The Application of Glycolipid-Type Microbial Biosurfactants as Active Pharmaceutical Ingredients for the Treatment and Prevention of Cancer
Abstract
:1. Introduction
2. An Overview of Glycolipid-Type Biosurfactants
3. Rhamnolipids as Anticancer Agents
3.1. Mono-Rhamnolipids
3.2. Di-Rhamnolipids
4. Sophorolipids as Anticancer Agents
4.1. Lactonic Sophorolipids
4.2. Acidic Sophorolipids
5. Mannosylerythritol Lipids as Anticancer Agents
6. Trehalolipids as Anticancer Agents
7. General Advantages to Utilizing Glycolipid-Type Biosurfactants as Anticancer Agents
8. General Disadvantages to Utilizing Glycolipid-Type Biosurfactant as Anticancer Agents
9. Perspectives for Future Work Investigating the Anticancer Activity of Glycolipids
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Active Pharmaceutical Ingredient |
RL | Rhamnolipid(s) |
Rha | Rhamnose |
Mono-RL | Mono-rhamnolipid(s) |
di-RL | Di-rhamnolipid(s) |
SL | Sophorolipid(s) |
l-SL | Lactonic Sophorolipid(s) |
a-SL | Acidic Sophorolipid(s) |
b-SL | Boliform Sophorolipid(s) |
MEL | Mannosylerythritol lipid(s) |
TL | Trehalolipid(s) |
References
- Chen, J.; Wu, Q.; Hua, Y.; Chen, J.; Zhang, H.; Wang, H. Potential Applications of Biosurfactant Rhamnolipids in Agriculture and Biomedicine. Appl. Microbiol. Biotechnol. 2017, 101, 8309. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.; Baltz, R.H. Natural Product Discovery: Past, Present, and Future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Amend, S.R.; Austin, R.H.; Gatenby, R.A.; Hammarlund, E.U.; Pienta, K.J. Updating the Definition of Cancer. Mol. Cancer Res. 2023, 21, 1142. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer Statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Cancer Research UK. Cancer Statistics for the UK. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk (accessed on 21 March 2025).
- Morton, L.M.; Onel, K.; Curtis, R.E.; Hungate, E.A.; Armstrong, G.T. The Rising Incidence of Second Cancers: Patterns of Occurrence and Identification of Risk Factors for Children and Adults. Am. Soc. Clin. Oncol. Educ. Book 2014, 34, e57–e67. [Google Scholar] [CrossRef]
- Cancer Research UK. What is Cancer Therapy? May 2022. Available online: https://www.cancerresearchuk.org/about-cancer/treatment/surgery/about#:~:text=Surgery%20is%20not%20a%20treatment,different%20parts%20of%20the%20body (accessed on 21 March 2025).
- Cassinelli, G. The Roots of Modern Oncology: From Discovery of New Antitumor Anthracyclines to Their Clinical Use. Tumori J. 2016, 102, 226. [Google Scholar] [CrossRef]
- Sheibani, M.; Azizi, Y.; Shayan, M.; Nezamoleslami, S.; Eslami, F.; Farjoo, M.H.; Dehpour, A.R. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-Clinical Therapeutic Approaches. Cardiovasc. Toxicol 2022, 22, 292. [Google Scholar] [CrossRef]
- McKenna, P.P.; Naughton, P.J.; Dooley, J.S.G.; Ternan, N.G.; Lemoine, P.; Banat, I.M. Microbial Biosurfactants: Antimicrobial Activity and Potential Biomedical and Therapeutic Exploits. Pharmaceuticals 2024, 17, 138. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Teixeira, J.A.; Rodrigues, L.R. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications. Mar. Drugs 2016, 14, 38. [Google Scholar] [CrossRef]
