Mapping Lysosomal Storage Disorders with Neurological Features by Cellular Pathways: Towards Precision Medicine
Abstract
1. Introduction
2. Classification of Lysosomal Storage Disorders by Cellular Pathway Dysfunction
2.1. Enzymatic Hydrolytic Defects
| Enzymatic Hydrolytic Defects | Gene(s) | Protein(s) | Clinical Features | Inheritance | Prevalence | References |
|---|---|---|---|---|---|---|
| Hurler Syndrome | IDUA | Alpha-L-iduronidase | Skeletal deformities, cardiopathy, hepatosplenomegaly, corneal clouding, CNS involvement, hearing loss, short stature | Autosomal recessive | 1:100,000 | [10] |
| Scheie Syndrome | IDUA | Alpha-L-iduronidase | Skeletal anomalies, cardiopathy, hepatosplenomegaly, corneal clouding, hearing loss, stable condition | Autosomal recessive | 0.07:100,000 | [60] |
| Hunter Syndrome | IDS | Iduronate 2-sulfatase | Skeletal deformities, hernias, hepatosplenomegaly, cardiopathy, corneal clouding, hearing loss, joint stiffness, growth delay, sleep apnea, hyperactivity | X-linked recessive | 0.38–1.09 :100,000 | [10,11,61] |
| Sanfillipo Syndrome | SGSH, NAGLU, HGSNAT, GNS | N-sulfoglucosamine sulfohydrolase, N-acetyl-alpha-glucosaminidase, Heparan-alpha-glucosaminide N-acetyltransferase, Glucosamine (N-acetyl)-6-sulfatase | Neurocognitive decline, behavioral dysregulation, speech regression, coarse facies, hernias, skeletal and visceral involvement, hearing loss, growth delay | Autosomal recessive | 0.76:100,000 | [62] |
| Maroteaux– Lamy Syndrome | ARSB | Arylsulfatase B | Coarse facies, skeletal and joint anomalies, corneal clouding, hearing loss, dental dysplasia, organomegaly, growth delay, GI issues, skin thickening, connective tissue defects | Autosomal recessive | 0.12:100,000 | [17] |
| Gaucher Disease | GBA1 | Glucosylceramidase beta 1 | Hepatosplenomegaly, cytopenias, skeletal anomalies, fatigue, coagulopathy, anemia, thrombocytopenia, seizures, movement disorders, growth delay | Autosomal recessive | 0.45– 25.0:100,000 | [18] |
| Sphingolipid activator protein deficiencies A–D | PSAP | Prosaposin | Lysosomal storage disorder, skeletal anomalies, neurological involvement, motor and cognitive impairment, cherry-red macula | Autosomal recessive | No data available | [22] |
| Metachromatic leukodystrophy | ARSA | Arylsulfatase A | Motor impairment, stiffness, hypotonia, seizures, regression, optic atrophy, dysphagia, behavioral changes, urinary incontinence, psychiatric features | Autosomal recessive | 0.16– 1.85: 100,000 | [27] |
| Acid sphingomyelinase-deficient Niemann–Pick disease | SMPD1 | Sphingomyelin phosphodiesterase 1 | Hepatosplenomegaly, developmental delay, cherry-red spot, motor decline, spasticity, dysphagia | Autosomal recessive | 0.5–1:100,000 | [63] |
| Krabbe Disease | GALC | Galactosylceramidase | Irritability, dysphagia, hypotonia, spasticity, motor regression, optic atrophy, hearing loss, seizures, developmental decline, fever, macrocephaly, peripheral neuropathy | Autosomal recessive | 1:310,000 | [30] |
| Anderson–Fabry Disease | GLA | Galactosidase alpha | Acroparesthesias, angiokeratomas, anhidrosis, corneal opacities, GI symptoms, cardiomyopathy, arrhythmias, valvular disease, stroke, hearing loss, CNS involvement, lymph hypertrophy, renal impairment | X-linked Recessive | 0.5% 61 | [31] |
| GM1 gangliosidosis | GLB1 | Galactosidase beta 1 | Growth delay, hypotonia, macrocephaly, hepatosplenomegaly, seizures, spasticity, cherry-red spot, motor impairment, dysphagia, psychiatric symptoms | Autosomal recessive | No data available | [38] |
| Galactosialidosis | CTSA | Cathepsin A | Hepatosplenomegaly, coarse facies, dysostosis multiplex, joint stiffness, cardiopathy, developmental delay, seizures, visual impairment, ataxia, muscle weakness, cherry-red spot | Autosomal recessive | 120 cases reported | [39] |
| P-Sialidosis | NEU1 | Neuraminidase 1 | Hepatosplenomegaly, dysostosis multiplex, coarse facies, skeletal anomalies, developmental delay, ophthalmologic issues, recurrent infections, hearing loss, ataxia, psychiatric symptoms, renal dysfunction | Autosomal recessive | 1:4,200,000 | [41] |
| Farber Syndrome | ASAH1 | N-acylsphingosine amidohydrolase 1 | Joint deformities, subcutaneous and nodular skin lesions, hoarseness, lipogranulomas, pain, feeding issues, growth delay, hepatosplenomegaly, neurologic involvement | Autosomal recessive | No data available | [43] |
| Fucosidosis | FUCA1 | Alpha-L-fucosidase 1 | Developmental delay, hypotonia, coarse facies, dysostosis multiplex, skeletal anomalies, organomegaly, cardiopathy, recurrent infections, hearing loss, seizures, speech and behavioral abnormalities, neurologic decline | Autosomal recessive | 1:200,000 | [46] |
