Extracellular Vesicles as a Potential Biomarker and Therapeutic Opportunity for Neuropsychiatric Disorders: A Hypothesis-Driven Review
Abstract
1. Current Challenges for the Treatment of Neuropsychiatric Disorders
2. Endocannabinoids and Neurological and Psychiatric Disorders
2.1. Cannabinoids and Neurodegenerative Disorders
2.2. Cannabinoids and Neurodevelopmental Disorders
2.3. Cannabinoids and Psychiatric Disorders
3. Biomarkers in the Context of Neuropsychiatric Disorders
4. Extracellular Vesicles: Definitions and Characteristics
4.1. Extracellular Vesicles in Neurodegenerative Diseases
4.2. Extracellular Vesicles in Neurodevelopmental Disorders
4.3. Extracellular Vesicles in Psychiatric Disorders
5. Cannabinoids-Extracellular Vesicles Interface
5.1. Possible Mechanisms Involved in the Interface Between EV and Cannabinoids
5.2. Extracellular Vesicles as Nanocarriers to Optimize Cannabinoid Pharmacotherapy in Neurological and Psychiatric Conditions
6. Future Perspectives
7. Materials and Methods
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 2-AG | 2-arachidonoylglycerol |
| AEA | Anandamide |
| ACEA | Arachidonyl-2-chloroethylamide |
| AD | Alzheimer’s Disease |
| ASD | Autism Spectrum Disorder |
| BBB | Blood–Brain Barrier |
| BDNF | Brain-Derived Neurotrophic Factor |
| BPRS | Brief Psychiatric Rating Scale |
| CNS | Central Nervous System |
| COVID-19 | Coronavirus Disease 2019 |
| CBD | Cannabidiol |
| CB1/CB2 | Cannabinoid Receptor Type 1/Type 2 |
| DSM-V | Diagnostic and Statistical Manual of Mental Disorders, 5th edition |
| DEP(s) | Differentially Expressed Protein(s) |
| ECS | Endocannabinoid System |
| EV(s) | Extracellular Vesicle(s) |
| FAAH | Fatty Acid Amide Hydrolase |
| GABA | Gamma-Aminobutyric Acid |
| GFAP | Glial Fibrillary Acidic Protein |
| HC | Healthy Controls |
| HPA axis | Hypothalamic–Pituitary–Adrenal axis |
| ICD-11 | International Classification of Diseases, 11th Revision |
| IL | Interleukin |
| LTD/LTP | Long-Term Depression/Long-Term Potentiation |
| MAGL | Monoacylglycerol Lipase |
| MDD | Major Depressive Disorder |
| miRNA | microRNA |
| MVB | Multivesicular Body |
| NRES/RES | Non-Responders/Responders |
| NPS | Neuropsychiatric Symptoms |
| OEA | Oleoylethanolamide |
| PD | Parkinson’s Disease |
| PDQ-39 | Parkinson’s Disease Questionnaire-39 |
| PEA | Palmitoylethanolamide |
| PPAR(s) | Peroxisome Proliferator-Activated Receptor(s) |
| PPQ | Parkinson Psychosis Questionnaire |
| PTSD | Post-Traumatic Stress Disorder |
| RCT | Randomized Controlled Trial |
| SAD | Social Anxiety Disorder |
| SCZ | Schizophrenia |
| SEA | Stearoylethanolamide |
| THC | Δ9-Tetrahydrocannabinol |
| TRPV1 | Transient Receptor Potential Vanilloid 1 |
| UPDRS | Unified Parkinson’s Disease Rating Scale |
References
- Institute for Health Metrics and Evaluation. 2021 Global Burden of Disease (GBD) Study; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2025. [Google Scholar]
- Steinmetz, J.D.; Seeher, K.M.; Schiess, N.; Nichols, E.; Cao, B.; Servili, C.; Cavallera, V.; Cousin, E.; Hagins, H.; Moberg, M.E. Global, Regional, and National Burden of Disorders Affecting the Nervous System, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Neurol 2024, 23, 344–381. [Google Scholar] [CrossRef]
- Faregh, N.; Lencucha, R.; Ventevogel, P.; Dubale, B.W.; Kirmayer, L.J. Considering Culture, Context and Community in mhGAP Implementation and Training: Challenges and Recommendations from the Field. Int. J. Ment. Health Syst. 2019, 13, 1–13. [Google Scholar] [CrossRef]
- Keynejad, R.; Spagnolo, J.; Thornicroft, G. WHO Mental Health Gap Action Programme (mhGAP) Intervention Guide: Updated Systematic Review on Evidence and Impact. BMJ Ment. Health 2021, 24, 124–130. [Google Scholar] [CrossRef]
- World Health Organization. World Mental Health Report: Transforming Mental Health for All; WHO: Geneva, Switzerland, 2022; ISBN 9240049339. [Google Scholar]
- Tyrer, P. A Comparison of DSM and ICD Classifications of Mental Disorder. Adv. Psychiatr. Treat. 2014, 20, 280–285. [Google Scholar] [CrossRef]
- Templin, J.L.; Henson, R.A. Measurement of Psychological Disorders Using Cognitive Diagnosis Models. Psychol. Methods 2006, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [CrossRef] [PubMed]
- Gaynes, B.N.; Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Spencer, D.; Fava, M. The STAR^* D Study: Treating Depression in the Real World. Cleve. Clin. J. Med. 2008, 75, 57. [Google Scholar] [CrossRef]
- Gaynes, B.N.; Warden, D.; Trivedi, M.H.; Wisniewski, S.R.; Fava, M.; Rush, A.J. What Did STAR* D Teach Us? Results from a Large-Scale, Practical, Clinical Trial for Patients with Depression. Psychiatr. Serv. 2009, 60, 1439–1445. [Google Scholar] [CrossRef]
- Robinson, D.; Woerner, M.G.; Alvir, J.M.J.; Bilder, R.; Goldman, R.; Geisler, S.; Koreen, A.; Sheitman, B.; Chakos, M.; Mayerhoff, D. Predictors of Relapse Following Response from a First Episode of Schizophrenia or Schizoaffective Disorder. Arch. Gen. Psychiatry 1999, 56, 241–247. [Google Scholar] [CrossRef]
- Zipursky, R.B.; Reilly, T.J.; Murray, R.M. The Myth of Schizophrenia as a Progressive Brain Disease. Schizophr. Bull. 2013, 39, 1363–1372. [Google Scholar] [CrossRef]
- Leucht, S.; Tardy, M.; Komossa, K.; Heres, S.; Kissling, W.; Salanti, G.; Davis, J.M. Antipsychotic Drugs versus Placebo for Relapse Prevention in Schizophrenia: A Systematic Review and Meta-Analysis. Lancet 2012, 379, 2063–2071. [Google Scholar] [CrossRef]
- Kishimoto, T.; Agarwal, V.; Kishi, T.; Leucht, S.; Kane, J.M.; Correll, C.U. Relapse Prevention in Schizophrenia: A Systematic Review and Meta-Analysis of Second-Generation Antipsychotics versus First-Generation Antipsychotics. Mol. Psychiatry 2013, 18, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Pollack, M.H.; Otto, M.W.; Roy-Byrne, P.P.; Coplan, J.D.; Rothbaum, B.O.; Simon, N.M.; Gorman, J.M. Novel Treatment Approaches for Refractory Anxiety Disorders. Depress. Anxiety 2008, 25, 467–476. [Google Scholar] [CrossRef]
- Laux, G.; Friede, M. Treatment of Comorbid Anxiety and Depression with Escitalopram: Results of a post-marketing surveillance study. Psychopharmakotherapie 2009, 16, 106–112. [Google Scholar] [CrossRef]
- Adams, R.; Hunt, M.; Clark, J.H. Structure of Cannabidiol, a Product Isolated from the Marihuana Extract of Minnesota Wild Hemp. I. J. Am. Chem. Soc. 1940, 62, 196–200. [Google Scholar] [CrossRef]
- Gaoni, Y.; Mechoulam, R. Isolation, Structure, and Partial Synthesis of an Active Constituent of Hashish. J. Am. Chem. Soc. 1964, 86, 1646–1647. [Google Scholar] [CrossRef]
- Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; et al. Identification of an Endogenous 2-Monoglyceride, Present in Canine Gut, That Binds to Cannabinoid Receptors. Biochem. Pharmacol. 1995, 50, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Devane, W.A.; Hanuš, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and Structure of a Brain Constituent That Binds to the Cannabinoid Receptor. Science 1992, 258, 1946–1949. [Google Scholar] [CrossRef] [PubMed]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular Characterization of a Peripheral Receptor for Cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef]
- Devane, W.A.; Dysarz, F.A., III; Johnson, M.R.; Melvin, L.S.; Howlett, A.C. Determination and Characterization of a Cannabinoid Receptor in Rat Brain. Mol. Pharmacol. 1988, 34, 605–613. [Google Scholar] [CrossRef]
- Di Marzo, V. New Approaches and Challenges to Targeting the Endocannabinoid System. Nat. Rev. Drug Discov. 2018, 17, 623–639. [Google Scholar] [CrossRef]
- Iremonger, K.J.; Kuzmiski, J.B.; Baimoukhametova, D.V.; Bains, J.S. Dual Regulation of Anterograde and Retrograde Transmission by Endocannabinoids. J. Neurosci. 2011, 31, 12011–12020. [Google Scholar] [CrossRef]
- Wilson, R.I.; Nicoll, R.A. Endogenous Cannabinoids Mediate Retrograde Signalling at Hippocampal Synapses. Nature 2001, 410, 588–592. [Google Scholar] [CrossRef]
- Trettel, J.; Levine, E.S. Endocannabinoids Mediate Rapid Retrograde Signaling at Interneuron→Pyramidal Neuron Synapses of the Neocortex. J. Neurophysiol. 2003, 89, 2334–2338. [Google Scholar] [CrossRef]
- Kellogg, R.; Mackie, K.; Straiker, A. Cannabinoid CB1 Receptor-Dependent Long-Term Depression in Autaptic Excitatory Neurons. J. Neurophysiol. 2009, 102, 1160–1171. [Google Scholar] [CrossRef]
- Slanina, K.A.; Roberto, M.; Schweitzer, P. Endocannabinoids Restrict Hippocampal Long-Term Potentiation via CB1. Neuropharmacology 2005, 49, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Misner, D.L.; Sullivan, J.M. Mechanism of Cannabinoid Effects on Long-Term Potentiation and Depression in Hippocampal CA1 Neurons. J. Neurosci. 1999, 19, 6795–6805. [Google Scholar] [CrossRef]
- Gerdeman, G.L.; Ronesi, J.; Lovinger, D.M. Postsynaptic Endocannabinoid Release Is Critical to Long-Term Depression in the Striatum. Nat. Neurosci. 2002, 5, 446–451. [Google Scholar] [CrossRef]
- Ortega-Gutiérrez, S.; Molina-Holgado, E.; Guaza, C. Effect of Anandamide Uptake Inhibition in the Production of Nitric Oxide and in the Release of Cytokines in Astrocyte Cultures. Glia 2005, 52, 163–168. [Google Scholar] [CrossRef]
- Malek, N.; Popiolek-Barczyk, K.; Mika, J.; Przewlocka, B.; Starowicz, K. Anandamide, Acting via CB2 Receptors, Alleviates LPS-induced Neuroinflammation in Rat Primary Microglial Cultures. Neural Plast. 2015, 2015, 130639. [Google Scholar] [CrossRef] [PubMed]
- Molina-Holgado, F.; Molina-Holgado, E.; Guaza, C. The Endogenous Cannabinoid Anandamide Potentiates Interleukin-6 Production by Astrocytes Infected with Theiler’s Murine Encephalomyelitis Virus by a Receptor-Mediated Pathway. FEBS Lett. 1998, 433, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Molina-Holgado, E.; Vela, J.M.; Arevalo-Martın, A.; Almazan, G.; Molina-Holgado, F.; Borrell, J.; Guaza, C. Cannabinoids Promote Oligodendrocyte Progenitor Survival: Involvement of Cannabinoid Receptors and Phosphatidylinositol-3 Kinase/Akt Signaling. J. Neurosci. 2002, 22, 9742–9753. [Google Scholar] [CrossRef] [PubMed]
- Abood, M.E.; Rizvi, G.; Sallapudi, N.; McAllister, S.D. Activation of the CB1 Cannabinoid Receptor Protects Cultured Mouse Spinal Neurons against Excitotoxicity. Neurosci. Lett. 2001, 309, 197–201. [Google Scholar] [CrossRef]
- Coiret, G.; Ster, J.; Grewe, B.; Wendling, F.; Helmchen, F.; Gerber, U.; Benquet, P. Neuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus. PLoS ONE 2012, 7, e37320. [Google Scholar] [CrossRef]
- Martínez-Torres, A.M.; Morán, J. CB1 Receptor Activation Provides Neuroprotection in an Animal Model of Glutamate-Induced Excitotoxicity Through a Reduction of NOX-2 Activity and Oxidative Stress. CNS Neurosci. Ther. 2024, 30, e70099. [Google Scholar] [CrossRef]
- Zou, M.; Li, D.; Li, L.; Wu, L.; Sun, C. Role of the Endocannabinoid System in Neurological Disorders. Int. J. Dev. Neurosci. 2019, 76, 95–102. [Google Scholar] [CrossRef]
- Navarrete, F.; García-Gutiérrez, M.S.; Jurado-Barba, R.; Rubio, G.; Gasparyan, A.; Austrich-Olivares, A.; Manzanares, J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front. Psychiatry 2020, 11, 315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goffin, K.; Van Paesschen, W.; Van Laere, K. In Vivo Activation of Endocannabinoid System in Temporal Lobe Epilepsy with Hippocampal Sclerosis. Brain 2011, 134, 1033–1040. [Google Scholar] [CrossRef]
- Bhaskaran, M.D.; Smith, B.N. Cannabinoid-Mediated Inhibition of Recurrent Excitatory Circuitry in the Dentate Gyrus in a Mouse Model of Temporal Lobe Epilepsy. PLoS ONE 2010, 5, e10683. [Google Scholar] [CrossRef]
- Colangeli, R.; Pierucci, M.; Benigno, A.; Campiani, G.; Butini, S.; Di Giovanni, G. The FAAH Inhibitor URB597 Suppresses Hippocampal Maximal Dentate Afterdischarges and Restores Seizure-Induced Impairment of Short and Long-Term Synaptic Plasticity. Sci. Rep. 2017, 7, 11152. [Google Scholar] [CrossRef]
- Post, J.M.; Loch, S.; Lerner, R.; Remmers, F.; Lomazzo, E.; Lutz, B.; Bindila, L. Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy. Front. Mol. Neurosci. 2018, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Ghori, F.K.; Ghani, U.; Javed, A.; Zahid, S. Cannabinoid and Endocannabinoid System: A Promising Therapeutic Intervention for Multiple Sclerosis. Mol. Biol. Rep. 2022, 49, 5117–5131. [Google Scholar] [CrossRef]
- Sobue, A.; Komine, O.; Endo, F.; Kakimi, C.; Miyoshi, Y.; Kawade, N.; Watanabe, S.; Saito, Y.; Murayama, S.; Saido, T.C. Microglial Cannabinoid Receptor Type II Stimulation Improves Cognitive Impairment and Neuroinflammation in Alzheimer’s Disease Mice by Controlling Astrocyte Activation. Cell Death Dis. 2024, 15, 858. [Google Scholar] [CrossRef]
- Bluett, R.J.; Gamble-George, J.C.; Hermanson, D.J.; Hartley, N.D.; Marnett, L.J.; Patel, S. Central Anandamide Deficiency Predicts Stress-Induced Anxiety: Behavioral Reversal through Endocannabinoid Augmentation. Transl. Psychiatry 2014, 4, e408. [Google Scholar] [CrossRef]
