The Multifaceted Antimicrobial Profile of Piperine in Infectious Disease Management: Current Perspectives and Potential
Abstract
1. Introduction
2. Antibacterial Properties of Piperine
2.1. Antibacterial Activity Against Bacillus spp.
2.2. Antibacterial Activity Against Bacterioides fragilis
2.3. Antibacterial Activity Against Escherichia coli
2.4. Antibacterial Activity Against Helicobacter pylori
2.5. Antibacterial Activity Against Mycobacterium tuberculosis
2.6. Antibacterial Activity Against Pseudomonas aeruginosa
2.7. Antibacterial Activity Against Staphylococcus aureus
2.8. Antimicrobial Activity Against Streptococcus mutans
2.9. Antimicrobial Activity Against Vibrio cholerae
3. Antifungal Properties of Piperine
3.1. Antifungal Activity Against Aspergillus spp.
3.2. Antifungal Activity Against Candida albicans
4. Antiviral Properties of Piperine
4.1. Antiviral Activity Against Middle East Respiratory Syndrome-Related Coronavirus (MERS-CoV)
4.2. Antiviral Activity Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
4.3. Antiviral Activity Against Ebola Virus (EBOV)
4.4. Antiviral Activity Against Dengue Virus (DENV)
4.5. Antiviral Activity Against Hepatitis C Virus (HCV)
4.6. Antiviral Activity Against Zika Virus (ZKV)
4.7. Antiviral Activity Against Human Parainfluenza Virus (HPIV)
4.8. Antiviral Activity Against Indian Vesiculovirus (VSV)
5. Antiparasitic Properties of Piperine
5.1. Antiparasitic Activity Against Leishmania spp.
5.2. Antiparasitic Activity Against Malaria
5.3. Antiparasitic Activity Against Trichomonas vaginalis
5.4. Antiparasitic Activity Against Trypanosoma spp.
6. Current Knowledge, Challenges, and Future Perspectives on the Antimicrobial and Antiviral Actions of Piperine
6.1. Action Mechanisms of Piperine
6.2. Comparative Effectiveness of Piperine
6.3. Bioavailability of Piperine and Novel Delivery Solutions
6.4. Current and Future Applications
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DENV | Dengue Virus |
EBOV | Ebola Virus |
EC50 | Half-maximal Effective Concentration |
HCV | Hepatitis C Virus |
HPIV | Human Parainfluenza Virus |
IC50 | Half-maximal Inhibitory Concentration |
iNOS | Inducible Nitric Oxide Synthase |
MERS-CoV | Middle East Respiratory Syndrome-related Coronavirus |
MIC | Minimum Inhibitory Concentration |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
VSV | Indian Vesiculovirus |
WHO | World Health Organization |
ZKV | Zika Virus |
References
- Periferakis, A.T.; Periferakis, A.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; Savulescu-Fiedler, I.; Scheau, C.; Caruntu, C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023, 15, 4097. [Google Scholar] [CrossRef]
- Brinkac, L.; Voorhies, A.; Gomez, A.; Nelson, K.E. The threat of antimicrobial resistance on the human microbiome. Microb. Ecol. 2017, 74, 1001–1008. [Google Scholar] [CrossRef]
- Wang, B.; Mahsoub, H.M.; Li, W.; Heffron, C.L.; Tian, D.; Hassebroek, A.M.; LeRoith, T.; Meng, X.J. Ribavirin Treatment Failure-Associated Mutation, Y1320H, in the RNA-Dependent RNA Polymerase of Genotype 3 Hepatitis E Virus (HEV) Enhances Virus Replication in a Rabbit HEV Infection Model. mBio 2023, 14, e0337222. [Google Scholar] [CrossRef]
- Ojala, T.; Remes, S.; Haansuu, P.; Vuorela, H.; Hiltunen, R.; Haahtela, K.; Vuorela, P. Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol. 2000, 73, 299–305. [Google Scholar] [CrossRef]
- Hirai, I.; Okuno, M.; Katsuma, R.; Arita, N.; Tachibana, M.; Yamamoto, Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int. J. Food Sci. Technol. 2010, 45, 1250–1254. [Google Scholar] [CrossRef]
