Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (298)

Search Parameters:
Keywords = surgical mesh

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 25742 KiB  
Article
Development and Simulation-Based Validation of Biodegradable 3D-Printed Cog Threads for Pelvic Organ Prolapse Repair
by Ana Telma Silva, Nuno Miguel Ferreira, Henrique Leon Bastos, Maria Francisca Vaz, Joana Pinheiro Martins, Fábio Pinheiro, António Augusto Fernandes and Elisabete Silva
Materials 2025, 18(15), 3638; https://doi.org/10.3390/ma18153638 (registering DOI) - 1 Aug 2025
Abstract
Pelvic organ prolapse (POP) is a prevalent condition, affecting women all over the world, and is commonly treated through surgical interventions that present limitations such as recurrence or complications associated with synthetic meshes. In this study, biodegradable poly(ϵ-caprolactone) (PCL) cog threads [...] Read more.
Pelvic organ prolapse (POP) is a prevalent condition, affecting women all over the world, and is commonly treated through surgical interventions that present limitations such as recurrence or complications associated with synthetic meshes. In this study, biodegradable poly(ϵ-caprolactone) (PCL) cog threads are proposed as a minimally invasive alternative for vaginal wall reinforcement. A custom cutting tool was developed to fabricate threads with varying barb angles (90°, 75°, 60°, and 45°), which were produced via Melt Electrowriting. Their mechanical behavior was assessed through uniaxial tensile tests and validated using finite element simulations. The results showed that barb orientation had minimal influence on tensile performance. In simulations of anterior vaginal wall deformation under cough pressure, all cog thread configurations significantly reduced displacement in the damaged tissue model, achieving values comparable to or even lower than those of healthy tissue. A ball burst simulation using an anatomically accurate model further demonstrated a 13% increase in reaction force with cog thread reinforcement. Despite fabrication limitations, this study supports the biomechanical potential of 3D-printed PCL cog threads for POP treatment, and lays the groundwork for future in vivo validation. Full article
16 pages, 1758 KiB  
Case Report
3D Printing Today, AI Tomorrow: Rethinking Apert Syndrome Surgery in Low-Resource Settings
by Maria Bajwa, Mustafa Pasha and Zafar Bajwa
Healthcare 2025, 13(15), 1844; https://doi.org/10.3390/healthcare13151844 - 29 Jul 2025
Viewed by 175
Abstract
Background/Objectives: This case study presents the first documented use of a low-cost, simulated, patient-specific three-dimensional (3D) printed model to support presurgical planning for an infant with Apert syndrome in a resource-limited setting. The primary objectives are to (1) demonstrate the value of 3D [...] Read more.
Background/Objectives: This case study presents the first documented use of a low-cost, simulated, patient-specific three-dimensional (3D) printed model to support presurgical planning for an infant with Apert syndrome in a resource-limited setting. The primary objectives are to (1) demonstrate the value of 3D printing as a simulation tool for preoperative planning in low-resource environments and (2) identify opportunities for future AI-enhanced simulation models in craniofacial surgical planning. Methods: High-resolution CT data were segmented using InVesalius 3, with mesh refinement performed in ANSYS SpaceClaim (version 2021). The cranial model was fabricated using fused deposition modeling (FDM) on a Creality Ender-3 printer with Acrylonitrile Butadiene Styrene (ABS) filament. Results: The resulting 3D-printed simulated model enabled the surgical team to assess cranial anatomy, simulate incision placement, and rehearse osteotomies. These steps contributed to a reduction in operative time and fewer complications during surgery. Conclusions: This case demonstrates the value of accessible 3D printing as a simulation tool in surgical planning within low-resource settings. Building on this success, the study highlights potential points for AI integration, such as automated image segmentation and model reconstruction, to increase efficiency and scalability in future 3D-printed simulation models. Full article
Show Figures