- Bouter, Y.; Brzzka, M.M.; Rygula, R.; Pahlisch, F.; Boost, C.; Leweke, F.M.; Havemann-Reinecke, U.; Rohleder, C. Chronic Psychosocial Stress Causes Increased Anxiety-Like Behavior and Alters Endocannabinoid Levels in the Brain of C57Bl/6J Mice. Cannabis Cannabinoid Res. 2019, 5, 51–61. [Google Scholar] [CrossRef]
- Mazurka, R.; Harkness, K.L.; Hassel, S.; Stensson, N.; Nogovitsyn, N.; Poppenk, J.; Foster, J.A.; Squires, S.D.; Rowe, J.; Milev, R.V.; et al. Endocannabinoid Concentrations in Major Depression: Effects of Childhood Maltreatment and Relation to Hippocampal Volume. Transl. Psychiatry 2024, 14, 431. [Google Scholar] [CrossRef]
- Bluett, R.J.; Báldi, R.; Haymer, A.; Gaulden, A.D.; Hartley, N.D.; Parrish, W.P.; Baechle, J.; Marcus, D.J.; Mardam-Bey, R.; Shonesy, B.C.; et al. Endocannabinoid Signalling Modulates Susceptibility to Traumatic Stress Exposure. Nat. Commun. 2017, 8, 14782. [Google Scholar] [CrossRef]
- Morena, M.; Patel, S.; Bains, J.S.; Hill, M.N. Neurobiological Interactions between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016, 41, 80–102. [Google Scholar] [CrossRef]
- Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the Expanded Endocannabinoid System in Neurological Disorders. Nat. Rev. Neurol. 2020, 16, 9–29. [Google Scholar] [CrossRef]
- Bernal-Chico, A.; Tepavcevic, V.; Manterola, A.; Utrilla, C.; Matute, C.; Mato, S. Endocannabinoid Signaling in Brain Diseases: Emerging Relevance of Glial Cells. Glia 2023, 71, 103–126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ali, N.; Sayeed, U.; Shahid, S.M.A.; Akhtar, S.; Khan, M.K.A. Molecular Mechanisms and Biomarkers in Neurodegenerative Disorders: A Comprehensive Review. Mol. Biol. Rep. 2025, 52, 337. [Google Scholar] [CrossRef]
- Toln, R.M.; Nñez, E.; Pazos, M.R.; Benito, C.; Castillo, A.I.; Martínez-Orgado, J.A.; Romero, J. The Activation of Cannabinoid CB2 Receptors Stimulates in Situ and in Vitro Beta-Amyloid Removal by Human Macrophages. Brain Res. 2009, 1283, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Martín-Moreno, A.M.; Brera, B.; Spuch, C.; Carro, E.; García-García, L.; Delgado, M.; Pozo, M.A.; Innamorato, N.G.; Cuadrado, A.; de Ceballos, M.L. Prolonged Oral Cannabinoid Administration Prevents Neuroinflammation, Lowers β-Amyloid Levels and Improves Cognitive Performance in Tg APP 2576 Mice. J Neuroinflamm. 2012, 9, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, S.; Du, Y.; Zhao, X.; Tang, Q.; Su, W.; Hu, Y.; Yu, P. Cannabidiol Enhances Microglial Beta-Amyloid Peptide Phagocytosis and Clearance via Vanilloid Family Type 2 Channel Activation. Int. J. Mol. Sci. 2022, 23, 5367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bajaj, S.; Zameer, S.; Jain, S.; Yadav, V.; Vohora, D. Effect of the MAGL/FAAH Dual Inhibitor JZL-195 on Streptozotocin-Induced Alzheimer’s Disease-like Sporadic Dementia in Mice with an Emphasis on Aβ, HSP-70, Neuroinflammation, and Oxidative Stress. ACS Chem. Neurosci. 2022, 13, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Aso, E.; Palomer, E.; Juvés, S.; Maldonado, R.; Muñoz, F.J.; Ferrer, I. CB1 Agonist ACEA Protects Neurons and Reduces the Cognitive Impairment of AβPP/PS1 Mice. J. Alzheimer’s Dis. 2012, 30, 439–459, Erratum in: J. Alzheimer’s Dis. 2012, 31, 679–680. [Google Scholar] [CrossRef] [PubMed]
- Martín-Moreno, A.M.; Reigada, D.; Ramírez, B.G.; Mechoulam, R.; Innamorato, N.; Cuadrado, A.; de Ceballos, M.L. Cannabidiol and Other Cannabinoids Reduce Microglial Activation in Vitro and in Vivo: Relevance to Alzheimer’s Disease. Mol. Pharmacol. 2011, 79, 964–973. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Vliet, S.A.M.; Vanwersch, R.A.P.; Jongsma, M.J.; Olivier, B.; Philippens, I.H. Therapeutic Effects of Δ9-THC and Modafinil in a Marmoset Parkinson Model. Eur. Neuropsychopharmacol. 2008, 18, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Meschler, J.P.; Howlett, A.C.; Madras, B.K. Cannabinoid Receptor Agonist and Antagonist Effects on Motor Function in Normal and 1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-Treated Non-Human Primates. Psychopharmacology 2001, 156, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Price, D.A.; Martinez, A.A.; Seillier, A.; Koek, W.; Acosta, Y.; Fernandez, E.; Strong, R.; Lutz, B.; Marsicano, G.; Roberts, J.L. WIN55, 212-2, a Cannabinoid Receptor Agonist, Protects against Nigrostriatal Cell Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson’s Disease. Eur. J. Neurosci. 2009, 29, 2177–2186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jimenez-Del-Rio, M.; Daza-Restrepo, A.; Velez-Pardo, C. The Cannabinoid CP55, 940 Prolongs Survival and Improves Locomotor Activity in Drosophila Melanogaster against Paraquat: Implications in Parkinson’s Disease. Neurosci. Res. 2008, 61, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xing, H.; Zhang, Y.; Song, Y. The Endocannabinoid System in Alzheimer’s Disease: A Network Meta-Analysis. J. Neurosci. Res. 2024, 102, e25380. [Google Scholar] [CrossRef] [PubMed]
- Bahji, A.; Meyyappan, A.C.; Hawken, E.R. Cannabinoids for the Neuropsychiatric Symptoms of Dementia: A Systematic Review and Meta-Analysis. Can. J. Psychiatry 2020, 65, 365–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zuardi, A.W.; Crippa, J.A.S.; Hallak, J.E.C.; Pinto, J.P.; Chagas, M.H.N.; Rodrigues, G.G.R.; Dursun, S.M.; Tumas, V. Cannabidiol for the Treatment of Psychosis in Parkinson’s Disease. J. Psychopharmacol. 2009, 23, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Chagas, M.H.N.; Zuardi, A.W.; Tumas, V.; Pena-Pereira, M.A.; Sobreira, E.T.; Bergamaschi, M.M.; Dos Santos, A.C.; Teixeira, A.L.; Hallak, J.E.C.; Crippa, J.A.S. Effects of Cannabidiol in the Treatment of Patients with Parkinson’s Disease: An Exploratory Double-Blind Trial. J. Psychopharmacol. 2014, 28, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Thapar, A.; Cooper, M.; Rutter, M. Neurodevelopmental Disorders. Lancet Psychiatry 2017, 4, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Aran, A.; Eylon, M.; Harel, M.; Polianski, L.; Nemirovski, A.; Tepper, S.; Schnapp, A.; Cassuto, H.; Wattad, N.; Tam, J. Lower Circulating Endocannabinoid Levels in Children with Autism Spectrum Disorder. Mol. Autism 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Duan, W.; Li, H.; Tang, Z.; Cai, R.; Cai, S.; Deng, G.; Chen, L.; Luo, H.; Chen, L. Ppp2r1a Haploinsufficiency Increases Excitatory Synaptic Transmission and Decreases Spatial Learning by Impairing Endocannabinoid Signaling. J Clin. Investig. 