- Tatsimo, S.J.N.; Tamokou, J.d.D.; Havyarimana, L.; Csupor, D.; Forgo, P.; Hohmann, J.; Kuiate, J.-R.; Tane, P. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res. Notes 2012, 5, 158. [Google Scholar] [CrossRef] [PubMed]
- Al-Rifai, A.A.; Ayoub, M.T.; Shakya, A.K.; Abu Safieh, K.A.; Mubarak, M.S. Synthesis, characterization, and antimicrobial activity of some new coumarin derivatives. Med. Chem. Res. 2012, 21, 468–476. [Google Scholar] [CrossRef]
- Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.; Campopiano, D.J. Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS ONE 2014, 9, e112726. [Google Scholar] [CrossRef]
- Natarelli, N.; Gahoonia, N.; Maloh, J.; Sivamani, R.K. Clinical Efficacy of Topical or Oral Soy Supplementation in Dermatology: A Systematic Review. J. Clin. Med. 2023, 12, 4171. [Google Scholar] [CrossRef]
- Di Sotto, A.; Checconi, P.; Celestino, I.; Locatelli, M.; Carissimi, S.; De Angelis, M.; Rossi, V.; Limongi, D.; Toniolo, C.; Martinoli, L.; et al. Antiviral and Antioxidant Activity of a Hydroalcoholic Extract from Humulus lupulus L. Oxid. Med. Cell Longev. 2018, 2018, 5919237. [Google Scholar] [CrossRef]
- Popescu, G.D.A.; Scheau, C.; Badarau, I.A.; Dumitrache, M.D.; Caruntu, A.; Scheau, A.E.; Costache, D.O.; Costache, R.S.; Constantin, C.; Neagu, M.; et al. The Effects of Capsaicin on Gastrointestinal Cancers. Molecules 2020, 26, 94. [Google Scholar] [CrossRef] [PubMed]
- Yurttas, C.; Horvath, P.; Fischer, I.; Wagner, S.; Thiel, K.; Ladurner, R.; Königsrainer, I.; Königsrainer, A.; Schwab, M.; Beckert, S.; et al. Fluorescence-Guided Laparoscopy after Oral Hypericin Administration for Staging of Locally Advanced Gastric Cancer—A Pilot Study. J. Clin. Med. 2024, 13, 2422. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, M.; Kunimura, K.; Suzuki, J.I.; Kodera, Y. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Exp. Ther. Med. 2020, 19, 1550–1553. [Google Scholar] [CrossRef] [PubMed]
- Scheau, C.; Badarau, I.A.; Caruntu, C.; Mihai, G.L.; Didilescu, A.C.; Constantin, C.; Neagu, M. Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma. Molecules 2019, 24, 2350. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Bangar, S.P.; Chaudhary, V.; Sharma, N.; Bansal, V.; Ozogul, F.; Lorenzo, J.M. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 9580–9604. [Google Scholar] [CrossRef]
- Savino, R.; Medoro, A.; Ali, S.; Scapagnini, G.; Maes, M.; Davinelli, S. The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. J. Clin. Med. 2023, 12, 3520. [Google Scholar] [CrossRef]
- Scott, I.M.; Helson, B.V.; Strunz, G.M.; Finlay, H.; Sánchez-Vindas, P.E.; Poveda, L.; Lyons, D.B.; Philogène, B.J.R.; Arnason, J.T. Efficacy of Piper nigrum (Piperaceae) extract for control of insect defoliators of forest and ornamental trees. Can. Entomol. 2007, 139, 513–522. [Google Scholar] [CrossRef]
- Takooree, H.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Venugopala, K.N.; Jeewon, R.; Zengin, G.; Mahomoodally, M.F. A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications. Crit. Rev. Food Sci. Nutr. 2019, 59, S210–S243. [Google Scholar] [CrossRef]
- Srinivasan, K. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 2007, 47, 735–748. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.; Pandian, A.; Warkentin, T.D. Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: A review. Clin. Phytosci. 2021, 7, 52. [Google Scholar] [CrossRef]
- Peter, K.V. Futurology of black pepper. In Black Pepper; Ravindran, P.N., Ed.; Harwood Academic: Amsterdam, The Netherlands, 2000; pp. 481–487. [Google Scholar]
- Parthasarathy, V.A.; Chempakam, B.; Zachariah, T.J. Chemistry of Spices; CAB International: London, UK, 2008. [Google Scholar]