- Twigg, M.S.; Baccile, N.; Banat, I.M.; Déziel, E.; Marchant, R.; Roelants, S.; Bogaert, I.N.A. Van Microbial Biosurfactant Research: Time to Improve the Rigour in the Reporting of Synthesis, Functional Characterization and Process Development. Microb. Biotechnol. 2021, 14, 147–170. [Google Scholar] [CrossRef]
- Adu, S.A.; Twigg, M.S.; Naughton, P.J.; Marchant, R.; Banat, I.M. Biosurfactants as Anticancer Agents: Glycolipids Affect Skin Cells in a Differential Manner Dependent on Chemical Structure. Pharmaceutics 2022, 14, 360. [Google Scholar] [CrossRef] [PubMed]
- Desai, J.D.; Banat, I.M. Microbial Production of Surfactants and Their Commercial Potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Marchant, R.; Banat, I.M. Biosurfactants: A Sustainable Replacement for Chemical Surfactants? Biotechnol. Lett. 2012, 34, 1597. [Google Scholar] [CrossRef]
- Shu, Q.; Lou, H.; Wei, T.; Liu, X.; Chen, Q. Contributions of Glycolipid Biosurfactants and Glycolipid-Modified Materials to Antimicrobial Strategy: A Review. Pharmaceutics 2021, 13, 227. [Google Scholar] [CrossRef]
- Mourant, J.R.; Short, K.W.; Carpenter, S.; Kunapareddy, N.; Coburn, L.; Powers, T.M.; Freyer, J.P. Biochemical Differences in Tumorigenic and Nontumorigenic Cells Measured by Raman and Infrared Spectroscopy. J. Biomed. Opt. 2005, 10, 031106. [Google Scholar] [CrossRef]
- Short, K.W.; Carpenter, S.; Freyer, J.P.; Mourant, J.R. Raman Spectroscopy Detects Biochemical Changes Due to Proliferation in Mammalian Cell Cultures. Biophys. J. 2005, 88, 4274–4288. [Google Scholar] [CrossRef]
- Chong, H.; Li, Q. Microbial Production of Rhamnolipids: Opportunities, Challenges and Strategies. Microb. Cell Fact. 2017, 16, 1–12. [Google Scholar] [CrossRef]
- Ochsner, U.A.; Reiser, J.; Fiechter, A.; Witholt, B. Production of Pseudomonas aeruginosa Rhamnolipid Biosurfactants in Heterologous Hosts. Appl. Environ. Microbiol. 1995, 61, 3503–3506. [Google Scholar] [CrossRef]
- Rudden, M.; Tsauosi, K.; Marchant, R.; Banat, I.M.; Smyth, T.J. Development and Validation of an Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) Method for the Quantitative Determination of Rhamnolipid Congeners. Appl. Microbiol. Biotechnol. 2015, 99, 9177–9187. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.; Lépine, F.; Déziel, E. Rhamnolipids: Diversity of Structures, Microbial Origins and Roles. Appl. Microbiol. Biotechnol. 2010, 86, 1323–1336. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.; Lépine, F.; Déziel, E. Liquid Chromatography/Mass Spectrometry for the Identification and Quantification of Rhamnolipids. Methods Mol. Biol. 2014, 1149, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Tiso, T.; Zauter, R.; Tulke, H.; Leuchtle, B.; Li, W.-J.; Behrens, B.; Wittgens, A.; Rosenau, F.; Hayen, H.; Blank, L.M. Designer Rhamnolipids by Reduction of Congener Diversity: Production and Characterization. Microb. Cell Fact. 2017, 16, 225. [Google Scholar] [CrossRef] [PubMed]
- Christova, N.; Tuleva, B.; Kril, A.; Georgieva, M.; Konstantinov, S.; Terziyski, I.; Nikolova, B.; Stoineva, I. Chemical Structure and In Vitro Antitumor Activity of Rhamnolipids from Pseudomonas aeruginosa BN10. Appl. Biochem. Biotechnol. 2013, 170, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Semkova, S.; Antov, G.; Iliev, I.; Tsoneva, I.; Lefterov, P.; Christova, N.; Nacheva, L.; Stoineva, I.; Kabaivanova, L.; Staneva, G.; et al. Rhamnolipid Biosurfactants—Possible Natural Anticancer Agents and Autophagy Inhibitors. Separations 2021, 8, 92. [Google Scholar] [CrossRef]