2025, 135, e185602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scarante, F.F.; Ribeiro, M.A.; Almeida-Santos, A.F.; Guimarães, F.S.; Campos, A.C. Glial Cells and Their Contribution to the Mechanisms of Action of Cannabidiol in Neuropsychiatric Disorders. Front. Pharmacol. 2021, 11, 618065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loss, C.M.; Teodoro, L.; Rodrigues, G.D.; Moreira, L.R.; Peres, F.F.; Zuardi, A.W.; Crippa, J.A.; Hallak, J.E.C.; Abilio, V.C. Is Cannabidiol during Neurodevelopment a Promising Therapy for Schizophrenia and Autism Spectrum Disorders? Front. Pharmacol. 2021, 11, 635763. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barchel, D.; Stolar, O.; De-Haan, T.; Ziv-Baran, T.; Saban, N.; Fuchs, D.O.; Koren, G.; Berkovitch, M. Oral Cannabidiol Use in Children with Autism Spectrum Disorder to Treat Related Symptoms and Co-Morbidities. Front. Pharmacol. 2019, 9, 1521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stein, D.J.; Palk, A.C.; Kendler, K.S. What Is a Mental Disorder? An Exemplar-Focused Approach. Psychol. Med. 2021, 51, 894–901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krystal, J.H. Psychiatric Disorders: Diagnosis to Therapy. Cell 2014, 157, 201–214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- The Lancet. ICD-11. Lancet 2019, 393, 2275. [Google Scholar] [CrossRef]
- Danandeh, A.; Vozella, V.; Lim, J.; Oveisi, F.; Ramirez, G.L.; Mears, D.; Wynn, G.; Piomelli, D. Effects of Fatty Acid Amide Hydrolase Inhibitor URB597 in a Rat Model of Trauma-Induced Long-Term Anxiety. Psychopharmacology 2018, 235, 3211–3221. [Google Scholar] [CrossRef]
- Stopponi, S.; Fotio, Y.; Domi, A.; Borruto, A.M.; Natividad, L.; Roberto, M.; Ciccocioppo, R.; Cannella, N. Inhibition of Fatty Acid Amide Hydrolase in the Central Amygdala Alleviates Co-Morbid Expression of Innate Anxiety and Excessive Alcohol Intake. Addict. Biol. 2018, 23, 1223–1232. [Google Scholar] [CrossRef]
- Fusse, E.J.; Scarante, F.F.; Vicente, M.A.; Marrubia, M.M.; Turcato, F.; Scomparin, D.S.; Ribeiro, M.A.; Figueiredo, M.J.; Brigante, T.A.V.; Guimarães, F.S.; et al. Anxiogenic Doses of Rapamycin Prevent URB597-Induced Anti-Stress Effects in Socially Defeated Mice. Neurosci. Lett. 2024, 818, 137519. [Google Scholar] [CrossRef]
- Paulus, M.P.; Stein, M.B.; Simmons, A.N.; Risbrough, V.B.; Halter, R.; Chaplan, S.R. The Effects of FAAH Inhibition on the Neural Basis of Anxiety-Related Processing in Healthy Male Subjects: A Randomized Clinical Trial. Neuropsychopharmacology 2021, 46, 1011–1019. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Liebowitz, M.R.; Stein, M.B.; Grunfeld, J.; Van Hove, I.; Simmons, W.K.; Van Der Ark, P.; Palmer, J.A.; Saad, Z.S.; Pemberton, D.J.; et al. The Effects of Inhibition of Fatty Acid Amide Hydrolase (FAAH) by JNJ-42165279 in Social Anxiety Disorder: A Double-Blind, Randomized, Placebo-Controlled Proof-of-Concept Study. Neuropsychopharmacology 2021, 46, 1004–1010. [Google Scholar] [CrossRef]
- Aliczki, M.; Zelena, D.; Mikics, E.; Varga, Z.K.; Pinter, O.; Bakos, N.V.; Varga, J.; Haller, J. Monoacylglycerol Lipase Inhibition-Induced Changes in Plasma Corticosterone Levels, Anxiety and Locomotor Activity in Male CD1 Mice. Horm. Behav. 2013, 63, 752–758. [Google Scholar] [CrossRef]
- Guggenhuber, S.; Romo-Parra, H.; Bindila, L.; Leschik, J.; Lomazzo, E.; Remmers, F.; Zimmermann, T.; Lerner, R.; Klugmann, M.; Pape, H.-C. Impaired 2-AG Signaling in Hippocampal Glutamatergic Neurons: Aggravation of Anxiety-like Behavior and Unaltered Seizure Susceptibility. Int. J. Neuropsychopharmacol. 2016, 19, pyv091. [Google Scholar] [CrossRef]
- Ren, S.; Wang, Z.; Zhang, Y.; Chen, N. Potential Application of Endocannabinoid System Agents in Neuropsychiatric and Neurodegenerative Diseases—Focusing on FAAH/MAGL Inhibitors. Acta Pharmacol. Sin. 2020, 41, 1263–1271. [Google Scholar] [CrossRef]
- Lomazzo, E.; Bindila, L.; Remmers, F.; Lerner, R.; Schwitter, C.; Hoheisel, U.; Lutz, B. Therapeutic Potential of Inhibitors of Endocannabinoid Degradation for the Treatment of Stress-Related Hyperalgesia in an Animal Model of Chronic Pain. Neuropsychopharmacology 2015, 40, 488–501. [Google Scholar] [CrossRef]
- Vozella, V.; Cruz, B.; Feldman, H.C.; Bullard, R.; Bianchi, P.C.; Natividad, L.A.; Cravatt, B.F.; Zorrilla, E.P.; Ciccocioppo, R.; Roberto, M. Sexually Dimorphic Effects of Monoacylglycerol Lipase Inhibitor MJN110 on Stress-Related Behaviour and Drinking in Marchigian Sardinian Alcohol-Preferring Rats. Br. J. Pharmacol. 2023, 180, 3130–3145. [Google Scholar] [CrossRef]
- Pavn, F.J.; Polis, I.Y.; Stouffer, D.G.; Cravatt, B.F.; Roberto, M.; Martin-Fardon, R.; Rodríguez de Fonseca, F.; Parsons, L.H.; Serrano, A. Selective Inhibition of Monoacylglycerol Lipase Is Associated with Passive Coping Behavior and Attenuation of Stress-Induced Dopamine Release in the Medial Prefrontal Cortex. Neurobiol. Stress. 2021, 14, 100293. [Google Scholar] [CrossRef]
- Sholler, D.J.; Strickland, J.C.; Spindle, T.R.; Weerts, E.M.; Vandrey, R. Sex Differences in the Acute Effects of Oral and Vaporized Cannabis among Healthy Adults. Addict. Biol. 2021, 26, e12968. [Google Scholar] [CrossRef]
- Bassir Nia, A.; Orejarena, M.J.; Flynn, L.; Luddy, C.; D’Souza, D.C.; Skosnik, P.D.; Pittman, B.; Ranganathan, M. Sex Differences in the Acute Effects of Intravenous (IV) Delta-9 Tetrahydrocannabinol (THC). Psychopharmacology 2022, 239, 1621–1628. [Google Scholar] [CrossRef]
- Liu, J.; Burnham, M. The Effects of CBD and THC in Animal Models of Depression and Anxiety. Clin. Neurophysiol. 2019, 130, e118–e119. [Google Scholar] [CrossRef]
- Campos, A.C.; Moreira, F.A.; Gomes, F.V.; Del Bel, E.A.; Guimarães, F.S. Multiple Mechanisms Involved in the Large-Spectrum Therapeutic Potential of Cannabidiol in Psychiatric Disorders. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 3364–3378. [Google Scholar] [CrossRef]
- Guimarães, F.S.; Chiaretti, T.M.; Graeff, F.G.; Zuardi, A.W. Antianxiety Effect of Cannabidiol in the Elevated Plus-Maze. Psychopharmacology 1990, 100, 558–559. [Google Scholar] [CrossRef]
- Zuardi, A.W.; Karniol, I.G. Changes in the Conditioned Emotional Response of Rats, Induced by Delta-9-THC, CBD and Mixture of the 2 Cannabinoids. Arq. Biol. Tecnol. 1983, 26, 391–397. [Google Scholar]
- Moreira, F.A.; Aguiar, D.C.; Guimarães, F.S. Anxiolytic-like Effect of Cannabidiol in the Rat Vogel Conflict Test. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006, 30, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.C.; Guimarães, F.S. Activation of 5HT1A Receptors Mediates the Anxiolytic Effects of Cannabidiol in a PTSD Model. Behav. Pharmacol. 2009, 20. [Google Scholar]
