Mechanistic Investigation of Adociaquinone and Xestoquinone Derivatives in Breast Cancer Cells
Abstract
1. Introduction
2. Results
2.1. Tumor Cell Oxygen Consumption Studies
2.2. Tumor Cell Proliferation/Viability and Survival Studies
2.3. Effects of Reducing Agents on Active Compounds Exerted HIF-1 Inhibition
2.4. Mechanistic Studies on the Signaling Pathways Affected by Active Compounds
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Chemicals
4.2. T47D Cell-Based Respiration Studies and ROS Measurement
4.3. Cell Proliferation/Viability and Clonogenic Survival Assays
4.4. Cell-Based Reporter Assay and Quantitative Real-Time RT-PCR
4.5. Signaling-Related Western Blot Analysis
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baik, A.H.; Jain, I.H. Turning the oxygen dial: Balancing the highs and lows. Trends Cell Biol. 2020, 30, 516–536. [Google Scholar] [CrossRef]
- Wicks, E.E.; Semenza, G.L. Hypoxia-inducible factors: Cancer progression and clinical translation. J. Clin. Investig. 2022, 132, e159839. [Google Scholar] [CrossRef]
- Wang, G.L.; Semenza, G.L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 1995, 270, 1230–1237. [Google Scholar] [CrossRef]
- Du, L.; Mahdi, F.; Datta, S.; Jekabsons, M.B.; Zhou, Y.-D.; Nagle, D.G. Structures and mechanisms of antitumor agents: Xestoquinones uncouple cellular respiration and disrupt HIF signaling in human breast tumor cells. J. Nat. Prod. 2012, 75, 1553–1559. [Google Scholar] [CrossRef]
- Concepción, G.P.; Foderaro, T.A.; Eldredge, G.S.; Lobkovsky, E.; Clardy, J.; Barrows, L.R.; Ireland, C.M. Topoisomerase II-mediated DNA cleavage by adocia- and xestoquinones from the Philippine sponge Xestospongia sp. J. Med. Chem. 1995, 38, 4503–4507. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Murphy, B.T.; Foster, C.; Lazo, J.S.; Kingston, D.G. Bioactivities of simplified adociaquinone B and naphthoquinone derivatives against Cdc25B, MKP-1, and MKP-3 phosphatases. Bioorg. Med. Chem. 2009, 17, 2276–2281. [Google Scholar] [CrossRef]
- He, F.; Mai, L.H.; Longeon, A.; Copp, B.R.; Loaëc, N.; Bescond, A.; Meijer, L.; Bourguet-Kondracki, M.L. Novel adociaquinone derivatives from the Indonesian sponge Xestospongia sp. Mar. Drugs 2015, 13, 2617–2628. [Google Scholar] [CrossRef]
- Zhao, H.; Kalivendi, S.; Zhang, H.; Joseph, J.; Nithipatikom, K.; Vasquez-Vivar, J.; Kalyanaraman, B. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: Potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 2003, 34, 1359–1368. [Google Scholar] [CrossRef]
- Wek, R.C. Role of eIF2α kinases in translational control and adaptation to cellular stress. Cold Spring Harb. Perspect. Biol. 2018, 10, a032870. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.M. The odds of protein translation control under stress. Antioxid. Redox Signal. 2024, 40, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Piserchio, A.; Dalby, K.N.; Ghose, R. Revealing eEF-2 kinase: Recent structural insights into function. Trends Biochem. Sci. 2024, 49, 169–182. [Google Scholar] [CrossRef]
- Meyuhas, O. Ribosomal protein S6 phosphorylation: Four decades of research. Int. Rev. Cell Mol. Biol. 2015, 320, 41–73. [Google Scholar] [CrossRef]
- Tamzi, N.N.; Rahman, M.M.; Das, S. Recent advances in marine-derived bioactives towards cancer therapy. Int. J. Transl. Med. 2024, 4, 740–781. [Google Scholar] [CrossRef]
- Calcabrini, C.; Catanzaro, E.; Bishayee, A.; Turrini, E.; Fimognari, C. Marine sponge natural products with anticancer potential: An updated review. Mar. Drugs 2017, 15, 310. [Google Scholar] [CrossRef]
- Kumar, M.S.; Adki, K.M. Marine natural products for multi-targeted cancer treatment: A future insight. Biomed. Pharmacother. 2018, 105, 233–245. [Google Scholar] [CrossRef]
- Jaakkola, P.; Mole, D.R.; Tian, Y.M.; Wilson, M.I.; Gielbert, J.; Gaskell, S.J.; von Kriegsheim, A.; Hebestreit, H.F.; Mukherji, M.; Schofield, C.J.; et al. Targeting of HIFα to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001, 292, 468–472. [Google Scholar] [CrossRef]
- Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G. HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 2001, 292, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Knowles, H.J.; Raval, R.R.; Harris, A.L.; Ratcliffe, P.J. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res. 2003, 63, 1764–1768. [Google Scholar] [PubMed]
- Kaczmarek, M.; Cachau, R.E.; Topol, I.A.; Kasprzak, K.S.; Ghio, A.; Salnikow, K. Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 α protein. Toxicol. Sci. 2009, 107, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, M.; Karimi, T.; Faraoni, I.; Graziani, G. High-dose vitamin C: Preclinical evidence for tailoring treatment in cancer patients. Cancers 2021, 13, 1428. [Google Scholar] [CrossRef]
- Susana, S.R.; Salvador-Reyes, L.A. Anti-inflammatory activity of monosubstituted xestoquinone analogues from the marine sponge Neopetrosia compacta. Antioxidants 2022, 11, 607. [Google Scholar] [CrossRef]
- Sakamoto, H.; Furukawa, K.; Matsunaga, K.; Nakamura, H.; Ohizumi, Y. Xestoquinone activates skeletal muscle actomyosin ATPase by modification of the specific sulfhydryl group in the myosin head probably distinct from sulfhydryl groups SH1 and SH2. Biochemistry 1995, 34, 12570–12575. [Google Scholar] [CrossRef]
- Ito, M.; Hirata, Y.; Nakamura, H.; Ohizumi, Y. Xestoquinone, isolated from sea sponge, causes Ca(2+) release through sulfhydryl modification from skeletal muscle sarcoplasmic reticulum. J. Pharmacol. Exp. Ther. 1999, 291, 976–981. [Google Scholar] [CrossRef]
- Liu, Y.; Veena, C.K.; Morgan, J.B.; Mohammed, K.A.; Jekabsons, M.B.; Nagle, D.G.; Zhou, Y.-D. Methylalpinumisoflavone inhibits hypoxia-inducible factor-1 (HIF-1) activation by simultaneously targeting multiple pathways. J. Biol. Chem. 2009, 284, 5859–5868. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-D.; Kim, Y.P.; Li, X.C.; Baerson, S.R.; Agarwal, A.K.; Hodges, T.W.; Ferreira, D.; Nagle, D.G. Hypoxia-inducible factor-1 activation by (-)-epicatechin gallate: Potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J. Nat. Prod. 2004, 67, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mahdi, F.; Du, L.; Datta, S.; Nagle, D.G.; Zhou, Y.-D. Mitochondrial respiration inhibitors suppress protein translation and hypoxic signaling via the hyperphosphorylation and inactivation of translation initiation factor eIF2α and elongation factor eEF2. J. Nat. Prod. 2011, 74, 1894–1901. [Google Scholar] [CrossRef] [PubMed]


) or presence of ascorbate (
), NAC (
), or DTT (
). Luciferase activities are presented as a percentage of the induced control (1,10-phenanthroline or hypoxic media control, as appropriate). Data shown are averages ± standard deviation from two independent experiments (n = 12 for induced controls, ascorbate, NAC, and DTT; n = 3 for 1–6 and FCCP alone or in combination with the reducing agents).
) or presence of ascorbate (
), NAC (
), or DTT (
). Luciferase activities are presented as a percentage of the induced control (1,10-phenanthroline or hypoxic media control, as appropriate). Data shown are averages ± standard deviation from two independent experiments (n = 12 for induced controls, ascorbate, NAC, and DTT; n = 3 for 1–6 and FCCP alone or in combination with the reducing agents).




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.-D.; Mahdi, F.; Nagle, N.M.; Jekabsons, M.B.; Nagle, D.G. Mechanistic Investigation of Adociaquinone and Xestoquinone Derivatives in Breast Cancer Cells. Mar. Drugs 2025, 23, 464. https://doi.org/10.3390/md23120464
Zhou Y-D, Mahdi F, Nagle NM, Jekabsons MB, Nagle DG. Mechanistic Investigation of Adociaquinone and Xestoquinone Derivatives in Breast Cancer Cells. Marine Drugs. 2025; 23(12):464. https://doi.org/10.3390/md23120464
Chicago/Turabian StyleZhou, Yu-Dong, Fakhri Mahdi, Nicholas M. Nagle, Mika B. Jekabsons, and Dale G. Nagle. 2025. "Mechanistic Investigation of Adociaquinone and Xestoquinone Derivatives in Breast Cancer Cells" Marine Drugs 23, no. 12: 464. https://doi.org/10.3390/md23120464
APA StyleZhou, Y.-D., Mahdi, F., Nagle, N. M., Jekabsons, M. B., & Nagle, D. G. (2025). Mechanistic Investigation of Adociaquinone and Xestoquinone Derivatives in Breast Cancer Cells. Marine Drugs, 23(12), 464. https://doi.org/10.3390/md23120464