| Aspartylglucosaminuria | AGA | Aspartylglucosaminidase | Language delay, behavioral changes, motor delay, coarse facies, joint stiffness, hepatosplenomegaly, recurrent infections, hypotonia, orthopedic issues, dental anomalies, seizures, neurologic decline | Autosomal recessive | 1:18,500 | [48] |
| A-mannosidosis | MAN2B1 | Mannosidase alpha class 2B member 1 | Developmental delay, hearing loss, coarse facies, skeletal and joint anomalies, hepatosplenomegaly, dental anomalies, GI dysfunction, immunodeficiency, muscle weakness, ataxia, seizures | Autosomal recessive | 1:600,000–1:1,000,000 | [49] |
| β-mannosidosis | MANBA | Mannosidase beta | Developmental delay, coarse facies, skeletal anomalies, hepatosplenomegaly, dental anomalies, ataxia, seizures, visual impairment, muscle weakness, immunodeficiency, behavioral changes | Autosomal recessive | No data available | [50] |
| Kanzaki and Schindler Disease | NAGA | Alpha-N-acetylgalactosaminidase | Severe neurodevelopmental delay, hypotonia, seizures, neuroregression, hearing loss, visual impairment, macrocephaly, coarse facial features | Autosomal recessive | No data available | [51] |
| Tay–Sachs | HEXA | Hexosaminidase subunit alpha | Growth delay, hypotonia, hyperacusis, seizures, motor dysfunction, dysphagia, cherry-red spot, blindness, spasticity, macrocephaly, respiratory compromise | Autosomal recessive | 1:3500 | [52] |
| GM2 activator deficiency | GM2A | Ganglioside GM2 activator | Growth delay, hypotonia, seizures, motor regression, spasticity, optic atrophy, hearing loss, cherry-red spot, hepatosplenomegaly, dysphagia, neurologic decline | Autosomal recessive | No data available | [57] |
| Sandhoff syndrome | HEXB | Hexosaminidase subunit beta | Growth delay, hypotonia, macrocephaly, seizures, spasticity, muscle weakness, dysphagia, motor dysfunction, cherry-red spot | Autosomal recessive | No data available | [59] |
2.2. Transporter-Related Defects
| Transporter-Related Defects | Gene(s) | Protein(s) | Clinical Features | Inheritance | Prevalence | References |
|---|---|---|---|---|---|---|
| Cystinosis | CTNS | Cystinosin | Renal pathology, polyuria, polydipsia, growth retardation, dehydration, hypophosphatemic rickets, corneal crystalline deposits, myopathy, endocrine dysfunction, CNS involvement, pancreatic insufficiency. | Autosomal recessive | 1:115,000–1:260,000 | [67] |
| Salla | SLC17A5 | Solute carrier family 17 member 5 | Developmental delay, intellectual disability, motor deficits, hypotonia, speech and language delay. | Autosomal recessive | No data available | [68] |
| Niemann–Pick disease type C | NPC1, NPC2 | NPC intracellular cholesterol transporter 1, NPC intracellular cholesterol transporter 2 | Progressive neurological degeneration (ataxia, cognitive decline), seizures | Autosomal recessive | 0.5–1:100,000 | [63] |
| SCARB2/LIMP-2 deficiency | SCARB2 | Scavenger receptor class B member 2 | Epilepsy, ataxia, dystonia, tremor, action myoclonus, renal failure, proteinuria, cardiopathy. | Autosomal recessive | No data available | [71] |
2.3. Biogenesis and Signaling Defects
| Biogenesis and Signaling Defects | Gene(s) | Protein(s) | Clinical Features | Inheritance | Prevalence | References |
|---|---|---|---|---|---|---|
| I-cell disease | GNPTAB | N-acetylglucosamine-1-phosphate transferase subunits alpha and beta | Dysostosis, short stature, coarse facies, hypertelorism, gingival hypertrophy, cardiac disease, organomegaly, developmental delay, dysmorphic features, inguinal hernia, urinary oligosacchariduria. | Autosomal recessive | 200 cases reported | [75] |
| Multiple sulphatase deficiency | SUMF1 | Sulfatase-modifying factor 1 | Neurodevelopmental regression, hypotonia, spasticity, seizures, dystonia, motor decline, sensory impairment, organomegaly, skeletal anomalies, optic atrophy, cherry-red macula. | Autosomal recessive | 1:1,400,000 | [79] |
| Mucolipidosis IV | MCOLN1 | Mucolipin TRP cation channel 1 | Dysostosis, facial dysmorphism, organomegaly, cardiopathy, corneal clouding, hernias, seizures, hypotonia, growth retardation, hearing loss, urinary oligosacchariduria. | Autosomal recessive | 1:40,000 | [77] |
| Chediak–Higashi | LYST | Lysosomal trafficking regulator | Hypopigmentation, silvery hair, light-colored irides, recurrent infections, leukocyte inclusions, peripheral neuropathy, ataxia, pancytopenia, lymphohistiocytic infiltration, photosensitivity. | Autosomal recessive | No data available | [78] |
2.4. Cross-Organelle Interaction Defects
| Cross-Organelle Interaction Defects | Gene(s) | Protein(s) | Clinical Features | Inheritance | Prevalence | References |