- Resstel, L.B.M.; Joca, S.R.L.; Moreira, F.A.; Corrêa, F.M.A.; Guimarães, F.S. Effects of Cannabidiol and Diazepam on Behavioral and Cardiovascular Responses Induced by Contextual Conditioned Fear in Rats. Behav. Brain Res. 2006, 172, 294–298. [Google Scholar] [CrossRef]
- Zanelati, T.V.; Biojone, C.; Moreira, F.A.; Guimarães, F.S.; Joca, S.R.L. Antidepressant-like Effects of Cannabidiol in Mice: Possible Involvement of 5-HT1A Receptors. Br. J. Pharmacol. 2010, 159, 122–128. [Google Scholar] [CrossRef]
- Linge, R.; Jiménez-Sánchez, L.; Campa, L.; Pilar-Cuéllar, F.; Vidal, R.; Pazos, A.; Adell, A.; Díaz, Á. Cannabidiol Induces Rapid-Acting Antidepressant-like Effects and Enhances Cortical 5-HT/Glutamate Neurotransmission: Role of 5-HT1A Receptors. Neuropharmacology 2016, 103, 16–26. [Google Scholar] [CrossRef]
- Bergamaschi, M.M.; Queiroz, R.H.C.; Chagas, M.H.N.; de Oliveira, D.C.G.; De Martinis, B.S.; Kapczinski, F.; Quevedo, J.; Roesler, R.; Schrder, N.; Nardi, A.E.; et al. Cannabidiol Reduces the Anxiety Induced by Simulated Public Speaking in Treatment-Naïve Social Phobia Patients. Neuropsychopharmacology 2011, 36, 1219–1226. [Google Scholar] [CrossRef]
- Zuardi, A.W.; Rodrigues, N.P.; Silva, A.L.; Bernardo, S.A.; Hallak, J.E.C.; Guimarães, F.S.; Crippa, J.A.S. Inverted U-Shaped Dose-Response Curve of the Anxiolytic Effect of Cannabidiol during Public Speaking in Real Life. Front. Pharmacol. 2017, 8, 247580. [Google Scholar] [CrossRef]
- Hurd, Y.L.; Spriggs, S.; Alishayev, J.; Winkel, G.; Gurgov, K.; Kudrich, C.; Oprescu, A.M.; Salsitz, E. Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial. Am. J. Psychiatry 2019, 176, 911–922. [Google Scholar] [CrossRef]
- Crippa, J.A.S.; Zuardi, A.W.; Guimarães, F.S.; Campos, A.C.; de Lima Osrio, F.; Loureiro, S.R.; dos Santos, R.G.; Souza, J.D.S.; Ushirohira, J.M.; Pacheco, J.C.; et al. Efficacy and Safety of Cannabidiol Plus Standard Care vs. Standard Care Alone for the Treatment of Emotional Exhaustion and Burnout Among Frontline Health Care Workers During the COVID-19 Pandemic: A Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e2120603. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Biomarkers: Hopes and Challenges in the Path from Discovery to Clinical Practice. Transl. Res. 2012, 159, 197–204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein Biomarker Discovery and Validation: The Long and Uncertain Path to Clinical Utility. Nat. Biotechnol. 2006, 24, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Ung, J.O.; Richie, J.P.; Chen, M.-H.; Renshaw, A.A.; D’Amico, A.V. Evolution of the Presentation and Pathologic and Biochemical Outcomes after Radical Prostatectomy for Patients with Clinically Localized Prostate Cancer Diagnosed during the PSA Era. Urology 2002, 60, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Acevedo, J.F.; Mantilla-Galindo, A.; Vargas-Sánchez, K.; González-Reyes, R.E. Blood-Brain Barrier Biomarkers. Adv. Clin. Chem. 2024, 121, 1–88. [Google Scholar] [CrossRef] [PubMed]
- Zarovniaeva, V.; Anwar, S.; Kazmi, S.; Perez, K.C.; Sandhu, S.; Mohammed, L. The Role of PET Detection of Biomarkers in Early Diagnosis, Progression, and Prognosis of Alzheimer’s Disease: A Systematic Review. Cureus 2025, 17, e77781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Gool, W.A.; Siebrand, J.A.F.; Brayne, C.; Larson, E.B.; Richard, E. Evidence Gap in Blood Biomarkers for Alzheimer’s Disease. BMJ 2025, 390, e084781. [Google Scholar] [CrossRef] [PubMed]
- Mongan, D.; Fcking, M.; Healy, C.; Susai, S.R.; Heurich, M.; Wynne, K.; Nelson, B.; McGorry, P.D.; Amminger, G.P.; Nordentoft, M. Development of Proteomic Prediction Models for Transition to Psychotic Disorder in the Clinical High-Risk State and Psychotic Experiences in Adolescence. JAMA Psychiatry 2021, 78, 77–90, Erratum in: JAMA Psychiatry 2023, 80, 191. https://doi.org/10.1001/jamapsychiatry.2022.4287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiu, F.-Y.; Yen, Y. Imaging Biomarkers for Clinical Applications in Neuro-Oncology: Current Status and Future Perspectives. Biomark. Res. 2023, 11, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parksepp, M.; Leppik, L.; Koch, K.; Uppin, K.; Kangro, R.; Haring, L.; Vasar, E.; Zilmer, M. Metabolomics Approach Revealed Robust Changes in Amino Acid and Biogenic Amine Signatures in Patients with Schizophrenia in the Early Course of the Disease. Sci. Rep. 2020, 10, 13983. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giuffrida, A.; Leweke, F.M.; Gerth, C.W.; Schreiber, D.; Koethe, D.; Faulhaber, J.; Klosterktter, J.; Piomelli, D. Cerebrospinal Anandamide Levels Are Elevated in Acute Schizophrenia and Are Inversely Correlated with Psychotic Symptoms. Neuropsychopharmacology 2004, 29, 2108–2114. [Google Scholar] [CrossRef] [PubMed]
- Leweke, F.M.; Giuffrida, A.; Koethe, D.; Schreiber, D.; Nolden, B.M.; Kranaster, L.; Neatby, M.A.; Schneider, M.; Gerth, C.W.; Hellmich, M. Anandamide Levels in Cerebrospinal Fluid of First-Episode Schizophrenic Patients: Impact of Cannabis Use. Schizophr. Res. 2007, 94, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Koethe, D.; Giuffrida, A.; Schreiber, D.; Hellmich, M.; Schultze-Lutter, F.; Ruhrmann, S.; Klosterktter, J.; Piomelli, D.; Leweke, F.M. Anandamide Elevation in Cerebrospinal Fluid in Initial Prodromal States of Psychosis. Br. J. Psychiatry 2009, 194, 371–372, Erratum in: Br. J. Psychiatry 2011, 198, 495. [Google Scholar] [CrossRef] [PubMed]
- Minichino, A.; Senior, M.; Brondino, N.; Zhang, S.H.; Godlewska, B.R.; Burnet, P.W.J.; Cipriani, A.; Lennox, B.R. Measuring Disturbance of the Endocannabinoid System in Psychosis: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2019, 76, 914–923, Erratum in: JAMA Psychiatry 2021, 78, 112. https://doi.org/10.1001/jamapsychiatry.2020.3882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Botsford, C.; Brellenthin, A.G.; Cisler, J.M.; Hillard, C.J.; Koltyn, K.F.; Crombie, K.M. Circulating Endocannabinoids and Psychological Outcomes in Women with PTSD. J. Anxiety Disord. 2023, 93, 102656. [Google Scholar] [CrossRef] [PubMed]
- Van Niel, G.; d’Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Couch, Y.; Buzàs, E.I.; Di Vizio, D.; Gho, Y.S.; Harrison, P.; Hill, A.F.; Ltvall, J.; Raposo, G.; Stahl, P.D.; Théry, C.; et al. A Brief History of Nearly EV-Erything—The Rise and Rise of Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12144. [Google Scholar] [CrossRef]
