liu, T.W.; Hsieh, S.Y.; Yuan, G.F.; Chen, I.S. Inhibitory effects of constituents of an endophytic fungus Hypoxylon investiens on nitric oxide and interleukin-6 production in RAW 264.7 Macrophages. Chem. Biodivers. 2014, 11, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.M.; Liao, C.J.; Xu, Y.; Gui, T.Y.; Sui, H.L.; Zhou, M. Two new ketene derivatives from the endophytic fungus Daldinia eschscholtzii J11. Phytochem. Lett. 2023, 58, 81–85. [Google Scholar] [CrossRef]
- Krick, A.; Kehraus, S.; Gerhauser, C.; Klimo, K.; Nieger, M.; Maier, A.; Fiebig, H.H.; Atodiresei, I.; Raabe, G.; Fleischhauer, J.; et al. Potential cancer chemopreventive in vitro activities of monomeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J. Nat. Prod. 2007, 70, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Li, Y.L.; Chen, L.H.; Zhang, F.; Zuo, X.Y.; Zeng, Y.R.; Yang, J.; Hao, X.J.; Yuan, C.M. Six pairs of α-pyrone meroterpenoid dimers from Hypericum monogynum with antineuroinflammatory activity. Org. Chem. Front. 2025, 12, 1593. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09; Gaussian Inc.: Wallingford, UK, 2009. [Google Scholar]
- Bruhn, T.; Schaumloffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, J.; Xia, Z.; Chen, C.; Liu, Y.; Jayasinghe, L.; Wang, X.; Zhou, X. New Bioactive polyketides from the mangrove-derived fungus Penicillium sp. SCSIO 41411. Mar. Drugs 2024, 22, 384. [Google Scholar] [CrossRef]
- Ke, L.M.; Zhang, Z.R.; Li, S.W.; Zeng, Y.B.; Su, M.Z.; Guo, Y.W. Bioactive steroids with structural diversity from the south china sea soft coral Lobophytum sp. and sponge Xestospongia sp. Mar. Drugs 2025, 23, 36. [Google Scholar] [CrossRef]
- Liang, Y.; An, L.; Shi, Z.; Zhang, X.; Xie, C.; Tuerhong, M.; Song, Z.; Ohizumi, Y.; Lee, D.; Shuai, L.; et al. Bioactive diterpenoids from the stems of Euphorbia antiquorum. J. Nat. Prod. 2019, 82, 1634–1644. [Google Scholar] [CrossRef]
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | |
1 | - | - | 7.15, d (8.4) | - |
2 | 6.60 d (8.0) | 6.90, m | 6.70, d (8.4) | 6.58, d (8.0) |
3 | 6.80 d (8.0) | 6.62, d (7.8) | - | 6.62, d (8.0) |
4 | - | - | - | - |
5 | - | - | - | - |
6 | 6.84 d (7.8) | 6.94, m | 6.94, d (7.2) | 7.03, d (8.0) |
7 | 7.45 t (7.8) | 7.37, s | 7.30, t (7.2) | 7.49, t (8.0) |
8 | 7.70 d (7.8) | 7.77, s | 7.34, d (7.8) | 7.84, d (8.8) |
9 | - | - | - | - |
10 | - | - | - | - |
1′ | 4.80, d (5.6) | 4.79, s | 4.61, d (4.8) | 4.81, d (5.2) |
2′ | α, 1.86, d (13.6), β, 1.95. ddd (13.6, 11.6, 5.6) | α, 1.67, m, β, 2.48, m | α, 1.81, dt (13.6, 5.8), β, 2.06, d (13.6) | α, 1.84, m β, 1.94, m |
3′ | 3.87, m | 4.10, m | 3.87, ddq (1.6, 6.0, 12.4) | 3.85, m |
5′ | 6.35, d (8.4) | 6.35, d (7.4) | 6.34, d (7.8) | 6.35, d (8.0) |
6′ | 6.97, t (8.4) | 6.93, m | 6.97, d (8.4) | 6.97, t (8.0) |
7′ | 6.35, d (8.4) | 6.25, d (7.4) | 6.33, d (7.8) | 6.35, d (8.0) |
8′ | - | - | - | - |
9′ | - | - | - | - |
10′ | - | - | - | - |
3′-Me | 1.18, d (6.2) | 1.24, d (6.2) | 1.21, d (6.6) | 1.17, d (6.0) |
8′-OH | 9.62, s | 8.90, s | 9.18, s | 9.16, s |
4/5-OH | 9.36, s | 9.34, s | 9.82, s | 9.41, s |
4/5-OMe | 3.96, s | 4.02, s | 4.06, s | 4.04, s |
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
δC, Type | δC, Type | δC, Type | δC, Type | |
1 | 134.3, C | 127.1, C | 117.7, CH | 131.7, C |