|---|---|---|---|---|---|---|
| Pompe Disease | GAA | Alpha glucosidase | Cardiomyopathy, hypotonia, respiratory distress, feeding intolerance, hepatomegaly, macroglossia, developmental delay, premature death. | Autosomal recessive | 2.4: 100,000 | [81] |
| Neuronal ceroid lipofuscinoses/ Batten disease | CLN 1, 2, 3, 4, 5, 6, 7, 8 | Palmitoyl-protein thioesterase 1, DnaJ heat shock protein family (Hsp40) member C5, Tripeptidyl peptidase 1, CLN3 lysosomal/endosomal transmembrane protein, CLN5 intracellular trafficking protein, CLN6 transmembrane ER protein, major facilitator superfamily domain containing 8 | Visual impairment, seizures, motor dysfunction, neuropsychiatric symptoms, dementia, dysphagia, motor regression, spasticity, myoclonus, epilepsy. | Autosomal dominant | No data available | [86] |
| Danon | LAMP2 | Lysosomal-associated membrane protein 2 | Cardiomyopathy, arrhythmias, myopathy, impaired motor skills, elevated CK, seizures, motor and coordination deficits, retinal and corneal pathology, hepatic and gastrointestinal involvement. | X-linked dominant | No data available | [82] |
| RNASET2-Deficient Leukoencephalopathy | RNASET2 | Ribonuclease T2 | Developmental delay, movement disorders, leukoencephalopathy, seizures, muscle rigidity. | Autosomal recessive | No data available | [83] |
3. Genetic and Pathophysiological Complexity of Lysosomal Storage Disorders in the Era of Precision Medicine
4. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFD | Anderson–Fabry Disease |
| AGU | Aspartylglucosaminuria |
| AMRF | Action Myoclonus–Renal Failure |
| ARSA | Arylsulfatase A |
| ASM | Acid Sphingomyelinase |
| ASMD | Acid Sphingomyelinase Deficiency |
| ASOs | Antisense Oligonucleotides |
| BBB | Blood–Brain Barrier |
| BMT | Bone Marrow Transplantation |
| CHS CK | Chediak–Higashi Syndrome Creatine Kinase |
| CKD | Chronic Kidney Disease |
| CNS | Central Nervous System |
| ENT | Ear, Nose, and Throat |
| ERT | Enzyme Replacement Therapy |
| FGE | Formyglycine-generating Enzyme |
| GAGs | Glycosaminoglycans |
| Gb3 | Globotriaosylceramide |
| GD | Gaucher Disease |
| GI | Gastrointestinal |
| GluCer | Glucosylceramide |
| GluSph | Glucosylsphingosine |
| GNS | N-acetylglucosamine-6-sulfatase |
| GSL | Glucosphingolipid |
| GST | Gene Silencing Therapy |
| HexA | β-Hexosaminidase A |
| HGSNAT | Acetyl-CoA:α-glucosaminide N-acetyltransferase |
| HLH | Hemophagocytic Lymphohistiocytosis |
| HSCT | Hematopoietic Stem Cell Transplantation |
| I2S | Iduronate-2-sulfatase |
| LIMP-2 | Lysosomal Integral Membrane Protein-2 |
| LNPs | Lipid Nanoparticles |
| LRO | Lysosome-Related Organelle |
| LSDs | Lysosomal Storage Disorders |
| Lyso-Gb3 | Globotriaosylsphingosine |
| ML II | Mucolipidosis Type II |
| ML IV | Mucolipidosis Type IV |
| MLD | Metachromatic Leucodystrophy |
| MPS I | Mucopolysaccharidosis type I |
| MPS II | Mucopolysaccharidosis type II |
| MPS III | Mucopolysaccharidosis type III |
| MPS VI | Mucopolysaccharidosis type VI |
| MSD | Multiple Sulfatase Deficiency |
| NAGLU | α-N-acetylglucosaminidase |
| NPC | Niemann–Pick Disease Type C |
| NPD | Niemann–Pick Disease |
| PNS | Peripheral Nervous System |
| PPCA | Protective Protein/Cathepsin A |
| SAPs | Sphingolipid Activator Protein Deficiencies |
| SGSH | Heparan N-Sulfatase |
| SRT | Substrate Reduction Therapy |
| α-GalA | α-Galactosidase A |
| α-NAGA | α-N-acetylgalactosaminidase |
| β-GC | β-glucocerebrosidase |
References
- Burlina, A.P.; Manara, R.; Gueraldi, D. Lysosomal Storage Diseases. Handb. Clin. Neurol. 2024, 204, 147–172. [Google Scholar] [CrossRef] [PubMed]
- Ballabio, A.; Bonifacino, J.S. Lysosomes as Dynamic Regulators of Cell and Organismal Homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 101–118. [Google Scholar] [CrossRef]
- Uribe-Carretero, E.; Rey, V.; Fuentes, J.M.; Tamargo-Gómez, I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. Biology 2024, 13, 34. [Google Scholar] [CrossRef]
- Kiraly, S.; Stanley, J.; Eden, E.R. Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease. Antioxidants 2025, 14, 125. [Google Scholar] [CrossRef]
- Beraza-Millor, M.; Rodríguez-Castejón, J.; del Pozo-Rodríguez, A.; Rodríguez-Gascón, A.; Solinís, M.Á. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024, 38, 657–680. [Google Scholar] [CrossRef]
- Makridou, A.; Sintou, E.; Chatzianagnosti, S.; Dermitzakis, I.; Gargani, S.; Manthou, M.E.; Theotokis, P. Mapping Disorders with Neurological Features Through Mitochondrial Impairment Pathways: Insights from Genetic Evidence. Curr. Issues Mol. Biol. 2025, 47, 504. [Google Scholar] [CrossRef] [PubMed]