- Twigg, M.S.; Adu, S.A.; Sugiyama, S.; Marchant, R.; Banat, I.M. Mono-Rhamnolipid Biosurfactants Synthesized by Pseudomonas aeruginosa Detrimentally Affect Colorectal Cancer Cells. Pharmaceutics 2022, 14, 2799. [Google Scholar] [CrossRef]
- Adu, S.A.; Twigg, M.S.; Naughton, P.J.; Marchant, R.; Banat, I.M. Characterisation of Cytotoxicity and Immunomodulatory Effects of Glycolipid Biosurfactants on Human Keratinocytes. Appl. Microbiol. Biotechnol. 2022, 107, 137–152. [Google Scholar] [CrossRef]
- Youle, R.J.; Strasser, A. The BCL-2 Protein Family: Opposing Activities That Mediate Cell Death. Nat. Rev. Mol. Cell Biol. 2008, 9, 47. [Google Scholar] [CrossRef]
- Miller, D.M.; Thomas, S.D.; Islam, A.; Muench, D.; Sedoris, K. C-Myc and Cancer Metabolism. Clin. Cancer Res. 2012, 18, 5546. [Google Scholar] [CrossRef]
- Rahimi, K.; Lotfabad, T.B.; Jabeen, F.; Ganji, S.M. Cytotoxic Effects of Mono- and Di-Rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 Human Breast Cancer Cells. Colloids Surf. B Biointerfaces 2019, 181, 943–952. [Google Scholar] [CrossRef]
- Zawacka-Pankau, J.; Selivanova, G. Pharmacological Reactivation of P53 as a Strategy to Treat Cancer. J. Intern. Med. 2015, 277, 248–259. [Google Scholar] [CrossRef]
- Ward, P.S.; Thompson, C.B. Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Cancer Cell 2012, 21, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Schwartzenberg-Bar-Yoseph, F.; Armoni, M.; Karnieli, E. The Tumor Suppressor P53 Down-Regulates Glucose Transporters GLUT1 and GLUT4 Gene Expression. Cancer Res. 2004, 64, 2627–2633. [Google Scholar] [CrossRef] [PubMed]
- Dubeau, D.; Déziel, E.; Woods, D.E.; Lépine, F. Burkholderia thailandensis Harbors Two Identical Rhl Gene Clusters Responsible for the Biosynthesis of Rhamnolipids. BMC Microbiol. 2009, 9, 263. [Google Scholar] [CrossRef]
- Funston, S.J.; Tsaousi, K.; Rudden, M.; Smyth, T.J.; Stevenson, P.S.; Marchant, R.; Banat, I.M. Characterising Rhamnolipid Production in Burkholderia thailandensis E264, a Non-Pathogenic Producer. Appl. Microbiol. Biotechnol. 2016, 100, 7945–7956. [Google Scholar] [CrossRef]
- Thanomsub, B.; Pumeechockchai, W.; Limtrakul, A.; Arunrattiyakorn, P.; Petchleelaha, W.; Nitoda, T.; Kanzaki, H. Chemical Structures and Biological Activities of Rhamnolipids Produced by Pseudomonas aeruginosa B189 Isolated from Milk Factory Waste. Bioresour. Technol. 2006, 97, 2457–2461. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Y.; Alfred, A.T.; Xin, X.; Yang, S. Chemical Structures and Biological Activities of Rhamnolipid Biosurfactants Produced by Pseudomonas aeruginosa M14808. J. Chem. Pharm. Res. 2013, 5, 177–182. [Google Scholar]
- Callaghan, B.; Lydon, H.; Roelants, S.L.K.W.; Van Bogaert, I.N.A.; Marchant, R.; Banat, I.M.; Mitchell, C.A. Lactonic Sophorolipids Increase Tumor Burden in Apcmin+/− Mice. PLoS ONE 2016, 11, e0156845. [Google Scholar] [CrossRef]
- Shen, C.; Jiang, L.; Long, X.; Dahl, K.N.; Meng, Q. Cells with Higher Cortical Membrane Tension Are More Sensitive to Lysis by Biosurfactant Di-Rhamnolipids. ACS Biomater. Sci. Amp; Eng. 2019, 6, 352. [Google Scholar] [CrossRef]
- Butcher, D.T.; Alliston, T.; Weaver, V.M. A Tense Situation: Forcing Tumour Progression. Nat. Rev. Cancer 2009, 9, 108. [Google Scholar] [CrossRef]