- Scott, I.; Gagnon, N.; Lesage, L.; Philogene, B.; Arnason, J. Efficacy of botanical insecticides from Piper species (Piperaceae) extracts for control of European chafer (Coleoptera: Scarabaeidae). J. Econ. Entomol. 2005, 98, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Naseem, M.T.; Khan, R.R. Comparison of repellency of essential oils against red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). J. Stored Prod. Postharvest Res. 2011, 2, 131–134. [Google Scholar]
- Jubair, N.; Rajagopal, M.; Chinnappan, S.; Abdullah, N.B.; Fatima, A. Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). Evid.-Based Complement. Altern. Med. 2021, 2021, 3663315. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa Reddy, P.; Jamil, K.; Madhusudhan, P.; Anjani, G.; Das, B. Antibacterial Activity of Isolates from Piper longum and Taxus baccata. Pharm. Biol. 2001, 39, 236–238. [Google Scholar] [CrossRef]
- Lakes, J.E.; Richards, C.I.; Flythe, M.D. Inhibition of Bacteroidetes and Firmicutes by select phytochemicals. Anaerobe 2020, 61, 102145. [Google Scholar] [CrossRef]
- Dusane, D.H.; Hosseinidoust, Z.; Asadishad, B.; Tufenkji, N. Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli. PLoS ONE 2014, 9, e112093. [Google Scholar] [CrossRef]
- Tharmalingam, N.; Kim, S.H.; Park, M.; Woo, H.J.; Kim, H.W.; Yang, J.Y.; Rhee, K.J.; Kim, J.B. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells. Infect. Agent Cancer 2014, 9, 43. [Google Scholar] [CrossRef]
- Tharmalingam, N.; Park, M.; Lee, M.H.; Woo, H.J.; Kim, H.W.; Yang, J.Y.; Rhee, K.J.; Kim, J.B. Piperine treatment suppresses Helicobacter pylori toxin entry in to gastric epithelium and minimizes β-catenin mediated oncogenesis and IL-8 secretion in vitro. Am. J. Transl. Res. 2016, 8, 885–898. [Google Scholar]
- Toyoda, T.; Shi, L.; Takasu, S.; Cho, Y.M.; Kiriyama, Y.; Nishikawa, A.; Ogawa, K.; Tatematsu, M.; Tsukamoto, T. Anti-Inflammatory Effects of Capsaicin and Piperine on Helicobacter pylori-Induced Chronic Gastritis in Mongolian Gerbils. Helicobacter 2016, 21, 131–142. [Google Scholar] [CrossRef]
- Sharma, S.; Kalia, N.P.; Suden, P.; Chauhan, P.S.; Kumar, M.; Ram, A.B.; Khajuria, A.; Bani, S.; Khan, I.A. Protective efficacy of piperine against Mycobacterium tuberculosis. Tuberculosis 2014, 94, 389–396. [Google Scholar] [CrossRef]
- Das, S.; Paul, P.; Dastidar, D.G.; Chakraborty, P.; Chatterjee, S.; Sarkar, S.; Maiti, D.; Tribedi, P. Piperine Exhibits Potential Antibiofilm Activity Against Pseudomonas aeruginosa by Accumulating Reactive Oxygen Species, Affecting Cell Surface Hydrophobicity and Quorum Sensing. Appl. Biochem. Biotechnol. 2023, 195, 3229–3256. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, R.; Liu, X.; Li, D.; Guo, M.; Fei, B.; Ren, Y.; You, X.; Li, Y. Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb. Pathog. 2023, 185, 106397. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Malik, M.; Dastidar, D.G.; Roy, R.; Paul, P.; Sarkar, S.; Chakraborty, P.; Maity, A.; Dasgupta, M.; Gupta, A.D.; et al. Piperine, a phytochemical prevents the biofilm city of methicillin-resistant Staphylococcus aureus: A biochemical approach to understand the underlying mechanism. Microb. Pathog. 2024, 189, 106601. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, D.; Singh, V. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans. J. Tradit. Complement. Med. 2016, 6, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, G.B.; Awasthi, S.P.; Zahid, M.S.H.; Hatanaka, N.; Hinenoya, A.; Iwaoka, E.; Aoki, S.; Ramamurthy, T.; Yamasaki, S. Piperine, an active ingredient of white pepper, suppresses the growth of multidrug-resistant toxigenic Vibrio cholerae and other pathogenic bacteria. Lett. Appl. Microbiol. 2022, 74, 472–481. [Google Scholar] [CrossRef]