- Parenti, G.; Medina, D.L.; Ballabio, A. The Rapidly Evolving View of Lysosomal Storage Diseases. EMBO Mol. Med. 2021, 13, e12836. [Google Scholar] [CrossRef] [PubMed]
- De Ru, M.H.; Boelens, J.J.; Das, A.M.; Jones, S.A.; Van Der Lee, J.H.; Mahlaoui, N.; Mengel, E.; Offringa, M.; O’Meara, A.; Parini, R.; et al. Enzyme Replacement Therapy and/or Hematopoietic Stem Cell Transplantation at Diagnosis in Patients with Mucopolysaccharidosis Type I: Results of a European Consensus Procedure. Orphanet J. Rare Dis. 2011, 6, 55. [Google Scholar] [CrossRef]
- Keeling, K.M.; Brooks, D.A.; Hopwood, J.J.; Li, P.; Thompson, J.N.; Bedwell, D.M. Gentamicin-Mediated Suppression of Hurler Syndrome Stop Mutations Restores a Low Level of α-l-Iduronidase Activity and Reduces Lysosomal Glycosaminoglycan Accumulation. Hum. Mol. Genet. 2001, 10, 291–300. [Google Scholar] [CrossRef]
- Van Den Broek, B.T.A.; Van Doorn, J.; Hegeman, C.V.; Nierkens, S.; Lindemans, C.A.; Verhoeven-Duif, N.; Boelens, J.J.; Van Hasselt, P.M. Hurdles in Treating Hurler Disease: Potential Routes to Achieve a “Real” Cure. Blood Adv. 2020, 4, 2837–2849. [Google Scholar] [CrossRef]
- Gomes, C.P.; Marins, M.M.; Motta, F.L.; Kyosen, S.O.; Curiati, M.A.; D’Almeida, V.; Martins, A.M.; Pesquero, J.B. A New Mutation in IDS Gene Causing Hunter Syndrome: A Case Report. Front. Genet. 2020, 10, 1383. [Google Scholar] [CrossRef]
- Zanetti, A.; D’Avanzo, F.; Tomanin, R. Molecular Basis of Mucopolysaccharidosis Type II (Hunter Syndrome): First Review and Classification of Published IDS Gene Variants. Hum. Genome 2024, 18, 134. [Google Scholar] [CrossRef]
- Benetó, N.; Vilageliu, L.; Grinberg, D.; Canals, I. Sanfilippo Syndrome: Molecular Basis, Disease Models and Therapeutic Approaches. Int. J. Mol. Sci. 2020, 21, 7819. [Google Scholar] [CrossRef]
- Fedele, A.O. Sanfilippo Syndrome: Causes, Consequences, and Treatments. Appl. Clin. Genet. 2015, 8, 269–281. [Google Scholar] [CrossRef]
- Akyol, M.U.; Alden, T.D.; Amartino, H.; Ashworth, J.; Belani, K.; Berger, K.I.; Borgo, A.; Braunlin, E.; Eto, Y.; Gold, J.I.; et al. Recommendations for the Management of MPS VI: Systematic Evidence- and Consensus-Based Guidance. Orphanet J. Rare Dis. 2019, 14, 118. [Google Scholar] [CrossRef] [PubMed]
- D’avanzo, F.; Zanetti, A.; De Filippis, C.; Tomanin, R.; Giugliani, R.; Wegrzyn, G.; Bigger, B.; Hennermann, J.B. Mucopolysaccharidosis Type VI, an Updated Overview of the Disease. Int. J. Mol. Sci. 2021, 22, 13456. [Google Scholar] [CrossRef]
- Harmatz, P.R.; Shediac, R. Mucopolysaccharidosis VI: Pathophysiology, Diagnosis and Treatment. Front. Biosci. Landmark 2017, 22, 385–406. [Google Scholar] [CrossRef]
- Gaucher Disease—Symptoms, Causes, Treatment|NORD. Available online: https://rarediseases.org/rare-diseases/gaucher-disease/ (accessed on 11 March 2025).
- Gaucher Disease Type II|About the Disease|GARD. Available online: https://rarediseases.info.nih.gov/diseases/2442/gaucher-disease-type-2 (accessed on 11 March 2025).
- Lal, T.R.; Sidransky, E.; Sanchez-Alcazar, J.A. The Spectrum of Neurological Manifestations Associated with Gaucher Disease. Diseases 2017, 5, 10. [Google Scholar] [CrossRef]
- Arévalo, N.B.; Lamaizon, C.M.; Cavieres, V.A.; Burgos, P.V.; Álvarez, A.R.; Yañez, M.J.; Zanlungo, S. Neuronopathic Gaucher Disease: Beyond Lysosomal Dysfunction. Front. Mol. Neurosci. 2022, 15, 934820. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, J.; Vanier, M.T.; Saito, Y.; Tohyama, J.; Suzuki, K.; Suzuki, K. A Mutation in the Saposin A Domain of the Sphingolipid Activator Protein (Prosaposin) Gene Results in a Late-Onset, Chronic Form of Globoid Cell Leukodystrophy in the Mouse. Hum. Mol. Genet. 2001, 10, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Kuchař, L.; Ledvinová, J.; Hřebíček, M.; Myšková, H.; Dvořáková, L.; Berná, L.; Chrastina, P.; Asfaw, B.; Elleder, M.; Petermöller, M.; et al. Prosaposin Deficiency and Saposin B Deficiency (Activator-deficient Metachromatic Leukodystrophy): Report on Two Patients Detected by Analysis of Urinary Sphingolipids and Carrying Novel PSAP Gene Mutations. Am. J. Med. Genet. Part A 2009, 149A, 613–621. [Google Scholar] [CrossRef]
- Gieselmann, V. Metachromatic Leukodystrophy: Genetics, Pathogenesis and Therapeutic Options. Acta Pædiatrica 2008, 97, 15–21. [Google Scholar] [CrossRef]
- Chakravarti, A. Genetic Basis and Pathophysiology of Metachromatic Leukodystrophy. J. Rare Disord. Diagn. Ther. 2024, 10, 170. [Google Scholar]
- Metachromatic Leukodystrophy. Available online: https://my.clevelandclinic.org/health/diseases/6067-metachromatic-leukodystrophy (accessed on 11 March 2025).