2 | 125.5, CH | 127.1, CH (overlapped) | 127.6, CH | 127.0, CH |
3 | 103.5, CH | 110.1, CH | 126.4, C | 109.0, CH |
4 | 154.4, C | 152.0, C | 149.9, C | 152.5, C |
5 | 155.0, C | 156.6, C (overlapped) | 155.7, C | 156.7, C |
6 | 110.0, CH | 104.1, CH | 104.4, CH | 104.6, CH |
7 | 127.6, CH | 125.7, CH | 125.5, CH | 126.4, CH |
8 | 114.2, CH | 117.0, CH | 120.9, CH | 116.7, CH |
9 | 133.3, C | 133.7, C | 134.7, C | 133.1, C |
10 | 114.8, C | 114.7, C | 114.3, C | 115.0, C |
1′ | 31.3, CH | 35.3, CH | 29.5, CH | 31.2, CH |
2′ | 35.0, CH2 | 41.7, CH2 | 34.8, CH2 | 35.4, CH2 |
3′ | 66.8, CH | 71.8, CH | 67.3, CH | 66.8, CH |
5′ | 106.8, CH | 107.6, CH | 106.9, CH | 106.9, CH |
6′ | 127.7, CH | 127.1, CH (overlapped) | 127.8, CH | 127.6, CH |
7′ | 106.5, CH | 107.5, CH | 106.4, CH | 106.5, CH |
8′ | 155.7, C | 156.6, C | 155.7, C | 155.6, C |
9′ | 156.4, C | 158.0, C | 156.5, C | 156.6, C |
10′ | 110.6, C | 113.6, C | 110.5, C | 110.7, C |
4/5-OMe | 56.1, OMe | 56.3, OMe | 56.3, OMe | 56.4, OMe |
3′-Me | 21.0, CH3 | 21.1, CH3 | 21.3, CH3 | 21.1, CH3 |
Position | 5 | 6 | ||
---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | - | 162.2, C | - | - |
2 | 6.47, d (8.4) | 108.9, CH | 4.06, dq (9.6, 6.0) | 71.1, CH |
3 | 7.34, t (8.4) | 138.2, CH | 3.61, m | 71.2, CH |
4 | 6.36, d (8.4) | 107.7, CH | 4.97, d (4.2) | 61.5, CH |
4a | - | 158.9, C | - | 112.2, C |
5 | α, 2.41, m; β, 1.39, m | 46.1, CH2 | - | 158.9, C |
6 | 4.13, m | 66.0, CH | 6.47, d (8.4) | 102.4, CH |
7 | α, 2.06, d (12.0) β, 1.09, m | 42.6, CH2 | 7.17, dd (8.4, 8.4) | 130.3, CH |
8 | 1.86, m | 30.6, CH | 6.51, d (8.4) | 109.9, CH |
8a | 1.85, br s | 58.5, CH | - | 155.2, C |
2-Me | - | - | 1.49, d (6.0) | 17.6, CH3 |
5-OMe | - | - | 3.88, s | 55.8, CH3 |
9 | - | 201.3, C | - | - |
9a | - | 106.3, C | - | - |
10 | - | 81.3, C | - | - |
11 | 1.35, s | 24.4, CH3 | - | - |
12 | 0.98, d (6.2) | 19.5, CH3 | - | - |
1-OH | 11.59, s | - | - | - |
6-OH | 3.49, s | - | - | - |
Compounds | S. aureus (ATCC 29213) | MRSA (ATCC 700699) | MRSA (ATCC 43300) |
---|---|---|---|
1 | 74.4 | - | - |
2 | 74.4 | - | - |
3 | 148.8 | - | - |
7 | - | 130.2 | 390.6 |
9 | - | 131.6 | 263.2 |
Vancomycin | 1.0 | 1.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Qiu, Y.; Chen, S.; Shi, J.; Gong, X.; Feng, J.; Lin, F.; Zeng, W.; Kang, W.; Zheng, C.; et al. New Bioactive Polyketides from the Mangrove-Derived Fungus Daldinia eschscholzii HJX1P2. Mar. Drugs 2025, 23, 238. https://doi.org/10.3390/md23060238
Yu M, Qiu Y, Chen S, Shi J, Gong X, Feng J, Lin F, Zeng W, Kang W, Zheng C, et al. New Bioactive Polyketides from the Mangrove-Derived Fungus Daldinia eschscholzii HJX1P2. Marine Drugs. 2025; 23(6):238. https://doi.org/10.3390/md23060238
Chicago/Turabian StyleYu, Miao, Yikang Qiu, Shiji Chen, Jueying Shi, Xiu Gong, Jiayi Feng, Fangru Lin, Weinv Zeng, Wenyuan Kang, Caijuan Zheng, and et al. 2025. "New Bioactive Polyketides from the Mangrove-Derived Fungus Daldinia eschscholzii HJX1P2" Marine Drugs 23, no. 6: 238. https://doi.org/10.3390/md23060238
APA StyleYu, M., Qiu, Y., Chen, S., Shi, J., Gong, X., Feng, J., Lin, F., Zeng, W., Kang, W., Zheng, C., & Huang, G. (2025). New Bioactive Polyketides from the Mangrove-Derived Fungus Daldinia eschscholzii HJX1P2. Marine Drugs, 23(6), 238. https://doi.org/10.3390/md23060238