Toward Brain NaV1.8 Imaging with [11C]Suzetrigine
Abstract
1. Introduction
2. Results and Discussion
2.1. In Silico Evaluation of Suzetrigine as a NaV1.8 Targeted CNS PET Tracer Candidate
2.1.1. Molecular Docking of Suzetrigine in the Human NaV1.8 Binding Pocket
2.1.2. In Silico Prediction of Brain Uptake
2.2. Radiosynthesis of [11C]Suzetrigine
2.3. In Vitro Autoradiography Study
2.3.1. Competition Binding
2.3.2. Saturation Binding
2.4. In Vivo PET Imaging and Assessment of Brain Uptake
2.4.1. Baseline Tracer Kinetics and Image-Based Regional Distribution
2.4.2. Effect of Suzetrigine Pretreatment
2.4.3. Effect of P-gp Inhibition on Tracer Uptake
2.4.4. Pretreatment with Heterologous NaV1.8 Inhibitor
2.4.5. Regional Uptake Comparison
2.4.6. Interpretation and Limitations
3. Materials and Methods
3.1. Molecular Docking
3.2. Radiochemistry
3.3. In Vitro Autoradiography
3.4. In Vivo PET Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Treede, R.-D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic Pain as a Symptom or a Disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19. [Google Scholar] [CrossRef]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic Pain: An Update on Burden, Best Practices, and New Advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Dowell, D.; Haegerich, T.M.; Chou, R. CDC Guideline for Prescribing Opioids for Chronic Pain—United States, 2016. JAMA 2016, 315, 1624–1645. [Google Scholar] [CrossRef]
- Medicine National Academies of Sciences, Engineering; Health and Medicine Division; Board on Health Care Services; Committee on Evidence-Based Clinical Practice Guidelines for Prescribing Opioids for Acute Pain. Managing Acute Pain. In Framing Opioid Prescribing Guidelines for Acute Pain: Developing the Evidence; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Roy, S. US FDA Approves Vertex’s Non-Opioid Painkiller. Reuters. 31 January 2025. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/us-fda-approves-vertexs-non-opioid-painkiller-2025-01-30/ (accessed on 6 August 2025).
- Eldabe, S.; Obara, I.; Panwar, C.; Caraway, D. Biomarkers for Chronic Pain: Significance and Summary of Recent Advances. Pain Res. Manag. 2022, 2022, 1940906. [Google Scholar] [CrossRef]
- Loggia, M.L.; Brugarolas, P.; Catana, C.; Hooker, J.M. How the next 50 Years of Positron Emission Tomography Can Transform Our Understanding of Chronic Pain. Pain 2025, 166, S71–S74. [Google Scholar] [CrossRef] [PubMed]
- Cummins, T.R.; Sheets, P.L.; Waxman, S.G. The Roles of Sodium Channels in Nociception: Implications for Mechanisms of Pain. Pain 2007, 131, 243–257. [Google Scholar] [CrossRef]
- de Lera Ruiz, M.; Kraus, R.L. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J. Med. Chem. 2015, 58, 7093–7118. [Google Scholar] [CrossRef]