Figure 1

28 pages, 4633 KiB  
Review
Innovative Strategies in Hernia Mesh Design: Materials, Mechanics, and Modeling
by Evangelia Antoniadi, Nuno Miguel Ferreira, Maria Francisca Vaz, Marco Parente, Maria Pia Ferraz and Elisabete Silva
Materials 2025, 18(15), 3509; https://doi.org/10.3390/ma18153509 - 26 Jul 2025
Viewed by 366
Abstract
Hernia is a physiological condition that significantly impacts patients’ quality of life. Surgical treatment for hernias often involves the use of specialized meshes to support the abdominal wall. While this method is highly effective, it frequently leads to complications such as pain, infections, [...] Read more.
Hernia is a physiological condition that significantly impacts patients’ quality of life. Surgical treatment for hernias often involves the use of specialized meshes to support the abdominal wall. While this method is highly effective, it frequently leads to complications such as pain, infections, inflammation, adhesions, and even the need for revision surgeries. According to the Food and Drug Administration (FDA), hernia recurrence rates can reach up to 11%, surgical site infections occur in up to 21% of cases, and chronic pain incidence ranges from 0.3% to 68%. These statistics highlight the urgent need to improve mesh technologies to minimize such complications. The design and material composition of meshes are critical in reducing postoperative complications. Moreover, integrating drug-eluting properties into the meshes could address issues like infections and inflammation by enabling localized delivery of antibiotics and anti-inflammatory agents. Mesh design is equally important, with innovative structures like auxetic designs offering enhanced mechanical properties, flexibility, and tissue integration. These advanced designs can distribute stress more evenly, reduce fatigue, and improve performance in areas subjected to high pressures, such as during intense coughing, sneezing, or heavy lifting. Technological advancements, such as 3D printing, enable the precise fabrication of meshes with tailored designs and properties, providing new opportunities for innovation. By addressing these challenges, the development of next-generation mesh implants has the potential to reduce complications, improve patient outcomes, and significantly enhance quality of life for individuals undergoing hernia repair. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

11 pages, 282 KiB  
Article
Predictors of Incisional Hernia After Cytoreductive Surgery and HIPEC: A Retrospective Analysis
by Daniela Di Pietrantonio, Fabrizio D’Acapito, Massimo Framarini and Giorgio Ercolani
Medicina 2025, 61(8), 1356; https://doi.org/10.3390/medicina61081356 - 26 Jul 2025
Viewed by 262
Abstract
Background and Objectives: Incisional hernia is a common complication following cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). This study aimed to identify patient and surgical factors associated with its occurrence. Materials and Methods: We conducted a retrospective analysis of 122 [...] Read more.
Background and Objectives: Incisional hernia is a common complication following cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). This study aimed to identify patient and surgical factors associated with its occurrence. Materials and Methods: We conducted a retrospective analysis of 122 patients undergoing CRS and HIPEC. Logistic regression models were applied to identify predictors of incisional hernia development. Results: Incisional hernia occurred in 23.8% of patients. Hypertension was identified as an independent factor associated with increased risk. Peritoneal Cancer Index (PCI), operative time, and abdominal wall closure technique were not found to be significantly associated with hernia development. Conclusions: Preoperative identification of high-risk patients may support the adoption of targeted preventive strategies, including prophylactic mesh placement and enhanced postoperative surveillance. Full article
(This article belongs to the Special Issue Hernia Repair: Current Advances and Challenges)
16 pages, 7618 KiB  
Article
Collagen Remodeling of Strattice™ Firm in a Nonhuman Primate Model of Abdominal Wall Repair
by Kelly Bolden, Jared Lombardi, Nimesh Kabaria, Eric Stec and Maryellen Gardocki-Sandor
Bioengineering 2025, 12(8), 796; https://doi.org/10.3390/bioengineering12080796 - 24 Jul 2025
Viewed by 309
Abstract
This study characterized collagen remodeling in an electron-beam-sterilized porcine acellular dermal matrix (E-PADM) by evaluating host response kinetics during wound healing. E-PADM (n = 6 lots/time point) was implanted in an abdominal wall bridging defect in nonhuman primates (N = 24). [...] Read more.
This study characterized collagen remodeling in an electron-beam-sterilized porcine acellular dermal matrix (E-PADM) by evaluating host response kinetics during wound healing. E-PADM (n = 6 lots/time point) was implanted in an abdominal wall bridging defect in nonhuman primates (N = 24). Histological, immunohistochemical, and biochemical assessments were conducted. Pro-inflammatory tissue cytokines peaked 1 month post-implantation and subsided to baseline by 6 months. E-PADM-specific serum immunoglobulin G antibodies increased by 213-fold from baseline at 1 month, then decreased to <10-fold by 6–9 months. The mean percentage tissue area staining positively for matrix metalloproteinase-1 plateaued at 3 months (40.3 ± 16.9%), then subsided by 6 months (16.3 ± 11.1%); tissue inhibitor matrix metalloproteinase-1 content plateaued at 1 month (39.0 ± 14.3%), then subsided by 9 months (13.0 ± 8.8%). Mean E-PADM thickness (1.7 ± 0.2 mm pre-implant) increased at 3 months (2.9 ± 1.5 mm), then decreased by 9 months (1.9 ± 1.1; equivalent to pre-implant). Histology demonstrated mild inflammation between 1–3 months, then a peak in host tissue deposition, with ≈75%–100% E-PADM collagen turnover, and fibroblast infiltration and neovascularization between 3–6 months. Picrosirius red staining revealed that mature E-PADM collagen was replaced by host-associated neo-collagen by 6 months. E-PADM implantation induced wound healing, which drove dermal E-PADM collagen remodeling to native, functional fascia-like tissue at the implant site. Full article
(This article belongs to the Special Issue Advances and Innovations in Wound Repair and Regeneration)
Show Figures

