Abstract
Boron is a trace element with multifaceted chemical and biological properties that underpin its emerging relevance in human health and medicinal chemistry. Although present in organisms at very low concentrations, boron participates in key physiological processes, including mineral metabolism, bone homeostasis, hormonal regulation, immune modulation, and redox balance. Its unique electronic structure—characterized by electron deficiency and the ability to form multi-center bonds—gives rise to diverse allotropic, cluster, and coordination chemistries, enabling the formation of biologically active complexes and therapeutic agents. Dietary boron, derived mainly from plant-based foods, is efficiently absorbed and predominantly excreted by the kidneys, showing a strong correlation between intake and urinary levels. Current evidence suggests beneficial effects of boron on bone mineral density, cognitive function, inflammation, antioxidant defenses, and metabolic regulation, although the precise molecular mechanisms remain partially understood. In medicinal chemistry, a broad spectrum of boron-containing compounds—including borates, boronic acids, boronated amino acids, carboranes, and metallacarboranes—has gained clinical and preclinical importance. These compounds serve as enzyme inhibitors, antimicrobial and anti-inflammatory agents, metabolic modulators, and critical boron carriers in boron neutron capture therapy (BNCT), which leverages the neutron-capture properties of 10B for targeted cancer treatment. Advances in synthesis, functionalization, and nanocarrier design have expanded the therapeutic potential of boron-based molecules. Ongoing research aims to optimize their selectivity, biodistribution, safety, and diagnostic integration. Overall, boron represents a versatile and rapidly developing component of modern biomedical science, with promising implications for oncology, infectious diseases, metabolic disorders, and precision medicine.