qPCR-Based Reference Gene Validation in Canarium album: Stability Across Varieties and Developmental Stages
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. RNA Extraction and cDNA Synthesis
2.3. Candidate Gene Selection and Primer Design
2.4. qRT-PCR and Amplification Efficiency Test
2.5. Analysis of Expression Stability of Candidate Reference Genes
2.6. Validation of the Selected Candidate Reference Genes
3. Results
3.1. Primer Specificity Tests
3.2. Expression Analysis of Candidate Reference Genes
3.3. geNorm Analysis
3.4. NormFinder Analysis
3.5. BestKeeper Analysis
3.6. Overall Ranking Order and Selection of Best Reference Genes
3.7. Validation of Stability of Reference Genes
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuang, X.; Chen, Y.; Lin, H.; Lin, H.; Chen, G.; Lin, Y.; Chen, Y.; Wang, H.; Fan, Z. Comprehensive analyses of membrane lipids and phenolics metabolisms reveal the developments of chilling injury and browning in Chinese olives during cold storage. Food Chem. 2023, 416, 135754. [Google Scholar] [CrossRef]
- Yu, K.; Wang, Y.; Hu, W.-J.; Zhang, Z.-J.; Zhou, G.-Y.; Sun, S.; Kuang, H.-X.; Wang, M. Chinese olive (Canarium album Rauesch.): A critical review on its nutritional value, phytochemical composition, health benefits, and practical applications. Front. Pharmacol. 2023, 14, 1275113. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Zhang, S.; Xie, Q.; Wang, W.; Lin, Z.; Wang, H.; Yuan, Y.; Chen, Q. De Novo Transcriptome analysis by PacBio SMRT-Seq and Illumina RNA-Seq provides new insights into polyphenol biosynthesis in chinese olive fruit. Horticulturae 2024, 10, 293. [Google Scholar] [CrossRef]
- Lai, R.; Shen, C.; Feng, X.; Gao, M.; Zhang, Y.; Wei, X.; Chen, Y.; Cheng, C.; Wu, R. Integrated metabolomic and transcriptomic analysis reveals differential flavonoid accumulation and its underlying mechanism in fruits of distinct Canarium album cultivars. Foods 2022, 11, 2527. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, B.; Lin, Y.; Sang, Y.; Lin, M.; Fan, Z.; Chen, Y.; Wang, H.; Lin, H. Involvements of membrane lipid and phenolic metabolism in reducing browning and chilling injury of cold-stored Chinese olive by γ-aminobutyric acid treatment. Postharvest Biol. Technol. 2024, 209, 112664. [Google Scholar] [CrossRef]
- Long, Y.; Shen, C.; Lai, R.; Zhang, M.; Tian, Q.; Wei, X.; Wu, R. Transcriptomic and metabolomic analysis reveals the potential roles of polyphenols and flavonoids in response to sunburn stress in chinese olive (Canarium album). Plants 2024, 13, 2369. [Google Scholar] [CrossRef]
- Jayanthi, M.; Gantasala, N.P.; Papolu, P.K.; Banakar, P.; Kumari, C.; Rao, U. Identification and evaluation of internal control genes for gene expression studies by real-time quantitative PCR normalization in different tissues of Tuberose (Polianthes tuberosa). Sci. Hortic. 2015, 194, 63–70. [Google Scholar] [CrossRef]
- Sun, M.-x.; Kong, Q.; Yuan, J.; Gao, L.; Zhao, S.; Jiang, W.; Huang, Y.; Bie, Z. Identification of suitable reference genes for gene expression Normalization in qRT-PCR analysis in watermelon. PLoS ONE 2014, 9, e90612. [Google Scholar]