- Biffi, A.; Capotondo, A.; Fasano, S.; Del Carro, U.; Marchesini, S.; Azuma, H.; Malaguti, M.C.; Amadio, S.; Brambilla, R.; Grompe, M.; et al. Gene Therapy of Metachromatic Leukodystrophy Reverses Neurological Damage and Deficits in Mice. J. Clin. Investig. 2006, 116, 3070–3082. [Google Scholar] [CrossRef]
- Niemann-Pick Disease—Symptoms and Causes. Available online: https://www.mayoclinic.org/diseases-conditions/niemann-pick/symptoms-causes/syc-20355887 (accessed on 11 March 2025).
- Kohlschütter, A. Lysosomal Leukodystrophies: Krabbe Disease and Metachromatic Leukodystrophy. Handb. Clin. Neurol. 2013, 113, 1611–1618. [Google Scholar] [CrossRef]
- Krabbe Disease: What It Is, Diagnosis, Symptoms & Treatment. Available online: https://my.clevelandclinic.org/health/diseases/6039-krabbe-disease-globoid-cell-leukodystrophy (accessed on 11 March 2025).
- Kok, K.; Zwiers, K.C.; Boot, R.G.; Overkleeft, H.S.; Aerts, J.M.F.G.; Artola, M. Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Biomolecules 2021, 11, 271. [Google Scholar] [CrossRef]
- Favalli, V.; Disabella, E.; Molinaro, M.; Tagliani, M.; Scarabotto, A.; Serio, A.; Grasso, M.; Narula, N.; Giorgianni, C.; Caspani, C.; et al. Genetic Screening of Anderson-Fabry Disease in Probands Referred from Multispecialty Clinics. J. Am. Coll. Cardiol. 2016, 68, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Nicoli, E.R.; Annunziata, I.; d’Azzo, A.; Platt, F.M.; Tifft, C.J.; Stepien, K.M. GM1 Gangliosidosis—A Mini-Review. Front. Genet. 2021, 12, 734878. [Google Scholar] [CrossRef] [PubMed]
- Arash-Kaps, L.; Komlosi, K.; Seegräber, M.; Diederich, S.; Paschke, E.; Amraoui, Y.; Beblo, S.; Dieckmann, A.; Smitka, M.; Hennermann, J.B. The Clinical and Molecular Spectrum of GM1 Gangliosidosis. J. Pediatr. 2019, 215, 152–157.e3. [Google Scholar] [CrossRef] [PubMed]
- Brunetti-Pierri, N.; Scaglia, F. GM1 Gangliosidosis: Review of Clinical, Molecular, and Therapeutic Aspects. Mol. Genet. Metab. 2008, 94, 391–396. [Google Scholar] [CrossRef]
- Hofer, D.; Paul, K.; Fantur, K.; Beck, M.; Roubergue, A.; Vellodi, A.; Poorthuis, B.J.; Michelakakis, H.; Plecko, B.; Paschke, E. Phenotype Determining Alleles in GM1 Gangliosidosis Patients Bearing Novel GLB1 Mutations. Clin. Genet. 2010, 78, 236–246. [Google Scholar] [CrossRef]
- Caciotti, A.; Garman, S.C.; Rivera-Colón, Y.; Procopio, E.; Catarzi, S.; Ferri, L.; Guido, C.; Martelli, P.; Parini, R.; Antuzzi, D.; et al. GM1 Gangliosidosis and Morquio B Disease: An Update on Genetic Alterations and Clinical Findings. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2011, 1812, 782–790. [Google Scholar] [CrossRef]
- Bingaman, A.; Waggoner, C.; Andrews, S.M.; Pangonis, D.; Trad, M.; Giugliani, R.; Giorgino, R.; Jarnes, J.; Vakili, R.; Ballard, V.; et al. GM1-Gangliosidosis: The Caregivers’ Assessments of Symptom Impact and Most Important Symptoms to Treat. Am. J. Med. Genet. Part A 2023, 191, 408–423. [Google Scholar] [CrossRef]
- Caciotti, A.; Catarzi, S.; Tonin, R.; Lugli, L.; Perez, C.R.; Michelakakis, H.; Mavridou, I.; Donati, M.A.; Guerrini, R.; d’Azzo, A.; et al. Galactosialidosis: Review and Analysis of CTSA Gene Mutations. Orphanet J. Rare Dis. 2013, 8, 114. [Google Scholar] [CrossRef]
- Mueller, O.T.; Henry, W.M.; Haley, L.L.; Byers, M.G.; Eddy, R.L.; Shows, T.B. Sialidosis and Galactosialidosis: Chromosomal Assignment of Two Genes Associated with Neuraminidase-Deficiency Disorders. Proc. Natl. Acad. Sci. USA 1986, 83, 1817–1821. [Google Scholar] [CrossRef]
- Khan, A.; Sergi, C. Sialidosis: A Review of Morphology and Molecular Biology of a Rare Pediatric Disorder. Diagnostics 2018, 8, 29. [Google Scholar] [CrossRef]
- Ehlert, K.; Frosch, M.; Fehse, N.; Zander, A.; Roth, J.; Vormoor, J. Farber Disease: Clinical Presentation, Pathogenesis and a New Approach to Treatment. Pediatr. Rheumatol. 2007, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Kraoua, I.; Younes, T.B.; Garcia, V.; Benrhouma, H.; Klaa, H.; Rouissi, A.; Levade, T.; Youssef-Turki, I.B. Farber Disease: A Fatal Childhood Disorder with Nervous System Involvement. EMBO Mol. Med. 2020, 5, 799–801. [Google Scholar] [CrossRef]