Figure 1

12 pages, 549 KiB  
Systematic Review
Emerging Technologies in the Treatment of Orbital Floor Fractures: A Systematic Review
by Lorena Helgers, Ilze Prikule, Girts Salms and Ieva Bagante
Medicina 2025, 61(8), 1330; https://doi.org/10.3390/medicina61081330 - 23 Jul 2025
Viewed by 197
Abstract
Background and Objectives: Orbital floor fractures are challenging to treat, due to the complex orbital anatomy and limited surgical access. Emerging technologies—such as virtual surgical planning (VSP), 3D printing, patient-specific implants (PSIs), and intraoperative navigation—offer promising advancements to improve the surgical precision [...] Read more.
Background and Objectives: Orbital floor fractures are challenging to treat, due to the complex orbital anatomy and limited surgical access. Emerging technologies—such as virtual surgical planning (VSP), 3D printing, patient-specific implants (PSIs), and intraoperative navigation—offer promising advancements to improve the surgical precision and clinical outcomes. This review systematically evaluates and synthesizes current technological modalities with respect to their accuracy, operative duration, cost-effectiveness, and postoperative functional outcomes. Materials and Methods: A systematic review was conducted according to the PRISMA 2020 guidelines. The PubMed, Scopus, and PRIMO databases were searched for clinical studies published between 2019 and September 2024. Out of 229 articles identified, 9 met the inclusion criteria and were analyzed using the PICO framework. Results: VSP and 3D printing enhanced diagnostics and presurgical planning, offering improved accuracy and reduced planning time. Pre-bent PSIs shaped on 3D models showed superior accuracy, lower operative times, and better cost efficiency compared to intraoperative mesh shaping. Custom-designed PSIs offered high precision and clinical benefit but required a longer production time. Intraoperative navigation improved implant positioning and reduced the complication rates, though a detailed cost analysis remains limited. Conclusions: VSP, 3D printing, and intraoperative navigation significantly improve surgical planning and outcomes in orbital floor reconstruction. Pre-bent PSIs provide a time- and cost-effective solution with strong clinical performance. While customized PSIs offer accuracy, they are less practical in time-sensitive settings. Navigation systems are promising tools that enhance outcomes and may serve as an alternative to custom implants when time or resources are limited. Full article
(This article belongs to the Special Issue Craniomaxillofacial Surgery: Latest Innovations and Challenges)
Show Figures