- Tanaka, I.; Kutsuna, S.; Ohkusu, M.; Kato, T.; Miyashita, M.; Moriya, A.; Ohkusu, K. Bacillus subtilis variant natto Bacteremia of Gastrointestinal Origin, Japan. Emerg. Infect. Dis. 2022, 28, 1718–1719. [Google Scholar] [CrossRef]
- Patrick, S. A tale of two habitats: Bacteroides fragilis, a lethal pathogen and resident in the human gastrointestinal microbiome. Microbiology 2022, 168, 001156. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Kim, K.S. Human Meningitis-Associated Escherichia coli. EcoSal Plus 2016, 7, 10.1128/ecosalplus.ESP-0015-2015. [Google Scholar] [CrossRef]
- Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 2003, 16, 463–496. [Google Scholar] [CrossRef]
- Mazurek, G.H.; Jereb, J.; LoBue, P.; Iademarco, M.F.; Metchock, B.; Vernon, A. Guidelines for using the QuantiFERON-TB Gold test for detecting Mycobacterium tuberculosis infection, United States. MMWr Recomm. Rep. 2005, 54, 49–55. [Google Scholar] [PubMed]
- Allué-Guardia, A.; García, J.I.; Torrelles, J.B. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front. Microbiol. 2021, 12, 612675. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, S.; Zin, N.M.; Wahab, H.A.; Ibrahim, P.; Sulaiman, S.F.; Zahariluddin, A.S.M.; Noor, S.S.M. Antituberculosis potential of some ethnobotanically selected Malaysian plants. J. Ethnopharmacol. 2011, 133, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Klockgether, J.; Tümmler, B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research 2017, 6, 1261. [Google Scholar] [CrossRef]
- Buhl, M.; Peter, S.; Willmann, M. Prevalence and risk factors associated with colonization and infection of extensively drug-resistant Pseudomonas aeruginosa: A systematic review. Expert Rev. Anti-Infect. Ther. 2015, 13, 1159–1170. [Google Scholar] [CrossRef]
- Winstanley, C.; O’Brien, S.; Brockhurst, M.A. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol. 2016, 24, 327–337. [Google Scholar] [CrossRef]
- Döring, G.; Parameswaran, I.G.; Murphy, T.F. Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. FEMS Microbiol. Rev. 2011, 35, 124–146. [Google Scholar] [CrossRef]
- Bassi, G.L.; Ferrer, M.; Marti, J.D.; Comaru, T.; Torres, A. Ventilator-associated pneumonia. Semin. Respir. Crit. Care Med. 2014, 35, 469–481. [Google Scholar] [CrossRef]
- Vázquez-Martínez, J.; Buitemea-Cantúa, G.V.; Gutierrez-Villagomez, J.M.; García-González, J.P.; Ramírez-Chávez, E.; Molina-Torres, J. Bioautography and GC-MS based identification of piperine and trichostachine as the active quorum quenching compounds in black pepper. Heliyon 2020, 6, e03137. [Google Scholar] [CrossRef]
- Miranda, S.W.; Asfahl, K.L.; Dandekar, A.A.; Greenberg, E.P. Pseudomonas aeruginosa Quorum Sensing. Adv. Exp. Med. Biol. 2022, 1386, 95–115. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Lee, H.; Ha, J.; Lee, J.; Choi, Y.; Oh, H.; Yoon, Y.; Choi, K.H. icaA Gene of Staphylococcus aureus Responds to NaCl, Leading to Increased Biofilm Formation. J. Food Prot. 2018, 81, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Bedoya-Correa, C.M.; Rincón Rodríguez, R.J.; Parada-Sanchez, M.T. Genomic and phenotypic diversity of Streptococcus mutans. J. Oral. Biosci. 2019, 61, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Colwell, R.R. Global climate and infectious disease: The cholera paradigm. Science 1996, 274, 2025–2031. [Google Scholar] [CrossRef] [PubMed]
- Garay, E.; Arnau, A.; Amaro, C. Incidence of Vibrio cholerae and related vibrios in a coastal lagoon and seawater influenced by lake discharges along an annual cycle. Appl. Environ. Microbiol. 1985, 50, 426–430. [Google Scholar] [CrossRef]