- Schaefer, A.; Hordijk, P.L. Cell-Stiffness-Induced Mechanosignaling—A Key Driver of Leukocyte Transendothelial Migration. J. Cell Sci. 2015, 128, 2221. [Google Scholar] [CrossRef]
- Van Bogaert, I.N.A.; Saerens, K.; De Muynck, C.; Develter, D.; Soetaert, W.; Vandamme, E.J. Microbial Production and Application of Sophorolipids. Appl. Microbiol. Biotechnol. 2007, 76, 23–34. [Google Scholar] [CrossRef]
- Roelants, S.L.K.W.; Solaiman, D.K.Y.; Van Renterghem, L.; Lodens, S.; Soetaert, W.; Ashby, R. Production and Application of Sophorolipids. In Biobased Surfactants: Synthesis, Properties and Applications; Hayes, D.G., Ashby, R.D., Solaiman, D.K., Eds.; AOCS Press: Urbana, IL, USA, 2019; pp. 65–119. ISBN 9780128127056. [Google Scholar]
- Roelants, S.L.K.W.; Ciesielska, K.; De Maeseneire, S.L.; Moens, H.; Everaert, B.; Verweire, S.; Denon, Q.; Vanlerberghe, B.; Van Bogaert, I.N.A.; Van der Meeren, P.; et al. Towards the Industrialization of New Biosurfactants: Biotechnological Opportunities for the Lactone Esterase Gene from Starmerella bombicola. Biotechnol. Bioeng. 2016, 113, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Lodens, S.; Roelants, S.L.K.W.; Ciesielska, K.; Geys, R.; Derynck, E.; Maes, K.; Pattyn, F.; Van Renterghem, L.; Mottet, L.; Dierickx, S.; et al. Unraveling and Resolving Inefficient Glucolipid Biosurfactants Production through Quantitative Multiomics Analyses of Starmerella bombicola Strains. Biotechnol. Bioeng. 2020, 117, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, K.; Van Bogaert, I.N.; Chevineau, S.; Li, B.; Groeneboer, S.; Soetaert, W.; Van de Peer, Y.; Devreese, B. Exoproteome Analysis of Starmerella bombicola Results in the Discovery of an Esterase Required for Lactonization of Sophorolipids. J. Proteom. 2014, 98, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Saerens, K.M.J.; Roelants, S.L.K.W.; Van Bogaert, I.N.A.; Soetaert, W. Identification of the UDP-Glucosyltransferase Gene UGTA1, Responsible for the First Glucosylation Step in the Sophorolipid Biosynthetic Pathway of Candida bombicola ATCC 22214. FEMS Yeast Res. 2011, 11, 123–132. [Google Scholar] [CrossRef]
- Ribeiro, I.A.C.; Faustino, C.M.C.; Guerreiro, P.S.; Frade, R.F.M.; Bronze, M.R.; Castro, M.F.; Ribeiro, M.H.L. Development of Novel Sophorolipids with Improved Cytotoxic Activity toward MDA-MB-231 Breast Cancer Cells. J. Mol. Recognit. 2015, 28, 155. [Google Scholar] [CrossRef]
- Shao, L.; Song, X.; Ma, X.; Li, H.; Qu, Y. Bioactivities of Sophorolipid with Different Structures Against Human Esophageal Cancer Cells. J. Surg. Res. 2012, 173, 286. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Li, W.; Xia, C.; Song, X. Identification and Characterization of a Flavin-Containing Monooxygenase MoA and Its Function in a Specific Sophorolipid Molecule Metabolism in Starmerella bombicola. Appl. Microbiol. Biotechnol. 2016, 100, 1307–1318. [Google Scholar] [CrossRef]
- Wang, X.; Xu, N.; Li, Q.; Chen, S.; Cheng, H.; Yang, M.; Jiang, T.; Chu, J.; Ma, X.; Yin, D. Lactonic Sophorolipid–Induced Apoptosis in Human HepG2 Cells through the Caspase-3 Pathway. Appl. Microbiol. Biotechnol. 2021, 105, 2033–2042. [Google Scholar] [CrossRef]
- Chen, J.; Song, X.; Zhang, H.; Qu, Y.-B.; Miao, J.-Y. Sophorolipid Produced from the New Yeast Strain Wickerhamiella domercqiae Induces Apoptosis in H7402 Human Liver Cancer Cells. Appl. Microbiol. Biotechnol. 2006, 72, 52. [Google Scholar] [CrossRef]