- Chen, J.; Li, X.; Wang, D.; Li, L.; Zhou, H.; Liu, Z.; Wu, J.; Wang, P.; Jiang, X.; Fabrice, M.R.; et al. Identification and testing of reference genes for gene expression analysis in pollen of Pyrus bretschneideri. Sci. Hortic. 2015, 190, 43–56. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Xu, L.; Lai, H.; Chen, Y.; Yang, Z.; Huang, B. Identification and validation of reference genes for seashore paspalum response to abiotic stresses. Int. J. Mol. Sci. 2017, 18, 1322. [Google Scholar] [CrossRef]
- Gantasala, N.P.; Papolu, P.K.; Thakur, P.K.; Kamaraju, D.; Sreevathsa, R.; Rao, U. Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L). BMC Res. Notes 2013, 6, 312. [Google Scholar] [CrossRef]
- Li, S.; Ge, X.; Bai, G.; Chen, C. Selection of reference genes for expression normalization by RT-qPCR in Dracocephalum moldavica L. Curr. Issues Mol. Biol. 2024, 46, 6284–6299. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tian, Q.; Huang, W.; Liu, J.; Xia, X.; Yang, X.; Mou, H. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Mol. Biol. Rep. 2020, 47, 2951–2962. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, L.; Wang, Y.; Li, X.; Feng, X.; Li, L. Stepwise optimization of the RT-qPCR protocol and the evaluation of housekeeping genes in pears (Pyrus bretschneideri) under various hormone treatments and stresses. Horticulturae 2023, 9, 275. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, F.; Tao, Y.; Song, S.; Fang, J. Reference gene selection for quantitative real-time PCR normalization in different cherry genotypes, developmental stages and organs. Sci. Hortic. 2015, 181, 182–188. [Google Scholar] [CrossRef]
- Miao, L.; Qin, X.; Gao, L.; Li, Q.; Li, S.; He, C.; Li, Y.; Yu, X. Selection of reference genes for quantitative real-time PCR analysis in cucumber (Cucumis sativus L.), pumpkin (Cucurbita moschata Duch.) and cucumber–pumpkin grafted plants. PeerJ 2019, 7, e6536. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accuratenormalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time quantitative reverse transcription-PCR Data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Xie, F.; Wang, J.; Zhang, B. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct. Integr. Genom. 2023, 23, 125. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Schmidt, G.W.; Delaney, S.K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol. Genet. Genom. 2010, 283, 233–241. [Google Scholar]
- Chen, M.D.; Wang, B.; Li, Y.P.; Zeng, M.J.; Liu, J.T.; Ye, X.R.; Zhu, H.S.; Wen, Q.F. Reference gene selection for qRT-PCR analyses of luffa (Luffa cylindrica) plants under abiotic stress conditions. Sci. Rep. 2021, 11, 3161. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, H.; Liu, X.; Lin, Z.; Guo, Y.; Deng, H.; Wang, J.; Lin, L.; Deng, Q.; Lv, X.; et al. Identification of suitable reference genes for qrt-pcr normalization in kiwifruit. Horticulturae 2022, 8, 170. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Zhou, X.; Wu, Z.; Yuan, L.; Wang, Y.; Li, Y. Selection of reference genes for qRT-PCR analysis in medicinal plant glycyrrhiza under abiotic stresses and hormonal treatments. Plants 2020, 9, 1441–1461. [Google Scholar] [PubMed]