- Reidl, J.; Klose, K.E. Vibrio cholerae and cholera: Out of the water and into the host. FEMS Microbiol. Rev. 2002, 26, 125–139. [Google Scholar] [CrossRef]
- Glass, R.I.; Huq, I.; Alim, A.; Yunus, M. Emergence of multiply antibiotic-resistant Vibrio cholerae in Bangladesh. J. Infect. Dis. 1980, 142, 939–942. [Google Scholar] [CrossRef]
- Das, B.; Verma, J.; Kumar, P.; Ghosh, A.; Ramamurthy, T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine 2020, 38, A83–A92. [Google Scholar] [CrossRef]
- Brown, G.D.; Denning, D.W.; Levitz, S.M. Tackling human fungal infections. Am. Assoc. Adv. Sci. 2012, 336, 647. [Google Scholar] [CrossRef]
- Moon, Y.S.; Choi, W.S.; Park, E.S.; Bae, I.K.; Choi, S.D.; Paek, O.; Kim, S.H.; Chun, H.S.; Lee, S.E. Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds. Toxins 2016, 8, 240. [Google Scholar] [CrossRef]
- Trindade, E.O.; Dutra, T.F.; Brandão, M.C.; Diniz Neto, H.; Lima, E.O.; Lira, B.F.; Athayde-Filho, P.F.d.; Barbosa-Filho, J.M. Synthesis, in silico study and antimicrobial activity of new piperine derivatives containing substituted δ-Esters. J. Braz. Chem. Soc. 2020, 31, 2590–2602. [Google Scholar] [CrossRef]
- Phuna, Z.X.; Yu, J.K.E.; Tee, J.Y.; Chuah, S.Q.; Tan, N.W.H.; Vijayabalan, S.; Abdul Manap, A.S.; Sisinthy, S.P.; Madhavan, P. In vitro evaluation of nanoemulsions of curcumin, piperine, and tualang honey as antifungal agents for Candida species. J. Appl. Biotechnol. Rep. 2020, 7, 189–197. [Google Scholar]
- Thakre, A.; Jadhav, V.; Kazi, R.; Shelar, A.; Patil, R.; Kharat, K.; Zore, G.; Karuppayil, S.M. Oxidative stress induced by piperine leads to apoptosis in Candida albicans. Med. Mycol. 2021, 59, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Guarro, J.; Xavier, M.O.; Severo, L.C. Differences and similarities amongst pathogenic Aspergillus species. In Aspergillosis: From Diagnosis to Prevention; Springer: Berlin/Heidelberg, Germany, 2010; pp. 7–32. [Google Scholar]
- Nobile, C.J.; Johnson, A.D. Candida albicans Biofilms and Human Disease. Annu. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef]
- Lavanchy, D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral Hepat. 2004, 11, 97–107. [Google Scholar] [CrossRef]
- Ly, K.N.; Xing, J.; Klevens, R.M.; Jiles, R.B.; Ward, J.W.; Holmberg, S.D. The increasing burden of mortality from viral hepatitis in the United States between 1999 and 2007. Ann. Intern. Med. 2012, 156, 271–278. [Google Scholar] [CrossRef]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef]
- Savic, M.; Penders, Y.; Shi, T.; Branche, A.; Pirçon, J.Y. Respiratory syncytial virus disease burden in adults aged 60 years and older in high-income countries: A systematic literature review and meta-analysis. Influenza Other Respir. Viruses 2023, 17, e13031. [Google Scholar] [CrossRef]
- Periferakis, A.; Bolocan, A.; Ion, D. A Review of Innovation in Medicine. Technol. Innov. Life Sci. 2022, 1, 42–48. [Google Scholar] [CrossRef]
- Zakaria, M.Y.; Fayad, E.; Althobaiti, F.; Zaki, I.; Abu Almaaty, A.H. Statistical optimization of bile salt deployed nanovesicles as a potential platform for oral delivery of piperine: Accentuated antiviral and anti-inflammatory activity in MERS-CoV challenged mice. Drug Deliv. 2021, 28, 1150–1165. [Google Scholar] [CrossRef]
- Shekunov, E.V.; Efimova, S.S.; Yudintceva, N.M.; Muryleva, A.A.; Zarubaev, V.V.; Slita, A.V.; Ostroumova, O.S. Plant Alkaloids Inhibit Membrane Fusion Mediated by Calcium and Fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 Fusion Peptides. Biomedicines 2021, 9, 1434. [Google Scholar] [CrossRef] [PubMed]
- Rout, J.; Swain, B.C.; Tripathy, U. In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2. J. Biomol. Struct. Dyn. 2022, 40, 860–874. [Google Scholar] [CrossRef] [PubMed]