Figure 1

12 pages, 6846 KiB  
Case Report
A Second Chance: Managing Late Implant Failure from Peri-Implantitis with Computer-Guided Bone Regeneration—A Clinical Case Report
by Marco Tallarico, Silvio Mario Meloni, Carlotta Cacciò, Francesco Mattia Ceruso and Aurea Immacolata Lumbau
Reports 2025, 8(3), 118; https://doi.org/10.3390/reports8030118 - 22 Jul 2025
Viewed by 294
Abstract
Background and Clinical Significance: The retreatment of failed dental implants remains a challenging clinical scenario, particularly when complicated by peri-implantitis and as sociated bone loss. Successful management requires a comprehensive and predictable approach that addresses both hard and soft tissue deficiencies. Case [...] Read more.
Background and Clinical Significance: The retreatment of failed dental implants remains a challenging clinical scenario, particularly when complicated by peri-implantitis and as sociated bone loss. Successful management requires a comprehensive and predictable approach that addresses both hard and soft tissue deficiencies. Case Presentation: This case report illustrates a fully digital, prosthetically driven workflow for the rehabilitation of a posterior mandibular site following implant failure. A 44-year-old female patient underwent removal of a failing implant and adjacent tooth due to advanced peri-implantitis and periodontitis. After healing, a digital workflow—including intraoral scanning, cone-beam computed tomography (CBCT), and virtual planning—was employed to design and fabricate a customized CAD/CAM titanium mesh for vertical guided bone regeneration. The grafting procedure utilized a composite mixture of autogenous bone and anorganic bovine bone (A-Oss). After nine months of healing, two implants with a hydrophilic surface (SOI) were placed using a fully guided surgical protocol (OneGuide system). Subsequent soft tissue grafting and final prosthetic rehabilitation with monolithic zirconia restorations resulted in stable functional and aesthetic outcomes. Conclusions: This case highlights how the integration of modern digital technologies with advanced regenerative procedures and innovative implant surfaces can enhance the predictability and long-term success of implant retreatment in compromised posterior sites. Full article
(This article belongs to the Section Dentistry/Oral Medicine)
Show Figures

Figure 1

17 pages, 6691 KiB  
Article
Antibiotic-Coated Melt Electrowritten Polycaprolactone Meshes: Fabrication and In Vitro Antibacterial Evaluation
by Joana Pinheiro Martins, Ana Sofia de Sousa, Sofia Costa de Oliveira, António Augusto Fernandes and Elisabete Teixeira da Silva
Macromol 2025, 5(3), 33; https://doi.org/10.3390/macromol5030033 - 16 Jul 2025
Viewed by 289
Abstract
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and [...] Read more.
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and POP reoccurrence. Biodegradable mesh implants with three-dimensional printing technology have emerged as an innovative alternative. In this study, polycaprolactone (PCL) meshes for POP repair were fabricated using melt electrospinning writing (MEW) and mechanically evaluated through uniaxial tensile tests. Following this, they were coated with antibiotics—azithromycin, gentamicin sulfate, and ciprofloxacin—commonly used for genitourinary tract infections. Zone inhibition and biofilm assays evaluated antibiotic effectiveness in preventing mesh infections by Escherichia coli, and methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus. The meshes presented a mechanical behavior closer to vaginal tissue than commercially available meshes. Fourier transform infrared analysis confirmed antibiotic incorporation. Ciprofloxacin demonstrated antibacterial activity against MRSA, with a 92% reduction in metabolic activity and a 99% biomass reduction. Gentamicin and ciprofloxacin displayed inhibitory activity against MSSA and E. coli. Scanning electron microscopy images support these conclusions. This methodology may offer a more effective, patient-friendly solution for POP repair, improving healing and the quality of life for affected women. Full article
Show Figures