- Joshi-Navare, K.; Shiras, A.; Prabhune, A. Differentiation-Inducing Ability of Sophorolipids of Oleic and Linoleic Acids Using a Glioma Cell Line. Biotechnol. J. 2011, 6, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Hagler, M.; Smith-Norowitz, T.A.; Chice, S.; Wallner, S.R.; Viterbo, D.; Mueller, C.M.; Gross, R.; Nowakowski, M.; Schulze, R.; Zenilman, M.E.; et al. Sophorolipids Decrease IgE Production in U266 Cells by Downregulation of BSAP (Pax5), TLR-2, STAT3 and IL-6. J. Allergy Clin. Immunol. 2007, 119, S263. [Google Scholar] [CrossRef]
- Archer, M.; Dogra, N.; Kyprianou, N. Inflammation as a Driver of Prostate Cancer Metastasis and Therapeutic Resistance. Cancers 2020, 12, 2984. [Google Scholar] [CrossRef]
- Callaghan, B.; Twigg, M.S.; Baccile, N.; Van Bogaer, I.N.A.; Marchant, R.; Mitchell, C.A.; Banat, I.M. Microbial Sophorolipids Inhibit Colorectal Tumour Cell Growth in vitro and Restore Haematocrit in Apcmin+/− Mice. Appl. Microbiol. Biotechnol. 2022, 106, 6003. [Google Scholar] [CrossRef]
- Feuser, P.E.; Cordeiro, A.P.; Silveira, G.D.B.; Corrêa, M.E.A.B.; Silveira, P.C.L.; Sayer, C.; De Araújo, P.H.H.; Machado-De-Ávila, R.A.; Bó, A.G.D. Co-Encapsulation of Sodium Diethyldithiocarbamate (DETC) and Zinc Phthalocyanine (ZnPc) in Liposomes Promotes Increases Phototoxic Activity against (MDA-MB 231) Human Breast Cancer Cells. Colloids Surf. B Biointerfaces 2020, 197, 111434. [Google Scholar] [CrossRef]
- Isoda, H.; Kitamoto, D.; Shinmoto, H.; Matsumura, M.; Nakahara, T. Microbial Extracellular Glycolipid Induction of Differentiation and Inhibition of the Protein Kinase C Activity of Human Promyelocytic Leukemia Cell Line HL60. Biosci. Biotechnol. Biochem. 1997, 61, 609–614. [Google Scholar] [CrossRef]
- Arutchelvi, J.I.; Bhaduri, S.; Uppara, P.V.; Doble, M. Mannosylerythritol Lipids: A Review. J. Ind. Microbiol. & Biotechnol. 2008, 35, 1559. [Google Scholar] [CrossRef]
- Kitamoto, D.; Fukuoka, T.; Saika, A.; Morita, T. Glycolipid Biosurfactants, Mannosylerythritol Lipids: Distinctive Interfacial Properties and Applications in Cosmetic and Personal Care Products. J. Oleo Sci. 2021, 71, 1. [Google Scholar] [CrossRef]
- Fan, L.; Li, H.; Niu, Y.; Chen, Q. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis. PLoS ONE 2016, 11, e0148198. [Google Scholar] [CrossRef]
- Feuser, P.E.; Coelho, A.L.S.; de Melo, M.E.; Scussel, R.; Carciofi, B.A.M.; Machado-de-Ávila, R.A.; de Oliveira, D.; de Andrade, C.J. Apoptosis Induction in Murine Melanoma (B16F10) Cells by Mannosylerythritol Lipids-B; a Glycolipid Biosurfactant with Antitumoral Activities. Appl. Biochem. Biotechnol. 2021, 193, 3855–3866. [Google Scholar] [CrossRef]
- Meng, J.; Yasui, C.; Shida, M.; Toshima, K.; Takahashi, D. Designed Mannosylerythritol Lipid Analogues Exhibiting Both Selective Cytotoxicity Against Human Skin Cancer Cells and Recovery Effects on Damaged Skin Cells. Chem.-A Eur. J. 2024, 30, e202401319. [Google Scholar] [CrossRef] [PubMed]
- Cashmore, T.J.; Klatt, S.; Brammananth, R.; Rainczuk, A.K.; Crellin, P.K.; McConville, M.J.; Coppel, R.L. MmpA, a Conserved Membrane Protein Required for Efficient Surface Transport of Trehalose Lipids in Corynebacterineae. Biomolecules 2021, 11, 1760. [Google Scholar] [CrossRef] [PubMed]