- Yáñez-M, M.; Siljander, P.R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Budnik, V.; Ruiz-Cañada, C.; Wendler, F. Extracellular Vesicles Round off Communication in the Nervous System. Nat. Rev. Neurosci. 2016, 17, 160–172. [Google Scholar] [CrossRef]
- Morel, L.; Regan, M.; Higashimori, H.; Ng, S.K.; Esau, C.; Vidensky, S.; Rothstein, J.; Yang, Y. Neuronal Exosomal MiRNA-Dependent Translational Regulation of Astroglial Glutamate Transporter GLT1. J. Biol. Chem. 2013, 288, 7105–7116. [Google Scholar] [CrossRef]
- Antonucci, F.; Turola, E.; Riganti, L.; Caleo, M.; Gabrielli, M.; Perrotta, C.; Novellino, L.; Clementi, E.; Giussani, P.; Viani, P. Microvesicles Released from Microglia Stimulate Synaptic Activity via Enhanced Sphingolipid Metabolism. EMBO J. 2012, 31, 1231–1240. [Google Scholar] [CrossRef]
- Fitzner, D.; Schnaars, M.; Van Rossum, D.; Krishnamoorthy, G.; Dibaj, P.; Bakhti, M.; Regen, T.; Hanisch, U.-K.; Simons, M. Selective Transfer of Exosomes from Oligodendrocytes to Microglia by Macropinocytosis. J. Cell Sci. 2011, 124, 447–458. [Google Scholar] [CrossRef]
- Gabrielli, M.; Prada, I.; Joshi, P.; Falcicchia, C.; D’Arrigo, G.; Rutigliano, G.; Battocchio, E.; Zenatelli, R.; Tozzi, F.; Radeghieri, A.; et al. Microglial Large Extracellular Vesicles Propagate Early Synaptic Dysfunction in Alzheimer’s Disease. Brain 2022, 145, 2849–2868. [Google Scholar] [CrossRef]
- Yan, S.; Jiang, C.; Janzen, A.; Barber, T.R.; Seger, A.; Sommerauer, M.; Davis, J.J.; Marek, K.; Hu, M.T.; Oertoasel, W.H. Neuronally Derived Extracellular Vesicle α-Synuclein as a Serum Biomarker for Individuals at Risk of Developing Parkinson Disease. JAMA Neurol. 2024, 81, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, Y.; Liu, W.; Chen, F.; Zhang, H.; Zhou, H.; Zhao, A.; Luo, N.; Liu, J.; Wu, L. Candidate Biomarkers of EV-MicroRNA in Detecting REM Sleep Behavior Disorder and Parkinson’s Disease. NPJ Park. Dis. 2024, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Xiong, N.; Guo, X.; Huang, J.; Ma, K.; Liu, L.; Xia, Y.; Shen, Y.; Li, J.; Jiang, H. Exosomes from Patients with Parkinson’s Disease Are Pathological in Mice. J. Mol. Med. 2019, 97, 1329–1344. [Google Scholar] [CrossRef]
- Banigan, M.G.; Kao, P.F.; Kozubek, J.A.; Winslow, A.R.; Medina, J.; Costa, J.; Schmitt, A.; Schneider, A.; Cabral, H.; Cagsal-Getkin, O. Differential Expression of Exosomal MicroRNAs in Prefrontal Cortices of Schizophrenia and Bipolar Disorder Patients. PLoS ONE 2013, 8, e48814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liao, A.; Wang, Y.; Liu, Q.; Ouyang, L.; Peng, H.; Yuan, L.; Zhao, L.; Yang, X.; Chen, X. Profiling Expressing Features of Surface Proteins on Single-Exosome in First-Episode Schizophrenia Patients: A Preliminary Study. Schizophrenia 2024, 10, 84. [Google Scholar] [CrossRef]
- Ranganathan, M.; Rahman, M.; Ganesh, S.; D’Souza, D.C.; Skosnik, P.D.; Radhakrishnan, R.; Pathania, S.; Mohanakumar, T. Analysis of Circulating Exosomes Reveals a Peripheral Signature of Astrocytic Pathology in Schizophrenia. World J. Biol. Psychiatry 2022, 23, 33–45. [Google Scholar] [CrossRef]
- Ali Moussa, H.Y.; Shin, K.C.; de la Fuente, A.; Bensmail, I.; Abdesselem, H.B.; Ponraj, J.; Mansour, S.; Al-Shaban, F.A.; Stanton, L.W.; Abdulla, S.A. Proteomics Analysis of Extracellular Vesicles for Biomarkers of Autism Spectrum Disorder. Front. Mol. Biosci. 2024, 11, 1467398. [Google Scholar] [CrossRef]
- Tsilioni, I.; Theoharides, T.C. Extracellular Vesicles Are Increased in the Serum of Children with Autism Spectrum Disorder, Contain Mitochondrial DNA, and Stimulate Human Microglia to Secrete IL-1β. J. Neuroinflamm. 2018, 15, 239. [Google Scholar] [CrossRef]
- Wei, Z.-X.; Xie, G.-J.; Mao, X.; Zou, X.-P.; Liao, Y.-J.; Liu, Q.-S.; Wang, H.; Cheng, Y. Exosomes from Patients with Major Depression Cause Depressive-like Behaviors in Mice with Involvement of MiR-139-5p-Regulated Neurogenesis. Neuropsychopharmacology 2020, 45, 1050–1058. [Google Scholar] [CrossRef]
- Mizohata, Y.; Yoshioka, Y.; Koga, M.; Toda, H.; Ohta, H.; Kobayashi, Y.; Ochiya, T.; Morimoto, Y. Stress-Induced Brain Extracellular Vesicles Ameliorate Anxiety Behaviour. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, R.; Wang, D.; Yu, L.; Liu, Y.; Huang, R.; Yin, S.; He, X.; Chen, B.; Liu, Z.; et al. EVs-Mediated Delivery of CB2 Receptor Agonist for Alzheimer’s Disease Therapy. Asian J. Pharm. Sci. 2023, 18, 100835. [Google Scholar] [CrossRef] [PubMed]
- Lusardi, T.A.; Phillips, J.I.; Wiedrick, J.T.; Harrington, C.A.; Lind, B.; Lapidus, J.A.; Quinn, J.F.; Saugstad, J.A. MicroRNAs in Human Cerebrospinal Fluid as Biomarkers for Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 55, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Elahi, F.M.; Casaletto, K.B.; La Joie, R.; Walters, S.M.; Harvey, D.; Wolf, A.; Edwards, L.; Rivera-Contreras, W.; Karydas, A.; Cobigo, Y. Plasma Biomarkers of Astrocytic and Neuronal Dysfunction in Early- and Late-Onset Alzheimer’s Disease. Alzheimer’s Dement 2020, 16, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Xylaki, M.; Chopra, A.; Weber, S.; Bartl, M.; Outeiro, T.F.; Mollenhauer, B. Extracellular Vesicles for the Diagnosis of Parkinson’s Disease: Systematic Review and Meta-analysis. Mov. Disord. 2023, 38, 1585–1597. [Google Scholar] [CrossRef]
- Guo, M.; Wang, J.; Zhao, Y.; Feng, Y.; Han, S.; Dong, Q.; Cui, M.; Tieu, K. Microglial Exosomes Facilitate α-Synuclein Transmission in Parkinson’s Disease. Brain 2020, 143, 1476–1497. [Google Scholar] [CrossRef]
- Xue, T.; Liu, W.; Wang, L.; Shi, Y.; Hu, Y.; Yang, J.; Li, G.; Huang, H.; Cui, D. Extracellular Vesicle Biomarkers for Complement Dysfunction in Schizophrenia. Brain 2024, 147, 1075–1086. [Google Scholar] [CrossRef]
- Yin, K.-J.; Deng, Z.; Huang, H.; Hamblin, M.; Xie, C.; Zhang, J.; Chen, Y.E. MiR-497 Regulates Neuronal Death in Mouse Brain after Transient Focal Cerebral Ischemia. Neurobiol. Dis. 2010, 38, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, M.; Battista, N.; Riganti, L.; Prada, I.; Antonucci, F.; Cantone, L.; Matteoli, M.; Maccarrone, M.; Verderio, C. Active Endocannabinoids Are Secreted on Extracellular Membrane Vesicles. EMBO Rep. 2015, 16, 213–220. [Google Scholar] [CrossRef]