Figure 1

19 pages, 1293 KiB  
Review
Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials
by Saeed A. Elrefaei, Lucrezia Parma-Benfenati, Rana Dabaja, Paolo Nava, Hom-Lay Wang and Muhammad H. A. Saleh
Medicina 2025, 61(7), 1269; https://doi.org/10.3390/medicina61071269 - 14 Jul 2025
Viewed by 311
Abstract
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development [...] Read more.
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development of customized scaffolds tailored to patient needs, potentially overcoming the limitations of conventional methods. Materials and Methods: A scoping review was conducted according to the PRISMA guidelines. Electronic searches were performed in MEDLINE (PubMed), the Cochrane Library, Scopus, and Web of Science up to January 2025 to identify studies on digital technologies applied to bone augmentation. Eligible studies encompassed randomized controlled trials, cohort studies, case series, and case reports, all published in English. Data regarding digital workflows, software, materials, printing techniques, and sterilization methods were extracted from 23 studies published between 2015 and 2024. Results: The review highlights a diverse range of digital workflows, beginning with CBCT-based DICOM to STL conversion using software such as Mimics and Btk-3D®. Customized titanium meshes and other meshes like Poly Ether-Ether Ketone (PEEK) meshes were produced via techniques including direct metal laser sintering (DMLS), selective laser melting (SLM), and five-axis milling. Although titanium remained the predominant material, studies reported variations in mesh design, thickness, and sterilization protocols. The findings underscore that digital customization enhances surgical precision and efficiency in BR, with several studies demonstrating improved bone gain and reduced operative time compared to conventional approaches. Conclusions: This scoping review confirms that 3D techniques represent a promising advancement in BR. Customized digital workflows provide superior accuracy and support for BR procedures, yet variability in protocols and limited high-quality trials underscore the need for further clinical research to standardize techniques and validate long-term outcomes. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

12 pages, 2491 KiB  
Article
Feasibility and Clinical Outcomes of Robot-Assisted Sacrocolpopexy Using Autologous Round Ligament Grafts: A Novel Non-Mesh Surgical Approach for Pelvic Organ Prolapse
by Shinichi Togami, Takashi Ushiwaka, Nozomi Furuzono, Yusuke Kobayashi, Chikako Nagata, Mika Fukuda, Mika Mizuno, Shintaro Yanazume and Hiroaki Kobayashi
Medicina 2025, 61(7), 1242; https://doi.org/10.3390/medicina61071242 - 9 Jul 2025
Viewed by 264
Abstract
Background and Objectives: To evaluate the feasibility and clinical outcomes of a novel non-mesh robot-assisted sacrocolpopexy (RSC) using autologous round ligament (ARL) grafts in patients with pelvic organ prolapse (POP). Materials and Methods: This retrospective study included 92 patients who underwent non-mesh RSC [...] Read more.
Background and Objectives: To evaluate the feasibility and clinical outcomes of a novel non-mesh robot-assisted sacrocolpopexy (RSC) using autologous round ligament (ARL) grafts in patients with pelvic organ prolapse (POP). Materials and Methods: This retrospective study included 92 patients who underwent non-mesh RSC with ARL grafts at Kagoshima University Hospital between August 2020 and June 2024. All patients met the inclusion criteria for symptomatic POP-Q stage II or higher and elected to undergo non-mesh RSC. The procedures were performed using the da Vinci® Xi or the hinotori™ Surgical Robot System. The clinical characteristics, operative data, complications, and recurrence rates were analyzed. Results: ARL harvesting was feasible in all patients, and the non-mesh RSC procedure was completed without conversion to open surgery or any intraoperative complications. The median operative time was 251 min, and the median blood loss was 30 mL. Postoperative complications of Clavien-Dindo grade ≥ 2 occurred in five patients (5%), all of whom developed pelvic infections. De novo stress urinary incontinence was observed in one patient (1%). POP recurrence occurred in seven patients (8%) during a median follow-up of 3 months (range, 3–18 months), all of whom presented with cystocele. Five patients underwent reoperation, and two were managed conservatively. All patients experienced postoperative symptomatic improvement. A higher BMI and advanced POP-Q stage were significant predictors of recurrence. Conclusions: This is the first report of non-mesh RSC using an ARL graft. The procedure is feasible and effective, avoids the use of synthetic mesh, and offers short-term outcomes comparable to those of mesh-based RSC. ARL-based RSC represents a promising alternative, especially for patients at risk of mesh-related complications. Long-term follow-up is required to confirm durability. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