- Bennett, D.L.; Clark, A.J.; Huang, J.; Waxman, S.G.; Dib-Hajj, S.D. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol. Rev. 2019, 99, 1079–1151. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.; McMahon, S.B. The Physiological Function of Different Voltage-Gated Sodium Channels in Pain. Nat. Rev. Neurosci. 2021, 22, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Momin, A.; Wood, J.N. Sensory Neuron Voltage-Gated Sodium Channels as Analgesic Drug Targets. Curr. Opin. Neurobiol. 2008, 18, 383–388. [Google Scholar] [CrossRef]
- Dib-Hajj, S.D.; Cummins, T.R.; Black, J.A.; Waxman, S.G. Sodium Channels in Normal and Pathological Pain. Annu. Rev. Neurosci. 2010, 33, 325–347. [Google Scholar] [CrossRef]
- Thakor, D.K.; Lin, A.; Matsuka, Y.; Meyer, E.M.; Ruangsri, S.; Nishimura, I.; Spigelman, I. Increased Peripheral Nerve Excitability and Local NaV1.8 mRNA Up-Regulation in Painful Neuropathy. Mol. Pain 2009, 5, 14. [Google Scholar] [CrossRef]
- Ruangsri, S.; Lin, A.; Mulpuri, Y.; Lee, K.; Spigelman, I.; Nishimura, I. Relationship of Axonal Voltage-Gated Sodium Channel 1.8 (NaV1.8) mRNA Accumulation to Sciatic Nerve Injury-Induced Painful Neuropathy in Rats. J. Biol. Chem. 2011, 286, 39836–39847. [Google Scholar] [CrossRef]
- Liu, X.D.; Yang, J.J.; Fang, D.; Cai, J.; Wan, Y.; Xing, G.G. Functional Upregulation of NaV1.8 Sodium Channels on the Membrane of Dorsal Root Ganglia Neurons Contributes to the Development of Cancer-Induced Bone Pain. PLoS ONE 2014, 9, e114623. [Google Scholar] [CrossRef]
- Wang, W.; Gu, J.; Li, Y.Q.; Tao, Y.X. Are Voltage-Gated Sodium Channels on the Dorsal Root Ganglion Involved in the Development of Neuropathic Pain? Mol. Pain 2011, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S. NaV1.7 and NaV1.8: Role in the Pathophysiology of Pain. Mol. Pain 2019, 15, 1744806919858801. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-F. Nav1.8 and Chronic Pain: From Laboratory Animals to Clinical Patients. Biomolecules 2025, 15, 694. [Google Scholar] [CrossRef] [PubMed]
- Judd, D.; King, C.R.; Galke, C. The Opioid Epidemic: A Review of the Contributing Factors, Negative Consequences, and Best Practices. Cureus 2023, 15, e41621. [Google Scholar] [CrossRef]
- Chen, R.; Liu, Y.; Qian, L.; Yi, M.; Yin, H.; Wang, S.; Xiang, B. Sodium Channels as a New Target for Pain Treatment. Front. Pharmacol. 2025, 16, 1573254. [Google Scholar] [CrossRef]
- Jones, J.; Correll, D.J.; Lechner, S.M.; Jazic, I.; Miao, X.; Shaw, D.; Simard, C.; Osteen, J.D.; Hare, B.; Beaton, A.; et al. Selective Inhibition of NaV1.8 with VX-548 for Acute Pain. N. Engl. J. Med. 2023, 389, 393–405. [Google Scholar] [CrossRef]
- Hang Kong, A.Y.; Tan, H.S.; Habib, A.S. VX-548 in the Treatment of Acute Pain. Pain Manag. 2024, 14, 477–486. [Google Scholar] [CrossRef]
- Kaye, A.D.; Everett, E.S.; Lehuquet, A.M.; Mason, J.W.; Maitski, R.; Plessala, M.J.; Barrie, S.; Baptiste, C.J.; Mychaskiw, G.; Ahmadzadeh, S.; et al. Frontiers in Acute Pain Management: Emerging Concepts in Pain Pathways and the Role of VX-548 as a Novel NaV1.8 Inhibitor: A Narrative Review. Curr. Pain Headache Rep. 2024, 28, 1135–1143. [Google Scholar] [CrossRef]
- Yu, G.; Zhou, X. Gender Difference in the Pharmacokinetics and Metabolism of VX-548 in Rats. Biopharm. Drug Dispos. 2024, 45, 107–114. [Google Scholar] [CrossRef]