- Lombardi, M.; Scaroni, F.; Gabrielli, M.; Raffaele, S.; Bonfanti, E.; Filipello, F.; Giussani, P.; Picciolini, S.; de Rosbo, N.K.; Uccelli, A. Extracellular Vesicles Released by Microglia and Macrophages Carry Endocannabinoids Which Foster Oligodendrocyte Differentiation. Front. Immunol. 2024, 15, 1331210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Straub, V.M.; Barti, B.; Tandar, S.T.; Stevens, A.F.; van Egmond, N.; van der Wel, T.; Zhu, N.; Regger, J.; van der Horst, C.; Heitman, L.H. The Endocannabinoid 2-Arachidonoylglycerol Is Released and Transported on Demand via Extracellular Microvesicles. Proc. Natl. Acad. Sci. USA 2025, 122, e2421717122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandes, F.; Keiler, A.M.; Kirchner, B.; Borrmann, M.; Billaud, J.-N.; Reithmair, M.; Klein, M.; Campolongo, P.; Thieme, D.; Pfaffl, M.W.; et al. Extracellular Vesicles and Endocannabinoid Signaling in Patients with COVID-19. Cannabis Cannabinoid Res. 2023, 9, 1326–1338. [Google Scholar] [CrossRef]
- Tao, Y.-X. Constitutive Activation of G Protein-Coupled Receptors and Diseases: Insights into Mechanisms of Activation and Therapeutics. Pharmacol. Ther. 2008, 120, 129–148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leterrier, C.; Bonnard, D.; Carrel, D.; Rossier, J.; Lenkei, Z. Constitutive Endocytic Cycle of the CB1 Cannabinoid Receptor. J. Biol. Chem. 2004, 279, 36013–36021. [Google Scholar] [CrossRef] [PubMed]
- Blanc, L.; Vidal, M. New Insights into the Function of Rab GTPases in the Context of Exosomal Secretion. Small GTPases 2018, 9, 95–106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Jiang, Z.; Shi, A. Rab GTPases: The Principal Players in Crafting the Regulatory Landscape of Endosomal Trafficking. Comput. Struct. Biotechnol. J. 2022, 20, 4464–44272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ney, P.A. Normal and Disordered Reticulocyte Maturation. Curr. Opin. Hematol. 2011, 18, 152–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, W.; Sagar, S.; Ravindran, R.; Najor, R.H.; Quiles, J.M.; Chi, L.; Diao, R.Y.; Woodall, B.P.; Leon, L.J.; Zumaya, E. Mitochondria Are Secreted in Extracellular Vesicles When Lysosomal Function Is Impaired. Nat. Commun. 2023, 14, 5031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hebert-Chatelain, E.; Marsicano, G.; Desprez, T. Cannabinoids and Mitochondria. In Endocannabinoids and Lipid Mediators in Brain Functions; Springer: Cham, Switzerland, 2017; pp. 211–235. [Google Scholar] [CrossRef]
- Malheiro, R.F.; Carmo, H.; Carvalho, F.; Silva, J.P. Cannabinoid-Mediated Targeting of Mitochondria on the Modulation of Mitochondrial Function and Dynamics. Pharmacol. Res. 2023, 187, 106603. [Google Scholar] [CrossRef] [PubMed]
- Hebert-Chatelain, E.; Desprez, T.; Serrat, R.; Bellocchio, L.; Soria-Gomez, E.; Busquets-Garcia, A.; Pagano Zottola, A.C.; Delamarre, A.; Cannich, A.; Vincent, P. A Cannabinoid Link between Mitochondria and Memory. Nature 2016, 539, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Noonan, J.; Tanveer, R.; Klompas, A.; Gowran, A.; McKiernan, J.; Campbell, V.A. Endocannabinoids Prevent β-Amyloid-Mediated Lysosomal Destabilization in Cultured Neurons. J. Biol. Chem. 2010, 285, 38543–38554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horbay, R.; Hamraghani, A.; Ermini, L.; Holcik, S.; Beug, S.T.; Yeganeh, B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int. J. Mol. Sci. 2022, 23, 15317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Capolupo, I.; Miranda, M.R.; Musella, S.; Di Sarno, V.; Manfra, M.; Ostacolo, C.; Bertamino, A.; Campiglia, P.; Ciaglia, T. Exploring Endocannabinoid System: Unveiling New Roles in Modulating ER Stress. Antioxidants 2024, 13, 1284. [Google Scholar] [CrossRef] [PubMed]
- Millar, S.A.; Stone, N.L.; Yates, A.S.; O’Sullivan, S.E. A Systematic Review on the Pharmacokinetics of Cannabidiol in Humans. Front. Pharmacol. 2018, 9, 1365. [Google Scholar] [CrossRef]
- Liu, Y.; Sprando, R.L. Physiologically Based Pharmacokinetic Modeling and Simulation of Cannabinoids in Human Plasma and Tissues. J. Appl. Toxicol. 2023, 43, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Grotenhermen, F. Pharmacokinetics and Pharmacodynamics of Cannabinoids. Clin. Pharmacokinet. 2003, 42, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.J.; Galettis, P.; Schneider, J. The Pharmacokinetics and the Pharmacodynamics of Cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhattacharyya, S.; Egerton, A.; Kim, E.; Rosso, L.; Riano Barros, D.; Hammers, A.; Brammer, M.; Turkheimer, F.E.; Howes, O.D.; McGuire, P. Acute Induction of Anxiety in Humans by Delta-9-Tetrahydrocannabinol Related to Amygdalar Cannabinoid-1 (CB1) Receptors. Sci. Rep. 2017, 7, 15025. [Google Scholar] [CrossRef]
- Liu, Z.; Martin, J.H. Gaps in Predicting Clinical Doses for Cannabinoids Therapy: Overview of Issues for Pharmacokinetics and Pharmacodynamics Modelling. Br. J. Clin. Pharmacol. 2018, 84, 2483–2487. [Google Scholar] [CrossRef]
- Ha, D.; Yang, N.; Nadithe, V. Exosomes as Therapeutic Drug Carriers and Delivery Vehicles across Biological Membranes: Current Perspectives and Future Challenges. Acta Pharm. Sin. B 2016, 6, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Carney, R.P.; Mizenko, R.R.; Bozkurt, B.T.; Lowe, N.; Henson, T.; Arizzi, A.; Wang, A.; Tan, C.; George, S.C. Harnessing Extracellular Vesicle Heterogeneity for Diagnostic and Therapeutic Applications. Nat. Nanotechnol. 2025, 20, 14–25. [Google Scholar] [CrossRef]
- Kanada, M.; Bachmann, M.H.; Hardy, J.W.; Frimannson, D.O.; Bronsart, L.; Wang, A.; Sylvester, M.D.; Schmidt, T.L.; Kaspar, R.L.; Butte, M.J. Differential Fates of Biomolecules Delivered to Target Cells via Extracellular Vesicles. Proc. Natl. Acad. Sci. USA 2015, 112, E1433–E1442. [Google Scholar] [CrossRef]
- Dardet, J.P.; Serrano, N.; András, I.E.; Toborek, M. Overcoming Blood-Brain Barrier Resistance: Implications for Extracellular Vesicle-Mediated Drug Brain Delivery. Front. Drug Deliv. 2022, 2, 855017. [Google Scholar] [CrossRef]
- Chen, C.; Sun, M.; Wang, J.; Su, L.; Lin, J.; Yan, X. Active Cargo Loading into Extracellular Vesicles: Highlights the Heterogeneous Encapsulation Behaviour. J. Extracell. Vesicles 2021, 10, e12163. [Google Scholar] [CrossRef]
- Piffoux, M.; Volatron, J.; Cherukula, K.; Aubertin, K.; Wilhelm, C.; Silva, A.K.A.; Gazeau, F. Engineering and Loading Therapeutic Extracellular Vesicles for Clinical Translation: A Data Reporting Frame for Comparability. Adv. Drug Deliv. Rev. 2021, 178, 113972. [Google Scholar] [CrossRef]
- Kalvala, A.K.; Bagde, A.; Arthur, P.; Kulkarni, T.; Bhattacharya, S.; Surapaneni, S.; Patel, N.K.; Nimma, R.; Gebeyehu, A.; Kommineni, N. Cannabidiol-Loaded Extracellular Vesicles from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Paclitaxel-Induced Peripheral Neuropathy. Pharmaceutics 2023, 15, 554. [Google Scholar] [CrossRef] [PubMed]