- De Smet, K.A.L.; Weston, A.; Brown, I.N.; Young, D.B.; Robertson, B.D. Three Pathways for Trehalose Biosynthesis in Mycobacteria. Microbiology 2000, 146, 199–208. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, M.; Diwu, Z.; Lei, Y.; Li, H.; Bai, X. Characterization of Trehalose Lipids Produced by a Unique Environmental Isolate Bacterium Rhodococcus qingshengii Strain FF. J. Appl. Microbiol. 2019, 127, 1442–1453. [Google Scholar] [CrossRef]
- Shao, Z. Trehalolipids. In Biosurfactants. Microbiology Monographs; Springer: Berlin/Heidelberg, Germany, 2011; pp. 121–143. [Google Scholar] [CrossRef]
- Lang, S.; Philp, J.C. Surface-Active Lipids in Rhodococci. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 1998, 74, 59–70. [Google Scholar] [CrossRef]
- Kretschmer, A.; Bock, H.; Wagner, F. Chemical and Physical Characterization of Interfacial-Active Lipids from Rhodococcus erythropolis Grown on n-Alkanes. Appl. Environ. Microbiol. 1982, 44, 864–870. [Google Scholar] [CrossRef]
- Nikolova, B.; Antov, G.; Semkova, S.; Tsoneva, I.; Christova, N.; Nacheva, L.; Kardaleva, P.; Angelova, S.; Stoineva, I.; Ivanova, J.; et al. Bacterial Natural Disaccharide (Trehalose Tetraester): Molecular Modeling and in vitro Study of Anticancer Activity on Breast Cancer Cells. Polymers 2020, 12, 499. [Google Scholar] [CrossRef]
- Gal, N.; Weihs, D. Intracellular Mechanics and Activity of Breast Cancer Cells Correlate with Metastatic Potential. Cell Biochem. Biophys. 2012, 63, 199–209. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, M.; Portney, N.G.; Cui, D.; Budak, G.; Ozbay, E.; Ozkan, M.; Ozkan, C.S. Zeta Potential: A Surface Electrical Characteristic to Probe the Interaction of Nanoparticles with Normal and Cancer Human Breast Epithelial Cells. Biomed. Microdevices 2008, 10, 321–328. [Google Scholar] [CrossRef]
- Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The Drawbacks and Advantages of Vehicle Selection for Drug Formulation. Eur. J. Cancer 2001, 37, 1590–1598. [Google Scholar] [CrossRef]
- Schwartzberg, L.S.; Navari, R.M. Safety of Polysorbate 80 in the Oncology Setting. Adv. Ther. 2018, 35, 754. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaidi, H.; Lawrence, M.J.; Buckton, G. Atypical Effects of Incorporated Surfactants on Stability and Dissolution Properties of Amorphous Polymeric Dispersions. J. Pharm. Pharmacol. 2016, 68, 1373. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Singh, A.; Sharma, R.; Aurora, R.; Jain, S.K. Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications. Curr. Drug. Metab. 2020, 21, 885. [Google Scholar] [CrossRef] [PubMed]
- Goldspiel, B.R.; Dechristoforo, R.; Hoffman, J.M. Preventing Chemotherapy Errors: Updating Guidelines to Meet New Challenges. Am. J. Health-Syst. Pharm. 2015, 72, 668. [Google Scholar] [CrossRef]
- Kar, A.; Agarwal, S.; Singh, A.; Bajaj, A.; Dasgupta, U. Insights into Molecular Mechanisms of Chemotherapy Resistance in Cancer. Transl. Oncol. 2024, 42, 101901. [Google Scholar] [CrossRef]
- Phi, L.T.H.; Sari, I.N.; Yang, Y.-G.; Lee, S.-H.; Jun, N.; Kim, K.S.; Lee, Y.K.; Kwon, H.Y. Cancer Stem Cells (CSCs) in Drug Resistance and Their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 2018, 2018, 1. [Google Scholar] [CrossRef]
- Chang, J.C.; Wooten, E.C.; Tsimelzon, A.; Hilsenbeck, S.G.; Gutierrez, M.C.; Tham, Y.-L.; Kalidas, M.; Elledge, R.; Mohsin, S.; Osborne, C.K.; et al. Patterns of Resistance and Incomplete Response to Docetaxel by Gene Expression Profiling in Breast Cancer Patients. J. Clin. Oncol. 2005, 23, 1169. [Google Scholar] [CrossRef]