- Vaelli, P.; Fujita, A.; Jo, S.; Zhang, H.-X.B.; Osorno, T.; Ma, X.; Bean, B.P. State-Dependent Inhibition of NaV1.8 Sodium Channels by VX-150 and VX-548. Mol. Pharmacol. 2024, 106, 298–308. [Google Scholar] [CrossRef]
- Osteen, J.D.; Immani, S.; Tapley, T.L.; Indersmitten, T.; Hurst, N.W.; Healey, T.; Aertgeerts, K.; Negulescu, P.A.; Lechner, S.M. Pharmacology and Mechanism of Action of Suzetrigine, a Potent and Selective NaV1.8 Pain Signal Inhibitor for the Treatment of Moderate to Severe Pain. Pain Ther. 2025, 14, 655–674. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.; Yep, H.; Wozniak, S.; Javvaji, A.; Nada, E.; Bergese, S. Beyond Opioids: A Review of Suzetrigine for Acute Pain Management. Int. J. Mol. Sci. 2025, 26, 9865. [Google Scholar] [CrossRef] [PubMed]
- Bartolo, N.D.; Reid, S.E.; Krishnan, H.S.; Haseki, A.; Renganathan, M.; Largent-Milnes, T.M.; Norwood, B.A.; Loggia, M.L.; Hooker, J.M. Radiocaine: An Imaging Marker of Neuropathic Injury. ACS Chem. Neurosci. 2022, 13, 3661–3667. [Google Scholar] [CrossRef] [PubMed]
- Hoehne, A.; Behera, D.; Parsons, W.H.; James, M.L.; Shen, B.; Borgohain, P.; Bodapati, D.; Prabhakar, A.; Gambhir, S.S.; Yeomans, D.C.; et al. A 18F-Labeled Saxitoxin Derivative for in Vivo PET-MR Imaging of Voltage-Gated Sodium Channel Expression Following Nerve Injury. J. Am. Chem. Soc. 2013, 135, 18012–18015. [Google Scholar] [CrossRef]
- Ghazalpour, A.; Bennett, B.; Petyuk, V.A.; Orozco, L.; Hagopian, R.; Mungrue, I.N.; Farber, C.R.; Sinsheimer, J.; Kang, H.M.; Furlotte, N.; et al. Comparative Analysis of Proteome and Transcriptome Variation in Mouse. PLoS Genet. 2011, 7, e1001393. [Google Scholar] [CrossRef]
- Manzoni, C.; Kia, D.A.; Vandrovcova, J.; Hardy, J.; Wood, N.W.; Lewis, P.A.; Ferrari, R. Genome, Transcriptome and Proteome: The Rise of Omics Data and Their Integration in Biomedical Sciences. Brief. Bioinform. 2018, 19, 286–302. [Google Scholar] [CrossRef]
- Lipscombe, D.; Lopez-Soto, E.J. Epigenetic Control of Ion Channel Expression and Cell-Specific Splicing in Nociceptors: Chronic Pain Mechanisms and Potential Therapeutic Targets. Channels 2021, 15, 155–163. [Google Scholar] [CrossRef]
- Qiu, X.-T.; Guo, C.; Ma, L.-T.; Li, X.-N.; Zhang, Q.-Y.; Huang, F.-S.; Zhang, M.-M.; Bai, Y.; Liang, G.-B.; Li, Y.-Q. Transcriptomic and Proteomic Profiling of the Anterior Cingulate Cortex in Neuropathic Pain Model Rats. Front. Mol. Neurosci. 2023, 16, 1164426. [Google Scholar] [CrossRef]
- Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Moving beyond Rules: The Development of a Central Nervous System Multiparameter Optimization (CNS MPO) Approach To Enable Alignment of Druglike Properties. ACS Chem. Neurosci. 2010, 1, 435–449. [Google Scholar] [CrossRef]
- Zhang, L.; Villalobos, A.; Beck, E.M.; Bocan, T.; Chappie, T.A.; Chen, L.; Grimwood, S.; Heck, S.D.; Helal, C.J.; Hou, X.; et al. Design and Selection Parameters to Accelerate the Discovery of Novel Central Nervous System Positron Emission Tomography (PET) Ligands and Their Application in the Development of a Novel Phosphodiesterase 2A PET Ligand. J. Med. Chem. 2013, 56, 4568–4579. [Google Scholar] [CrossRef]