- Shahjin, F.; Chand, S.; Yelamanchili, S.V. Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System. J. Neuroimmune Pharmacol. 2020, 15, 443–458. [Google Scholar] [CrossRef] [PubMed]




| Neuropsychiatric Disorder | EV Isolation Method/ Quality Method/Analysis | Biomarker/ Therapeutic | Key Results | References |
|---|---|---|---|---|
| Alzheimer’s disease | dUC of conditioned medium | Biomarker/ Pathogenesis | Microglial Aβ-EVs significantly affect synaptic plasticity both in cultured neurons and in brain slices. When injected into mouse brains, these EVs propagate synaptic dysfunction in the entorhinal-hippocampal circuit. | [125] |
| Parkinson’s disease | dUC/immunoaffinity for L1CAM in human serum | Biomarker | Neuron-derived extracellular vesicles contained elevated α-synuclein levels in both patients with Parkinson’s disease and individuals who later developed the disorder, effectively distinguishing future converters from controls and supporting their value as predictive and diagnostic biomarkers. | [126] |
| Parkinson’s disease | Size-exclusion chromatography from human serum | Biomarker | Profiling of EV-derived microRNAs identified distinct expression signatures that accurately discriminated healthy controls, patients with idiopathic REM sleep behavior disorder, and PD, with specific miRNA panels predicting conversion from iRBD to PD, highlighting their potential as early, minimally invasive biomarkers. | [127] |
| Parkinson’s disease | dUC from both conditioned medium and human serum | Biomarker | Plasma-derived exosomes from PD patients contained elevated monomeric and oligomeric α-synuclein, preferentially entered microglia (rather than neurons or astrocytes) in vivo and in vitro, activated microglial inflammatory responses (NO, TNF-α, IL-6). In mice, these exosomes induced α-synuclein pathology and dopaminergic neuron dysfunction in striatum. | [128] |
| Schizophrenia/ Bipolar disorder | dUC of frozen human prefrontal cortex | Biomarker | Exosome-containing pellets from patients with schizophrenia showed significantly increased expression of miR-497, and from bipolar disorder patients significantly increased miR-29c, compared to controls, suggesting disease-specific exosomal miRNA signatures in prefrontal cortex tissue. | [129] |
| Schizophrenia | Size-exclusion chromatography | Biomarker | Identified five differentially expressed surface proteins (FN1, ITGB3, PECAM1, ITGA6, CD5) that distinguished first-episode schizophrenia patients from healthy controls (AUC up to ~0.805), and six proteins (ITGB3, CD33, CD40, CD36, TENM2, EGFR) that distinguished antipsychotic non-responders from responders (AUC up to ~0.87). | [130] |
| Schizophrenia | Total Exosome Isolation Reagent (Invitrogen/Thermofisher) from serum | Biomarker | Exosomal GFAP concentration was significantly higher and α-II Spectrin expression significantly lower in plasma from schizophrenia patients compared with matched healthy controls, indicating a peripheral signature of astrocytic pathology in schizophrenia. | [131] |
| Autism Spectrum Disorder | Size-exclusion chromatography from serum | Biomarker | Proteomic profiling of EVs revealed that five proteins (WWP2, HSP27, CLEC1B, CD40 and FRα) were significantly down-regulated in plasma EVs from individuals with autism spectrum disorder compared with healthy controls (fold-change ≥ 2, adjusted p-value ≤ 0.05), and a machine-learning model based on these proteins achieved an AUC ≈ 0.923 for classification of ASD vs. controls. | [132] |
| Autism Spectrum Disorder | exoEasy Maxi Kit (Qiagen) (Membrane-affinity spin column) | Biomarker | Children with autism spectrum disorder had significantly increased total EV--EV-associated protein and mitochondrial DNA (mtDNA7S) in serum compared to normotypic controls; furthermore, when applied to human microglia, these serum EVs stimulated IL-1β secretion in a dose- and time-dependent manner, supporting a potential pro-inflammatory role for EVs in ASD. | [133] |
| Major Depressive Disorder | dUC of human serum | Biomarker/ Pathogenesis | Exosomes from MDD patients carried elevated levels of miR-139-5p, injected into healthy mice, induced depressive-like behaviors, while exosomes from healthy volunteers alleviated stress-induced depressive behavior; exosomal miR-139-5p was shown to inhibit hippocampal neurogenesis and may mediate depression pathophysiology. | [134] |
| Stress-related disorders | dUC followed by size-exclusion chromatography | Biomarker | Proteomic and transcriptomic profiling of EVs revealed distinct signatures associated with neurodevelopmental and psychiatric disorders. Specific EV cargo alterations correlated with synaptic and inflammatory pathways, suggesting that circulating EVs may serve as biomarkers reflecting central nervous system dysfunction. | [135] |
| Alzheimer’s disease | dUC followed by size-exclusion chromatography | Therapeutic | EVs loaded with the CB2 agonist AM1241 reversed neurodegenerative pathology and enhanced neurogenesis in mouse models, indicating that engineered EVs can serve as effective therapeutic carriers in neurodegenerative disease. | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, B.L.; Lirio, P.H.C.; Vicente, M.A.; Unzueta-Larrinaga, P.; Urigüen, L.; Campos, A.C. Extracellular Vesicles as a Potential Biomarker and Therapeutic Opportunity for Neuropsychiatric Disorders: A Hypothesis-Driven Review. Pharmaceuticals 2025, 18, 1817. https://doi.org/10.3390/ph18121817
Marques BL, Lirio PHC, Vicente MA, Unzueta-Larrinaga P, Urigüen L, Campos AC. Extracellular Vesicles as a Potential Biomarker and Therapeutic Opportunity for Neuropsychiatric Disorders: A Hypothesis-Driven Review. Pharmaceuticals. 2025; 18(12):1817. https://doi.org/10.3390/ph18121817
Chicago/Turabian StyleMarques, Bruno L., Pedro H. C. Lirio, Maria A. Vicente, Paula Unzueta-Larrinaga, Leyre Urigüen, and Alline C. Campos. 2025. "Extracellular Vesicles as a Potential Biomarker and Therapeutic Opportunity for Neuropsychiatric Disorders: A Hypothesis-Driven Review" Pharmaceuticals 18, no. 12: 1817. https://doi.org/10.3390/ph18121817
APA StyleMarques, B. L., Lirio, P. H. C., Vicente, M. A., Unzueta-Larrinaga, P., Urigüen, L., & Campos, A. C. (2025). Extracellular Vesicles as a Potential Biomarker and Therapeutic Opportunity for Neuropsychiatric Disorders: A Hypothesis-Driven Review. Pharmaceuticals, 18(12), 1817. https://doi.org/10.3390/ph18121817