- Sullivan, D.W.; Gad, S.C.; Julien, M. A Review of the Nonclinical Safety of Transcutol®, a Highly Purified Form of Diethylene Glycol Monoethyl Ether (DEGEE) Used as a Pharmaceutical Excipient. Food Chem. Toxicol. 2014, 72, 40. [Google Scholar] [CrossRef]
- Sałek, K.; Euston, S.R.; Janek, T. Phase Behaviour, Functionality, and Physicochemical Characteristics of Glycolipid Surfactants of Microbial Origin. Front. Bioeng. Biotechnol. 2022, 10, 816613. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Silva, M.d.G.C.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Twigg, M.S.; Banat, I.M. Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Lin, J. Enhancement of Paenibacillus Sp. D9 Lipopeptide Biosurfactant Production Through the Optimization of Medium Composition and Its Application for Biodegradation of Hydrophobic Pollutants. Appl. Biochem. Biotechnol. 2018, 187, 724. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, F.; Babavalian, H.; Amoozegar, M.A.; Ahmadzadeh, Z.; Zuhuriyanizadi, S.; Pahlevan, M. Production and Application of Biosurfactants in Biotechnology. Biointerface Res. Appl. Chem. 2020, 11, 10446. [Google Scholar] [CrossRef]
- Bages-Estopa, S.; White, D.A.; Winterburn, J.B.; Webb, C.; Martin, P.J. Production and Separation of a Trehalolipid Biosurfactant. Biochem. Eng. J. 2018, 139, 85. [Google Scholar] [CrossRef]
- Konishi, M.; Morita, T.; Fukuoka, T.; Imura, T.; Kakugawa, K.; Kitamoto, D. Production of Different Types of Mannosylerythritol Lipids as Biosurfactants by the Newly Isolated Yeast Strains Belonging to the Genus Pseudozyma. Appl. Microbiol. Biotechnol. 2007, 75, 521. [Google Scholar] [CrossRef]
- Mishra, N.; Rana, K.; Seelam, S.D.; Kumar, R.; Pandey, V.; Salimath, B.P.; Agsar, D. Characterization and Cytotoxicity of Pseudomonas Mediated Rhamnolipids Against Breast Cancer MDA-MB-231 Cell Line. Front. Bioeng. Biotechnol. 2021, 9, 1123. [Google Scholar] [CrossRef]
- McKaig, T.; Logan, K.; Nesbitt, H.; Callan, B.; McKeown, S.; O’Sullivan, J.M.; Kelly, P.; O’Rourke, D.; McHale, A.P.; Callan, J.F. Ultrasound Targeted Microbubble Destruction Using Docetaxel and Rose Bengal Loaded Microbubbles for Targeted Chemo-Sonodynamic Therapy Treatment of Prostate Cancer. Eur. J. Pharm. Biopharm. 2023, 192, 196–205. [Google Scholar] [CrossRef]
- McEwan, C.; Fowley, C.; Nomikou, N.; McCaughan, B.; McHale, A.P.; Callan, J.F. Polymeric Microbubbles as Delivery Vehicles for Sensitizers in Sonodynamic Therapy. Langmuir 2014, 30, 14926–14930. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Lin, H.; Wang, D.; Zhao, J.; Wang, Z.; Hong, H.; Wu, Z. Reconstituting the Immune Killing Functions and Improving the Pharmacokinetics of Nanobodies by Rhamnolipid Conjugation. J. Control. Release 2024, 378, 18. [Google Scholar] [CrossRef]
- Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Rhamnolipid Nanoparticles for in vivo Drug Delivery and Photodynamic Therapy. Nanomedicine 2019, 19, 12. [Google Scholar] [CrossRef]
- Smyth, T.J.P.; Perfumo, A.; Marchant, R.; Bannat, I.M. Isolation and Anlysis of Low Molecular Weight Microbial Glycolipids. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin, Germany, 2010; pp. 3705–3723. ISBN 978-3-540-77584-3. [Google Scholar]