35 pages, 1201 KiB  
Review
Modern Perspectives on Inguinal Hernia Repair: A Narrative Review on Surgical Techniques, Mesh Selection and Fixation Strategies
by Anca Tigora, Petru Adrian Radu, Dragos Nicolae Garofil, Mircea Nicolae Bratucu, Mihai Zurzu, Vlad Paic, Raluca Gabriela Ioan, Valeriu Surlin, Dragos Margaritescu, Silviu Constantin Badoiu, Florian Popa, Victor Strambu and Sandu Ramboiu
J. Clin. Med. 2025, 14(14), 4875; https://doi.org/10.3390/jcm14144875 - 9 Jul 2025
Viewed by 954
Abstract
Inguinal hernia repair is one of the most commonly performed surgical procedures worldwide, with over 20 million cases annually. The evolution of hernia surgery has transitioned from tension-based techniques to tension-free approaches, significantly reducing recurrence rates. This review explores the history, advancements, and [...] Read more.
Inguinal hernia repair is one of the most commonly performed surgical procedures worldwide, with over 20 million cases annually. The evolution of hernia surgery has transitioned from tension-based techniques to tension-free approaches, significantly reducing recurrence rates. This review explores the history, advancements, and current trends in minimally invasive inguinal hernia repair, focusing on laparoscopic techniques such as transabdominal preperitoneal (TAPP), totally extraperitoneal (TEP), single-incision laparoscopic surgery (SILS), and robotic-assisted repair. The importance of prosthetic meshes is emphasized, detailing their mechanical properties, pore size, weight classifications, and biocompatibility. Additionally, various mesh fixation methods—including tacks, sutures, and glues—are analyzed, with a discussion on their impact on postoperative complications such as chronic pain, adhesions, and infection risk. The debate between TAPP and TEP techniques is examined, highlighting the ongoing quest to determine the most effective approach. Emerging advancements, including drug-loaded meshes and dual-layered prosthetics, aim to improve integration and reduce complications. Despite significant progress, no universally superior technique or mesh exists, underscoring the need for individualized surgical approaches. Future research should focus on optimizing materials, refining fixation strategies, and enhancing patient outcomes in minimally invasive hernia repair. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