- Jarvis, M.F.; Honore, P.; Shieh, C.-C.; Chapman, M.; Joshi, S.; Zhang, X.-F.; Kort, M.; Carroll, W.; Marron, B.; Atkinson, R.; et al. A-803467, a Potent and Selective NaV1.8 Sodium Channel Blocker, Attenuates Neuropathic and Inflammatory Pain in the Rat. Proc. Natl. Acad. Sci. USA 2007, 104, 8520–8525. [Google Scholar] [CrossRef] [PubMed]
- Kort, M.E.; Drizin, I.; Gregg, R.J.; Scanio, M.J.C.; Shi, L.; Gross, M.F.; Atkinson, R.N.; Johnson, M.S.; Pacofsky, G.J.; Thomas, J.B.; et al. Discovery and Biological Evaluation of 5-Aryl-2-Furfuramides, Potent and Selective Blockers of the NaV1.8 Sodium Channel with Efficacy in Models of Neuropathic and Inflammatory Pain. J. Med. Chem. 2008, 51, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery. ACS Chem. Neurosci. 2016, 7, 767–775. [Google Scholar] [CrossRef]
- Pike, V.W. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr. Med. Chem. 2016, 23, 1818–1869. [Google Scholar] [CrossRef]
- Cai, L.; Liow, J.-S.; Morse, C.L.; Telu, S.; Davies, R.; Frankland, M.P.; Zoghbi, S.S.; Cheng, K.; Hall, M.D.; Innis, R.B.; et al. Evaluation of 11C-NR2B-SMe and Its Enantiomers as PET Radioligands for Imaging the NR2B Subunit Within the NMDA Receptor Complex in Rats. J. Nucl. Med. 2020, 61, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Ikoma, Y.; Takano, A.; Ito, H.; Kusuhara, H.; Sugiyama, Y.; Arakawa, R.; Fukumura, T.; Nakao, R.; Suzuki, K.; Suhara, T. Quantitative Analysis of 11C-Verapamil Transfer at the Human Blood–Brain Barrier for Evaluation of P-Glycoprotein Function. J. Nucl. Med. 2006, 47, 1531–1537. [Google Scholar]
- Römermann, K.; Wanek, T.; Bankstahl, M.; Bankstahl, J.P.; Fedrowitz, M.; Müller, M.; Löscher, W.; Kuntner, C.; Langer, O. (R)-[11C]Verapamil Is Selectively Transported by Murine and Human P-Glycoprotein at the Blood–Brain Barrier, and Not by MRP1 and BCRP. Nucl. Med. Biol. 2013, 40, 873–878. [Google Scholar] [CrossRef]
- O’Brien, F.E.; O’Connor, R.M.; Clarke, G.; Dinan, T.G.; Griffin, B.T.; Cryan, J.F. P-Glycoprotein Inhibition Increases the Brain Distribution and Antidepressant-Like Activity of Escitalopram in Rodents. Neuropsychopharmacology 2013, 38, 2209–2219. [Google Scholar] [CrossRef] [PubMed]
- Syvänen, S.; Lindhe, Ö.; Palner, M.; Kornum, B.R.; Rahman, O.; Långström, B.; Knudsen, G.M.; Hammarlund-Udenaes, M. Species Differences in Blood-Brain Barrier Transport of Three Positron Emission Tomography Radioligands with Emphasis on P-Glycoprotein Transport. Drug Metab. Dispos. 2009, 37, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.; Nicolaï, J.; Williamson, B. The Role of the Efflux Transporter, P-Glycoprotein, at the Blood–Brain Barrier in Drug Discovery. Biopharm. Drug Dispos. 2023, 44, 113–126. [Google Scholar] [CrossRef]
- Experiment Detail: Allen Brain Atlas: Mouse Brain. Available online: https://mouse.brain-map.org/experiment/show/69288285 (accessed on 29 October 2025).