- Bär, J.; Linke, T.; Ferlinz, K.; Neumann, U.; Schuchman, E.H.; Sandhoff, K. Molecular Analysis of Acid Ceramidase Deficiency in Patients with Farber Disease. Hum. Mutat. 2001, 17, 199–209. [Google Scholar] [CrossRef]
- Devi, A.R.R.; Gopikrishna, M.; Ratheesh, R.; Savithri, G.; Swarnalata, G.; Bashyam, M. Farber Lipogranulomatosis: Clinical and Molecular Genetic Analysis Reveals a Novel Mutation in an Indian Family. J. Hum. Genet. 2006, 51, 811–814. [Google Scholar] [CrossRef]
- Pekdemir, B.; Bechelany, M.; Karav, S. Fucosidosis: A Review of a Rare Disease. Int. J. Mol. Sci. 2025, 26, 353. [Google Scholar] [CrossRef]
- Goodspeed, K.; Feng, C.; Laine, M.; Lund, T.C. Aspartylglucosaminuria: Clinical Presentation and Potential Therapies. J. Child Neurol. 2021, 36, 403–414. [Google Scholar] [CrossRef]
- Arvio, M.; Mononen, I. Aspartylglycosaminuria: A Review. Orphanet J. Rare Dis. 2016, 11, 162. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Codini, M.; Conte, C.; Patria, F.; Cataldi, S.; Bertelli, M.; Albi, E.; Beccari, T. Alpha-Mannosidosis: Therapeutic Strategies. Int. J. Mol. Sci. 2018, 19, 1500. [Google Scholar] [CrossRef]
- Michalski, J.-C.; Klein, A. Glycoprotein Lysosomal Storage Disorders: α- and β-Mannosidosis, Fucosidosis and α-N-Acetylgalactosaminidase Deficiency. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 1999, 1455, 69–84. [Google Scholar] [CrossRef]
- Sakuraba, H.; Matsuzawa, F.; Aikawa, S.; Doi, H.; Kotani, M.; Nakada, H.; Fukushige, T.; Kanzaki, T. Structural and Immunocytochemical Studies on α-N-Acetylgalactosaminidase Deficiency (Schindler/Kanzaki Disease). J. Hum. Genet. 2004, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De Tay-Sachs, E.; Andrés Gualdrón-Frías, C.; Calderón-Nossa, T.L. Tay-Sachs Disease. Rev. Fac. Med. 2019, 67, 511–517. [Google Scholar] [CrossRef]
- Mahuran, D.J.; Triggs-Raine, B.L.; Feigenbaum, A.J.; Gravel, R.A. The Molecular Basis of Tay-Sachs Disease: Mutation Identification and Diagnosis. Clin. Biochem. 1990, 23, 409–415. [Google Scholar] [CrossRef]
- About Tay-Sachs Disease. Available online: https://www.genome.gov/Genetic-Disorders/Tay-Sachs-Disease (accessed on 11 March 2025).
- Gravel, R.A.; Triggs-Raine, B.L.; Mahuran, D.J. Biochemistry and Genetics of Tay-Sachs Disease. Can. J. Neurol. Sci. 1991, 18, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Ganne, B.; Dauriat, B.; Richard, L.; Lamari, F.; Ghorab, K.; Magy, L.; Benkirane, M.; Perani, A.; Marquet, V.; Calvas, P.; et al. GM2 Gangliosidosis AB Variant: First Case of Late Onset and Review of the Literature. Neurol. Sci. 2022, 43, 6517–6527. [Google Scholar] [CrossRef] [PubMed]
- Cachon-Gonzalez, M.B.; Zaccariotto, E.; Cox, T.M. Genetics and Therapies for GM2 Gangliosidosis. Curr. Gene Ther. 2018, 18, 68–89. [Google Scholar] [CrossRef]
- Karimzadeh, P.; Ebrahimi, M.; Etemad, K.; Ahmad Abadi, F.; Hosseini Nezhad, Z.; Author Ebrahimi, C.M. GM1 and GM2-Gangliosidosis: Clinical Features, Neuroimaging Findings and Electroencephalography. Iran. J. Child Neurol. 2024, 18, 127–140. [Google Scholar] [CrossRef]
- mking Sandhoff Disease. The Medical Biochemistry Page 2020. Available online: https://themedicalbiochemistrypage.org/sandhoff-disease/ (accessed on 16 November 2025).
- Bach, G.; Friedman, R.; Weissmann, B.; Neufeld, E.F. The Defect in the Hurler and Scheie Syndromes: Deficiency of α-L-Iduronidase. Proc. Natl. Acad. Sci. USA 1972, 69, 2048–2051. [Google Scholar] [CrossRef]
- D’Avanzo, F.; Rigon, L.; Zanetti, A.; Tomanin, R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int. J. Mol. Sci. 2020, 21, 1258. [Google Scholar] [CrossRef]
- Kong, W.; Wu, S.; Zhang, J.; Lu, C.; Ding, Y.; Meng, Y. Global Epidemiology of Mucopolysaccharidosis Type III (Sanfilippo Syndrome): An Updated Systematic Review and Meta-Analysis. J. Pediatr. Endocrinol. Metab. 2021, 34, 1225–1235. [Google Scholar] [CrossRef]
- Bounford, K.M.; Gissen, P. Genetic and Laboratory Diagnostic Approach in Niemann Pick Disease Type C. J. Neurol. 2014, 261, S569–S575. [Google Scholar] [CrossRef] [PubMed]
- Human Protein Atlas. Available online: https://www.proteinatlas.org/ (accessed on 16 November 2025).