17 pages, 740 KiB  
Systematic Review
Accompanying Titanium Meshes and Titanium-Reinforced Membranes with Collagen Membranes in Vertical Alveolar Ridge Augmentations: A Systematic Review
by Amir-Ali Yousefi-Koma, Reza Amid, Anahita Moscowchi, Hanieh Nokhbatolfoghahaei and Mahdi Kadkhodazadeh
J. Funct. Biomater. 2025, 16(7), 246; https://doi.org/10.3390/jfb16070246 - 4 Jul 2025
Viewed by 723
Abstract
Background: Vertical ridge augmentations (VRAs), including guided bone regeneration (GBR) techniques, have been utilized in the reconstruction of deficient alveolar ridges for quite some time. GBR-based VRA procedures are technique-sensitive, operator-dependent, and often lead to complications detected during or after the treatment. The [...] Read more.
Background: Vertical ridge augmentations (VRAs), including guided bone regeneration (GBR) techniques, have been utilized in the reconstruction of deficient alveolar ridges for quite some time. GBR-based VRA procedures are technique-sensitive, operator-dependent, and often lead to complications detected during or after the treatment. The main objective of this systematic review was to include randomized and non-randomized human studies that investigated the regenerative outcome differences, as well as the incidence rates of healing and surgical complications of titanium meshes and/or titanium-reinforced membranes with and without collagen membranes utilized in GBR-based VRA. Methods: This systematic review has been prepared and organized according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines and is registered at PROSPERO (Registration ID: CRD420251002615). Medline via PubMed, Scopus, Web of Science, Embase, and the Cochrane Library were searched for eligible studies up to 5 June 2025. Randomized and non-randomized human clinical studies, except for case reports, focused on applying titanium meshes or titanium-reinforced membranes with or without collagen membranes in GBR-based VRA, were eligible. Results: A total of 119 patients from three human randomized clinical trials (RCTs) and one case series reported across nine articles were included. The addition of collagen membranes causes no significant differences in vertical bone gain or surgical/healing complication rates. Conclusions: The addition of collagen membranes on top of titanium meshes and titanium-reinforced membranes might not be necessary in GBR-based VRA. Further human RCTs are required to reach a reliable conclusion. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Graphical abstract