- Van Bogaert, I.N.A.; Buyst, D.; Martins, J.C.; Roelants, S.L.K.W.; Soetaert, W.K. Synthesis of Bolaform Biosurfactants by an Engineered Starmerella bombicola Yeast. Biotechnol. Bioeng. 2016, 113, 2644–2651. [Google Scholar] [CrossRef]
- Roelants, S.L.K.W.; Bovijn, S.; Bytyqi, E.; de Fooz, N.; Luyten, G.; Castelein, M.; Van de Craen, T.; Diao, Z.; Maes, K.; Delmulle, T.; et al. Bubbling Insights: Unveiling the True Sophorolipid Biosynthetic Pathway by Starmerella bombicola. Biotechnol. Biofuels Bioprod. 2024, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zompra, A.A.; Chasapi, S.A.; Twigg, M.S.; Salek, K.; Anestopoulos, I.; Galanis, A.; Pappa, A.; Gutierrez, T.; Banat, I.M.; Marchant, R.; et al. Multi-Method Biophysical Analysis in Discovery, Identification, and in-Depth Characterization of Surface-active Compounds. Front. Mar. Sci. 2022, 9, 1023287. [Google Scholar] [CrossRef]
- Nawale, L.; Dubey, P.; Chaudhari, B.; Sarkar, D.; Prabhune, A. Anti-Proliferative Effect of Novel Primary Cetyl Alcohol Derived Sophorolipids against Human Cervical Cancer Cells HeLa. PLoS ONE 2017, 12, e0174241. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.J.; Henry, C.M.; Cullen, S.P. A Perspective on Mammalian Caspases as Positive and Negative Regulators of Inflammation. Mol. Cell 2012, 46, 387–397. [Google Scholar] [CrossRef]
- Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled Demolition at the Cellular Level. Nat. Rev. Mol. Cell Biol. 2008, 9, 231–241. [Google Scholar] [CrossRef]
- Mirzayans, R.; Murray, D. Intratumor Heterogeneity and Therapy Resistance: Contributions of Dormancy, Apoptosis Reversal (Anastasis) and Cell Fusion to Disease Recurrence. Int. J. Mol. Sci. 2020, 21, 1308. [Google Scholar] [CrossRef]
- Roberge, C.L.; Miceli, R.T.; Murphy, L.R.; Kingsley, D.M.; Gross, R.A.; Corr, D.T. Sophorolipid Candidates Demonstrate Cytotoxic Efficacy against 2D and 3D Breast Cancer Models. J. Nat. Prod. 2023, 86, 1159. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect. Immun. 2005, 73, 1907. [Google Scholar] [CrossRef]
- Rusiecka, I.; Gągało, I.; Kocić, I. Cell-Penetrating Peptides Improve Pharmacokinetics and Pharmacodynamics of Anticancer Drugs. Tissue Barriers 2022, 10, 1965418. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McMahon, A.M.B.; Twigg, M.S.; Marchant, R.; Banat, I.M. The Application of Glycolipid-Type Microbial Biosurfactants as Active Pharmaceutical Ingredients for the Treatment and Prevention of Cancer. Pharmaceuticals 2025, 18, 676. https://doi.org/10.3390/ph18050676
McMahon AMB, Twigg MS, Marchant R, Banat IM. The Application of Glycolipid-Type Microbial Biosurfactants as Active Pharmaceutical Ingredients for the Treatment and Prevention of Cancer. Pharmaceuticals. 2025; 18(5):676. https://doi.org/10.3390/ph18050676
Chicago/Turabian StyleMcMahon, Aileen M. B., Matthew S. Twigg, Roger Marchant, and Ibrahim M. Banat. 2025. "The Application of Glycolipid-Type Microbial Biosurfactants as Active Pharmaceutical Ingredients for the Treatment and Prevention of Cancer" Pharmaceuticals 18, no. 5: 676. https://doi.org/10.3390/ph18050676
APA StyleMcMahon, A. M. B., Twigg, M. S., Marchant, R., & Banat, I. M. (2025). The Application of Glycolipid-Type Microbial Biosurfactants as Active Pharmaceutical Ingredients for the Treatment and Prevention of Cancer. Pharmaceuticals, 18(5), 676. https://doi.org/10.3390/ph18050676