- Luciani, A.; Devuyst, O. The CTNS-MTORC1 Axis Couples Lysosomal Cystine to Epithelial Cell Fate Decisions and Is a Targetable Pathway in Cystinosis. Autophagy 2024, 20, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Kalatzis, V.; Antignac, C. Cystinosis: From Gene to Disease. Nephrol. Dial. Transplant. 2002, 17, 1883–1886. [Google Scholar] [CrossRef] [PubMed]
- Elmonem, M.A.; Veys, K.R.; Soliman, N.A.; van Dyck, M.; van den Heuvel, L.P.; Levtchenko, E. Cystinosis: A Review. Orphanet J. Rare Dis. 2016, 11, 47. [Google Scholar] [CrossRef]
- Barmherzig, R.; Bullivant, G.; Cordeiro, D.; Sinasac, D.S.; Blaser, S.; Mercimek-Mahmutoglu, S. A New Patient with Intermediate Severe Salla Disease with Hypomyelination: A Literature Review for Salla Disease. Pediatr. Neurol. 2017, 74, 87–91.e2. [Google Scholar] [CrossRef]
- Du, K.; Chen, H.; Pan, Z.; Zhao, M.; Cheng, S.; Luo, Y.; Zhang, W.; Li, D. Small-Molecule Activation of TFEB Alleviates Niemann–Pick Disease Type C via Promoting Lysosomal Exocytosis and Biogenesis. eLife 2025, 13, RP103137. [Google Scholar] [CrossRef]
- Malara, M.; Prestel, M.; Tahirovic, S. Endo-Lysosomal Dysfunction and Neuronal–Glial Crosstalk in Niemann–Pick Type C Disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2024, 379, 20220388. [Google Scholar] [CrossRef]
- Blanz, J.; Groth, J.; Zachos, C.; Wehling, C.; Saftig, P.; Schwake, M. Disease-Causing Mutations within the Lysosomal Integral Membrane Protein Type 2 (LIMP-2) Reveal the Nature of Binding to Its Ligand Beta-Glucocerebrosidase. Hum. Mol. Genet. 2010, 19, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Dibbens, L.; Schwake, M.; Saftig, P.; Rubboli, G. SCARB2/LIMP2 Deficiency in Action Myoclonus-Renal Failure Syndrome. Epileptic Disord 2016, 18, 63–72. [Google Scholar] [CrossRef]
- Gleason, A.M.; Woo, E.G.; McKinney, C.; Sidransky, E. The Role of Exosomes in Lysosomal Storage Disorders. Biomolecules 2021, 11, 576. [Google Scholar] [CrossRef]
- Kudo, M.; Brem, M.S.; Canfield, W.M. Mucolipidosis II (I-Cell Disease) and Mucolipidosis IIIA (Classical Pseudo-Hurler Polydystrophy) Are Caused by Mutations in the GlcNAc-Phosphotransferase α/β–Subunits Precursor Gene. Am. J. Hum. Genet. 2006, 78, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.H.-C.; Pitukcheewanont, P. Mucolipidosis Type II (I-Cell Disease) Masquerading as Rickets: Two Case Reports and Review of Literature. J. Pediatr. Endocrinol. Metab. 2012, 25, 191–195. [Google Scholar] [CrossRef]
- Cosma, M.P.; Pepe, S.; Annunziata, I.; Newbold, R.F.; Grompe, M.; Parenti, G.; Ballabio, A. The Multiple Sulfatase Deficiency Gene Encodes an Essential and Limiting Factor for the Activity of Sulfatases. Cell 2003, 113, 445–456. [Google Scholar] [CrossRef]
- Misko, A.; Wood, L.; Kiselyov, K.; Slaugenhaupt, S.; Grishchuk, Y. Progress in Elucidating Pathophysiology of Mucolipidosis IV. Neurosci. Lett. 2021, 755, 135944. [Google Scholar] [CrossRef]
- Sharma, P.; Nicoli, E.-R.; Serra-Vinardell, J.; Morimoto, M.; Toro, C.; Malicdan, M.C.V.; Introne, W.J. Chediak-Higashi Syndrome: A Review of the Past, Present, and Future. Drug Discov. Today Dis. Models 2020, 31, 31–36. [Google Scholar] [CrossRef]
- Cappuccio, G.; Alagia, M.; Brunetti-Pierri, N. A Systematic Cross-Sectional Survey of Multiple Sulfatase Deficiency. Mol. Genet. Metab. 2020, 130, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Peruzzo, P.; Pavan, E.; Dardis, A. Molecular Genetics of Pompe Disease: A Comprehensive Overview. Ann. Transl. Med. 2019, 7, 278. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Steiner, R.D.; Bali, D.; Berger, K.; Byrne, B.J.; Case, L.E.; Crowley, J.F.; Downs, S.; Howell, R.R.; Kravitz, R.M.; et al. Pompe Disease Diagnosis and Management Guideline. Genet. Med. 2006, 8, 267–288. [Google Scholar] [CrossRef] [PubMed]
- D’souza, R.S.; Levandowski, C.; Slavov, D.; Graw, S.L.; Allen, L.A.; Adler, E.; Mestroni, L.; Taylor, M.R.G. Danon Disease. Circ. Heart Fail. 2014, 7, 843–849. [Google Scholar] [CrossRef]