- Chapman, J.R.; Waldenström, J. With reference to reference genes: A systematic review of endogenous controls in gene expression studies. PLoS ONE 2015, 10, e141853. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, K.; de Campos, M.K.F.; Pereira, L.F.P.; Vieira, L.G.E. Reference gene selection for real-time quantitative polymerase chain reaction normalization in “Swingle” citrumelo under drought stress. Anal. Biochem. 2010, 402, 197–199. [Google Scholar] [CrossRef]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ahmed, R.; Haque, M.S.; Alam, M.M.; Islam, M.S. Identification and validation of reference genes for real-time quantitative RT-PCR analysis in jute. BMC Mol. Biol. 2019, 20, 13. [Google Scholar]
- Tang, X.; Zhang, N.; Si, H.; Calderón-Urrea, A. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods 2017, 13, 85. [Google Scholar]
- Wan, H.; Yuan, W.; Ruan, M.; Ye, Q.; Wang, R.; Li, Z.; Zhou, G.; Yao, Z.; Zhao, J.; Liu, S.; et al. Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem. Biophys. Res. Commun. 2011, 416, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, J.; Hua, Q.; Tel-Zur, N.; Xie, F.; Zhang, Z.; Chen, J.; Zhang, R.; Hu, G.; Zhao, J.; et al. Identification of reliable reference genes for quantitative real-time PCR normalization in pitaya. Plant Methods 2019, 15, 70. [Google Scholar] [CrossRef]
- Reddy, D.S.; Bhatnagar-Mathur, P.; Cindhuri, K.S.; Sharma, K.K. Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut. PLoS ONE 2013, 8, e78555. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hu, S.; Cao, Y.; Chen, R.; Wang, Z.; Cao, X. Selection and evaluation of reference genes for qRT-PCR of Scutellaria baicalensis Georgi under different experimental conditions. Mol. Biol. Rep. 2021, 48, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Lu, H.; Tian, C.; Xu, T.; Song, C.; Wang, W.; Wei, P.; Gu, F.; Liu, D.; Cai, Y.; et al. Selection of suitable reference genes for gene expression normalization studies in Dendrobium huoshanense. Genes 2022, 13, 1486. [Google Scholar] [CrossRef]
- Lv, Y.; Li, Y.; Liu, X.; Xu, K. Identification of ginger (Zingiber officinale Roscoe) reference genes for gene expression analysis. Front. Genet. 2020, 11, 586098. [Google Scholar] [CrossRef]
- Škiljaica, A.; Jagić, M.; Vuk, T.; Leljak Levanić, D.; Bauer, N.; Markulin, L. Evaluation of reference genes for RT-qPCR gene expression analysis in Arabidopsis thaliana exposed to elevated temperatures. Plant Biol. 2022, 24, 367–379. [Google Scholar]
- Luo, Y.; Wang, G.; Wang, C.; Gong, Y.; Bian, Y.; Zhou, Y. Selection and validation of reference genes for qRT-PCR in Lentinula edodes under different experimental conditions. Genes 2019, 10, 647. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, C.; You, Y.; Liang, W.; Wang, N.; Ma, F.; Li, C. Validation of reference genes for qRT-PCR analysis in peel and flesh of six apple cultivars (Malus domestica) at diverse stages of fruit development. Sci. Hortic. 2019, 244, 165–171. [Google Scholar]