- Heighway, J.; Sedo, A.; Garg, A.; Eldershaw, L.; Perreau, V.; Berecki, G.; Reid, C.A.; Petrou, S.; Maljevic, S. Sodium Channel Expression and Transcript Variation in the Developing Brain of Human, Rhesus Monkey, and Mouse. Neurobiol. Dis. 2022, 164, 105622. [Google Scholar] [CrossRef]
- Huang, X.; Jin, X.; Huang, G.; Huang, J.; Wu, T.; Li, Z.; Chen, J.; Kong, F.; Pan, X.; Yan, N. Structural Basis for High-Voltage Activation and Subtype-Specific Inhibition of Human NaV1.8. Proc. Natl. Acad. Sci. USA 2022, 119, e2208211119. [Google Scholar] [CrossRef]
- Tokala, R.; Yoo, C.-H.; Downey, J.W.; Varela, B.L.; Wey, H.-Y.; Lee, S.J.; Hooker, J.M. Quantitative Imaging of ATM: PET and Autoradiography Studies Using [11C]AZD1390. ACS Chem. Neurosci. 2025, 16, 4101–4110. [Google Scholar] [CrossRef]
- Schiffer, W.K.; Mirrione, M.M.; Biegon, A.; Alexoff, D.L.; Patel, V.; Dewey, S.L. Serial microPET Measures of the Metabolic Reaction to a Microdialysis Probe Implant. J. Neurosci. Methods 2006, 155, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Pearson, T.D.; Dhaynaut, M.; MacDonagh, A.C.; Wey, H.-Y.; Wilks, M.Q.; Roth, B.L.; Hooker, J.M.; Normandin, M.D. Selective Mu-Opioid Receptor Imaging Using 18F-Labeled Carfentanils. J. Med. Chem. 2025, 68, 1632–1644. [Google Scholar] [CrossRef]
- Sarnyai, Z.; Nagy, K.; Patay, G.; Molnár, M.; Rosenqvist, G.; Tóth, M.; Takano, A.; Gulyás, B.; Major, P.; Halldin, C.; et al. Performance Evaluation of a High-Resolution Nonhuman Primate PET/CT System. J. Nucl. Med. 2019, 60, 1818–1824. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokala, R.; Pearson, T.D.; Mair, B.A.; Bricault, S.; Wallace, R.; Wey, H.-Y.; Hooker, J.M.; Lee, S.J. Toward Brain NaV1.8 Imaging with [11C]Suzetrigine. Pharmaceuticals 2025, 18, 1816. https://doi.org/10.3390/ph18121816
Tokala R, Pearson TD, Mair BA, Bricault S, Wallace R, Wey H-Y, Hooker JM, Lee SJ. Toward Brain NaV1.8 Imaging with [11C]Suzetrigine. Pharmaceuticals. 2025; 18(12):1816. https://doi.org/10.3390/ph18121816
Chicago/Turabian StyleTokala, Ramya, Torben D. Pearson, Braeden A. Mair, Sarah Bricault, Rachel Wallace, Hsiao-Ying Wey, Jacob M. Hooker, and So Jeong Lee. 2025. "Toward Brain NaV1.8 Imaging with [11C]Suzetrigine" Pharmaceuticals 18, no. 12: 1816. https://doi.org/10.3390/ph18121816
APA StyleTokala, R., Pearson, T. D., Mair, B. A., Bricault, S., Wallace, R., Wey, H.-Y., Hooker, J. M., & Lee, S. J. (2025). Toward Brain NaV1.8 Imaging with [11C]Suzetrigine. Pharmaceuticals, 18(12), 1816. https://doi.org/10.3390/ph18121816