10 pages, 203 KiB  
Article
A Mean of Three-Year Follow-Up of Transvaginal Mesh Repair Using Calistar System Devices for the Treatment of Pelvic Organ Prolapse
by Chao-Chi Huang, Kun-Ling Lin, I-Chieh Sung, Zixi Loo and Cheng-Yu Long
J. Clin. Med. 2025, 14(13), 4703; https://doi.org/10.3390/jcm14134703 - 3 Jul 2025
Viewed by 357
Abstract
Background/Objectives: Pelvic organ prolapse (POP) and urinary incontinence are prevalent conditions among women, significantly affecting their quality of life. Vaginal mesh surgeries, including the use of the Calistar mesh, have become an essential intervention aimed at alleviating symptoms associated with POP and urinary [...] Read more.
Background/Objectives: Pelvic organ prolapse (POP) and urinary incontinence are prevalent conditions among women, significantly affecting their quality of life. Vaginal mesh surgeries, including the use of the Calistar mesh, have become an essential intervention aimed at alleviating symptoms associated with POP and urinary dysfunction. This study evaluates the clinical outcomes of Calistar vaginal mesh surgeries, focusing on pre- and post-operative changes in urinary parameters and prolapse severity. Methods: Data from 180 patients undergoing Calistar procedures were analyzed, revealing significant improvements in anatomical markers (Aa, Ba, C, Ap, and Bp) and urinary distress metrics (UDI-6 and IIQ-7) postoperatively. Results: The results demonstrate that Calistar mesh procedures are effective in reducing urinary frequency, incontinence, and incomplete bladder emptying. Conclusions: Calistar mesh procedures offer a safe and effective surgical option for managing POP and associated urinary dysfunction. The observed anatomical and functional improvements suggest that Calistar mesh significantly enhances patient outcomes and quality of life. Full article
(This article belongs to the Section Obstetrics & Gynecology)
10 pages, 227 KiB  
Article
Heterologous Cortical Lamina vs. Titanium Preformed Mesh Reconstruction in Orbital Fracture: A Retrospective Observational Study
by Valentino Vellone, Maria Elisa Giovannoni, Antonio Ricciardi, Umberto Committeri, Danilo Alunni Fegatelli and Fabrizio Spallaccia
J. Clin. Med. 2025, 14(13), 4668; https://doi.org/10.3390/jcm14134668 - 1 Jul 2025
Viewed by 251
Abstract
Background/Objectives: Orbital fractures are common facial injuries that require precise reconstruction to restore both function and esthetics. Heterologous cortical lamina and titanium preformed meshes are widely used for orbital wall reconstruction; however, comparative data on their outcomes remain limited. Methods: This [...] Read more.
Background/Objectives: Orbital fractures are common facial injuries that require precise reconstruction to restore both function and esthetics. Heterologous cortical lamina and titanium preformed meshes are widely used for orbital wall reconstruction; however, comparative data on their outcomes remain limited. Methods: This retrospective observational study analyzed 67 patients treated for orbital fractures at Santa Maria Hospital, Terni, between January 2021 and November 2024. Patients underwent orbital reconstruction using either a heterologous cortical lamina or titanium mesh. Clinical data, including demographics, trauma etiology, fracture characteristics, surgical approach, and postoperative complications were collected. Outcomes such as diplopia, enophthalmos, ocular motility, and sensory impairment were assessed preoperatively and postoperatively and compared between groups. Statistical analyses included Chi-square and Mann–Whitney U tests, with logistic regression to identify risk factors for complications. Results: Accidental falls were the leading cause of injury (46.3%), with the orbital floor being the most commonly affected site (83.6%). Postoperative complications occurred in 15% of patients, with diplopia significantly reduced from 47.8% preoperatively to 10.4% postoperatively (p < 0.05). Sensory impairment and motility restrictions also improved significantly. Patients reconstructed using heterologous cortical lamina experienced significantly fewer postoperative complications compared to those treated with titanium mesh (OR = 0.171, 95% CI: 0.023–0.799, p = 0.040). Conclusions: Both heterologous cortical lamina and titanium mesh provide effective orbital reconstruction; however, the heterologous cortical lamina was associated with fewer postoperative complications, particularly diplopia and sensory impairment. Material selection should consider the fracture complexity, patient characteristics, and potential long-term outcomes. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
28 pages, 1108 KiB  
Review
Inflammatory Mechanisms in the Management and Treatment of Retinal Detachment
by Pablo Redruello-Guerrero, María Gómez-Tomás, Tomás Rechi-Sierra, Laura Molinero-Sicilia, Nadia Galindo-Cabello, Ricardo Usategui-Martín and Salvador Pastor-Idoate
Metabolites 2025, 15(7), 442; https://doi.org/10.3390/metabo15070442 - 1 Jul 2025
Viewed by 785
Abstract
Retinal detachment (RD) is a serious clinical condition that significantly impacts patients’ quality of life. Its management involves considering several clinical factors that may affect the therapeutic approach. Inflammatory complications can affect visual recovery, long-term outcomes, and prognosis. Understanding the underlying inflammatory mechanisms [...] Read more.
Retinal detachment (RD) is a serious clinical condition that significantly impacts patients’ quality of life. Its management involves considering several clinical factors that may affect the therapeutic approach. Inflammatory complications can affect visual recovery, long-term outcomes, and prognosis. Understanding the underlying inflammatory mechanisms is key to improving personalized medicine and optimizing therapeutic approaches to management. This review comprehensively searched scientific databases (Medline, Web of Science, and Scopus), considering clinical and experimental studies published between 1999 and 2025. Specific MeSH terms and predefined inclusion and exclusion criteria were used to select the most relevant papers. A total of 140 studies were analyzed. The findings were analyzed qualitatively and illustrated with images from clinical practice. Several studies have demonstrated the critical role of cytokines in retinal inflammation, highlighting their importance in regulating the immune response following RD. In addition, oxidative stress, apoptotic mechanisms, and glia activation, particularly Müller cells and microglia, have been identified as crucial elements in the progression of retinal damage. In this sense, inflammation poses significant clinical challenges that require more effective therapeutic strategies. In conclusion, this review differs from previous literature by emphasizing the translational implications of inflammatory mechanisms in RD and by comparing experimental and clinical data. The management of RD should consider not only surgical aspects, but also modulation of the inflammatory response to improve visual outcomes and prevent long-term complications. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

Back to TopTop