- Zhang, P.; Chen, S.; Chen, S.; Zhu, Y.; Lin, Y.; Xu, X.; Liu, Z.; Zou, S. Selection and validation of qRT-PCR internal reference genes to study flower color formation in Camellia impressinervis. Int. J. Mol. Sci. 2024, 25, 3029. [Google Scholar] [CrossRef]










| Code | Name | Source | Code | Name | Source |
|---|---|---|---|---|---|
| A1 | Zilaiyuan | Fuzhou, Fujian, China | A22 | Gaozhou 1 | Maoming, Guangdong, China |
| A2 | Meixijianxin 2 | Fuzhou, Fujian, China | A23 | Wangboxianglan 1 | Maoming, Guangdong, China |
| A3 | Fulan 1 | Fuzhou, Fujian, China | A24 | Jiexixianglan | Jieyang, Guangdong, China |
| A4 | Lingfeng 2 | Fuzhou, Fujian, China | A25 | Pingyang 2 | Wenzhou, Zhejiang, China |
| A5 | Qinglan 1 | Fuzhou, Fujian, China | A26 | Pingyang 4 | Wenzhou, Zhejiang, China |
| A6 | Huiyuan | Fuzhou, Fujian, China | A27 | Pingyang 5 | Wenzhou, Zhejiang, China |
| A7 | Qingguo 1 | Fuzhou, Fujian, China | A28 | Rui’an 2 | Wenzhou, Zhejiang, China |
| A8 | Shisheng 1 | Fuzhou, Fujian, China | A29 | Rui’an 3 | Wenzhou, Zhejiang, China |
| A9 | Shisheng 2 | Fuzhou, Fujian, China | A30 | Rui’an 4 | Wenzhou, Zhejiang, China |
| A10 | Shisheng 4 | Fuzhou, Fujian, China | A31 | Zhuyaolan | Qinzhou, Guangxi, China |
| A11 | Huangpichangying 26 | Fuzhou, Fujian, China | A32 | Niulan 1 | Qinzhou, Guangxi, China |
| A12 | Jianzhoulan | Nanping, Fujian, China | A33 | Hejiang’erbaiyuan | Luzhou, Sichuan, China |
| A13 | Zhuangbian 1 | Putian, Fujian, China | B1 | Grape olive | Ningde, Fujian, China |
| A14 | Nanan 2 | Quanzhou, Fujian, China | B2 | Shisheng 3 | Fuzhou, Fujian, China |
| A15 | Yongdinghetou 2 | Longyan, Fujian, China | B3 | Nanan 1 | Quanzhou, Fujian, China |
| A16 | Sijilan 1 | Ningde, Fujian, China | B4 | Gaozhou 2 | Maoming, Guangdong, China |
| A17 | Suiganlan 2 | Zhangzhou, Fujian, China | B5 | Meixidukou 1 | Fuzhou, Fujian, China |
| A18 | Sijilan 3 | Ningde, Fujian, China | B6 | Zhuangbian 8 | Putian, Fujian, China |
| A19 | Lenjian | Chaozhou, Guangdong, China | B7 | Pingyang 6 | Wenzhou, Zhejiang, China |
| A20 | Sihe 1 | Shantou, Guangdong, China | B8 | Hejiangdasuozi | Luzhou, Sichuan, China |
| A21 | Qingpilan | Maoming, Guangdong, China |
| ID | Gene Name | Primer Sequence (5′–3) | Tm (°C) | bp |
|---|---|---|---|---|
| Unigene0063050 | RPN2B | F:ATGGGTCTGCTCATGGTTGG R:GCAATGCCCAAAGCTAACCC | 59.9 59.9 | 110 |
| Unigene0060372 | PIP1.4 | F:TGCCAATTGGTTTCGCTGTG R:GGCATGGTCCCTGTTGAAGA | 57.8 59.9 | 116 |
| Unigene0041345 | NIFS1 | F:GATGGGGTTGAAGGAGGTGG R:CCACTCCCAAAGCCCTCAAA | 61.9 59.9 | 102 |
| Unigene0030393 | RPS16 | F:GCCTACGAGCCGATCCTTTT R:GACGGATGGCGTAGATCTGG | 59.9 61.9 | 106 |
| Unigene0034124 | At5g12110 | F:GTGAACCCGGGTGATTCCTT R:GCAACAATGTCACAGCTCTGG | 59.9 60.8 | 149 |
| Unigene0043359 | HSC-2 | F:TTGCTGGCCCTGGTGATAAG R:GTTGTCTGGGCTGTGGATGA | 59.9 59.9 | 101 |
| Unigene0055980 | ABCG44 | F:GATGTTCTGGGACTTGGGCA R:CCACTGTAACCCCACTGTCC | 59.9 61.9 | 118 |
| Unigene0053553 | LOS1 | F:CAGGCACTCGGTGAAAGGAT R:GCAGGAGACGGAAGGTGAAA | 59.9 59.9 | 198 |
| Unigene0011861 | TPS9 | F:TGTGGGATCTCTCAAGGCTG R:AGTCCAATATGCCCACGCTT | 61.4 61.8 | 111 |
| Unigene0015158 | ISA3 | F:TACTCGAGGAAGAAGCCCCT R:CTGCCACGTAGACCCAGATC | 60.3 60.7 | 140 |