- Kameli, R.; Amanat, M.; Rezaei, Z.; Hosseionpour, S.; Nikbakht, S.; Alizadeh, H.; Ashrafi, M.R.; Omrani, A.; Garshasbi, M.; Tavasoli, A.R. RNASET2-Deficient Leukoencephalopathy Mimicking Congenital CMV Infection and Aicardi-Goutieres Syndrome: A Case Report with a Novel Pathogenic Variant. Orphanet J. Rare Dis. 2019, 14, 184. [Google Scholar] [CrossRef]
- Rutherford, H.A.; Candeias, D.; Duncan, C.J.A.; Renshaw, S.A.; Hamilton, N. Macrophage Transplantation Rescues RNASET2-Deficient Leukodystrophy by Replacing Deficient Microglia in a Zebrafish Model. Proc. Natl. Acad. Sci. USA 2024, 121, e2321496121. [Google Scholar] [CrossRef]
- Kettwig, M.; Ternka, K.; Wendland, K.; Krüger, D.M.; Zampar, S.; Schob, C.; Franz, J.; Aich, A.; Winkler, A.; Sakib, M.S.; et al. Interferon-Driven Brain Phenotype in a Mouse Model of RNaseT2 Deficient Leukoencephalopathy. Nat. Commun. 2021, 12, 6530. [Google Scholar] [CrossRef]
- Haltia, M. Neuronal Ceroid-Lipofuscinoses. J. Neuropathol. Exp. Neurol. 2003, 62, 1–13. [Google Scholar] [CrossRef]
- Bottani, E.; Lamperti, C.; Prigione, A.; Tiranti, V.; Persico, N.; Brunetti, D. Therapeutic Approaches to Treat Mitochondrial Diseases: “One-Size-Fits-All” and “Precision Medicine” Strategies. Pharmaceutics 2020, 12, 1083. [Google Scholar] [CrossRef]
- Chatzi, D.; Kyriakoudi, S.A.; Dermitzakis, I.; Manthou, M.E.; Meditskou, S.; Theotokis, P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J. Clin. Med. 2024, 13, 2223. [Google Scholar] [CrossRef]
- Vairo, F.P.E.; Málaga, D.R.; Kubaski, F.; de Souza, C.F.M.; de Oliveira Poswar, F.; Baldo, G.; Giugliani, R. Precision Medicine for Lysosomal Disorders. Biomolecules 2020, 10, 1110. [Google Scholar] [CrossRef]
- Antonakoudis, A.; Kyriakoudi, S.A.; Chatzi, D.; Dermitzakis, I.; Gargani, S.; Meditskou, S.; Manthou, M.E.; Theotokis, P. Genetic Basis of Motor Neuron Diseases: Insights, Clinical Management, and Future Directions. Int. J. Mol. Sci. 2025, 26, 4904. [Google Scholar] [CrossRef]
- Myerowitz, R.; Puertollano, R.; Raben, N. Impaired Autophagy: The Collateral Damage of Lysosomal Storage Disorders. EBioMedicine 2021, 63, 103166. [Google Scholar] [CrossRef]
- Hu, C.; Jia, W. Multi-Omics Profiling: The Way toward Precision Medicine in Metabolic Diseases. J. Mol. Cell Biol. 2021, 13, 576–593. [Google Scholar] [CrossRef]
- Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal Storage Diseases. Nat. Rev. Dis. Primers 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Beck, M. Treatment Strategies for Lysosomal Storage Disorders. Dev. Med. Child Neurol. 2018, 60, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Tosto, F.; Laterza, V.; Tosto, F. Leigh Syndrome: A Comprehensive Review of Disease, Present and Future Treatments. Biomedicines 2025, 17, 733. [Google Scholar]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makridou, A.; Sintou, E.; Chatzianagnosti, S.; Gargani, S.; Manthou, M.E.; Dermitzakis, I.; Theotokis, P. Mapping Lysosomal Storage Disorders with Neurological Features by Cellular Pathways: Towards Precision Medicine. Curr. Issues Mol. Biol. 2025, 47, 1009. https://doi.org/10.3390/cimb47121009
Makridou A, Sintou E, Chatzianagnosti S, Gargani S, Manthou ME, Dermitzakis I, Theotokis P. Mapping Lysosomal Storage Disorders with Neurological Features by Cellular Pathways: Towards Precision Medicine. Current Issues in Molecular Biology. 2025; 47(12):1009. https://doi.org/10.3390/cimb47121009
Chicago/Turabian StyleMakridou, Anna, Evangelie Sintou, Sofia Chatzianagnosti, Sofia Gargani, Maria Eleni Manthou, Iasonas Dermitzakis, and Paschalis Theotokis. 2025. "Mapping Lysosomal Storage Disorders with Neurological Features by Cellular Pathways: Towards Precision Medicine" Current Issues in Molecular Biology 47, no. 12: 1009. https://doi.org/10.3390/cimb47121009
APA StyleMakridou, A., Sintou, E., Chatzianagnosti, S., Gargani, S., Manthou, M. E., Dermitzakis, I., & Theotokis, P. (2025). Mapping Lysosomal Storage Disorders with Neurological Features by Cellular Pathways: Towards Precision Medicine. Current Issues in Molecular Biology, 47(12), 1009. https://doi.org/10.3390/cimb47121009