| Unigene0017094 | PER64 | F:ATCAGAGGTTGCGATGCTTC R:TTCACCTTGTTGTGTACGGG | 60.4 59.5 | 103 |
| Unigene0030998 | CYP98A2 | F:GAAGTACTTGGGAGCGGTGG R:TAGTGGAGTTGGAGGGTGCA | 62.0 61.7 | 146 |
| ID | Gene Name | PCR Efficiency (E) | Correlation Coefficient (R2) |
|---|---|---|---|
| Unigene0063050 | RPN2B | 1.0267 | 0.9919 |
| Unigene0060372 | PIP1.4 | 0.9742 | 0.9994 |
| Unigene0041345 | NIFS1 | 0.9939 | 0.9969 |
| Unigene0030393 | RPS16 | 1.0211 | 0.9989 |
| Unigene0034124 | At5g12110 | 1.0361 | 0.9973 |
| Unigene0043359 | HSC-2 | 0.9925 | 0.9986 |
| Unigene0055980 | ABCG44 | 0.9697 | 0.9994 |
| Unigene0053553 | LOS1 | 1.0436 | 0.9978 |
| Different Varieties | Different Developmental Stages | ||||||
|---|---|---|---|---|---|---|---|
| ID | Gene | CV | SD | ID | Gene | CV | SD |
| Unigene0063050 | RPN2B | 1.810 | 0.370 | Unigene0063050 | RPN2B | 1.660 | 0.350 |
| Unigene0041345 | NIFS1 | 2.080 | 0.420 | Unigene0041345 | NIFS1 | 1.950 | 0.410 |
| Unigene0030393 | RPS16 | 2.220 | 0.430 | Unigene0055980 | ABCG44 | 2.050 | 0.410 |
| Unigene0060372 | PIP1.4 | 3.280 | 0.620 | Unigene0030393 | RPS16 | 2.360 | 0.470 |
| Unigene0053553 | LOS1 | 3.440 | 0.710 | Unigene0053553 | LOS1 | 2.630 | 0.550 |
| Unigene0034124 | At5g12110 | 3.470 | 0.730 | Unigene0060372 | PIP1.4 | 3.110 | 0.610 |
| Unigene0043359 | HSC-2 | 3.890 | 0.800 | Unigene0034124 | At5g12110 | 3.600 | 0.810 |
| Unigene0055980 | ABCG44 | 4.580 | 0.920 | Unigene0043359 | HSC-2 | 3.760 | 0.830 |
| Different Varieties | Different Developmental Stages | |||
|---|---|---|---|---|
| Rank | Gene | Score | Gene | Score |
| 1 | RPN2B | 2.000 | RPN2B | 1.000 |
| 2 | NIFS1 | 2.646 | NIFS1 | 2.060 |
| 3 | RPS16 | 2.659 | RPS16 | 2.632 |
| 4 | PIP1.4 | 3.224 | LOS1 | 4.427 |
| 5 | At5g12110 | 3.310 | ABCG44 | 5.664 |
| 6 | LOS1 | 4.356 | At5g12110 | 5.692 |
| 7 | HSC-2 | 6.481 | PIP1.4 | 6.160 |
| 8 | ABCG44 | 8.000 | HSC-2 | 7.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Jiang, L.; Luo, W.; Wang, W.; Shen, C.; Ye, Q.; Chen, Q.; Xie, Q. qPCR-Based Reference Gene Validation in Canarium album: Stability Across Varieties and Developmental Stages. Curr. Issues Mol. Biol. 2025, 47, 903. https://doi.org/10.3390/cimb47110903
Zhao Q, Jiang L, Luo W, Wang W, Shen C, Ye Q, Chen Q, Xie Q. qPCR-Based Reference Gene Validation in Canarium album: Stability Across Varieties and Developmental Stages. Current Issues in Molecular Biology. 2025; 47(11):903. https://doi.org/10.3390/cimb47110903
Chicago/Turabian StyleZhao, Qingqing, Lai Jiang, Wenbao Luo, Wei Wang, Chaogui Shen, Qinghua Ye, Qingxi Chen, and Qian Xie. 2025. "qPCR-Based Reference Gene Validation in Canarium album: Stability Across Varieties and Developmental Stages" Current Issues in Molecular Biology 47, no. 11: 903. https://doi.org/10.3390/cimb47110903
APA StyleZhao, Q., Jiang, L., Luo, W., Wang, W., Shen, C., Ye, Q., Chen, Q., & Xie, Q. (2025). qPCR-Based Reference Gene Validation in Canarium album: Stability Across Varieties and Developmental Stages. Current Issues in Molecular Biology, 47(11), 903. https://doi.org/10.3390/cimb47110903