- Wansri, R.; Lin, A.C.K.; Pengon, J.; Kamchonwongpaisan, S.; Srimongkolpithak, N.; Rattanajak, R.; Wilasluck, P.; Deetanya, P.; Wangkanont, K.; Hengphasatporn, K.; et al. Semi-Synthesis of N-Aryl Amide Analogs of Piperine from Piper nigrum and Evaluation of Their Antitrypanosomal, Antimalarial, and Anti-SARS-CoV-2 Main Protease Activities. Molecules 2022, 27, 2841. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.R.; Antunes, B.S.; do Nascimento, G.O.; Kawall, J.C.S.; Oliveira, J.V.B.; Silva, K.; Costa, M.A.T.; Oliveira, C.R. Antiviral activity of medicinal plant-derived products against SARS-CoV-2. Exp. Biol. Med. 2022, 247, 1797–1809. [Google Scholar] [CrossRef]
- Nag, A.; Chowdhury, R.R. Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of Dengue and Ebola viruses, an in silico molecular docking study. VirusDisease 2020, 31, 308–315. [Google Scholar] [CrossRef]
- Saputro, A.H.; Amelia, T.; Mahardhika, A.B.; Widyawaruyanti, A.; Wahyuni, T.S.; Permanasari, A.A.; Artarini, A.A.; Tjahjono, D.H.; Damayanti, S. Alpha-mangostin, piperine and beta-sitosterol as hepatitis C antivirus (HCV): In silico and in vitro studies. Heliyon 2023, 9, e20141. [Google Scholar] [CrossRef]
- Srinivasan, D.; Venkatesan, M. Activity of phytochemical constituents of black pepper and rosemary against Zika virus: An in silico approach. NanoBioScience 2021, 11, 3393–3404. [Google Scholar] [CrossRef]
- Priya, N.; Kumari, P.S. Antiviral activities and cytotoxicity assay of seed extracts of Piper longum and Piper nigrum on human cell lines. Int. J. Pharm. Sci. Rev. Res. 2017, 44, 197–202. [Google Scholar]
- Widagdo, W.; Sooksawasdi Na Ayudhya, S.; Hundie, G.B.; Haagmans, B.L. Host Determinants of MERS-CoV Transmission and Pathogenesis. Viruses 2019, 11, 280. [Google Scholar] [CrossRef]
- Chafekar, A.; Fielding, B.C. MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses 2018, 10, 93. [Google Scholar] [CrossRef]
- Santos-López, G.; Cortés-Hernández, P.; Vallejo-Ruiz, V.; Reyes-Leyva, J. SARS-CoV-2: Basic concepts, origin and treatment advances. Gac. Med. Mex. 2021, 157, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Muralidar, S.; Ambi, S.V.; Sekaran, S.; Krishnan, U.M. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie 2020, 179, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.T.; Crozier, I.; Fischer, W.A., 2nd; Hewlett, A.; Kraft, C.S.; Vega, M.A.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola virus disease. Nat. Rev. Dis. Primers 2020, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Jadav, S.S.; Kumar, A.; Ahsan, M.J.; Jayaprakash, V. Ebola virus: Current and future perspectives. Infect. Disord. Drug Targets 2015, 15, 20–31. [Google Scholar] [CrossRef]
- Marcinkiewicz, J.; Bryniarski, K.; Nazimek, K. Ebola haemorrhagic fever virus: Pathogenesis, immune responses, potential prevention. Folia Med. Cracov 2014, 54, 39–48. [Google Scholar]
- Soo, K.M.; Khalid, B.; Ching, S.M.; Chee, H.Y. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections. PLoS ONE 2016, 11, e0154760. [Google Scholar] [CrossRef]
- Pang, X.; Zhang, R.; Cheng, G. Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virol. Sin. 2017, 32, 16–22. [Google Scholar] [CrossRef]
- Oliveira, A.S.d.; Silva, M.L.d.; Oliveira, A.F.; Silva, C.C.d.; Teixeira, R.R.; De Paula, S.O. NS3 and NS5 proteins: Important targets for anti-dengue drug design. J. Braz. Chem. Soc. 2014, 25, 1759–1769. [Google Scholar] [CrossRef]
- González-Grande, R.; Jiménez-Pérez, M.; González Arjona, C.; Mostazo Torres, J. New approaches in the treatment of hepatitis C. World J. Gastroenterol. 2016, 22, 1421–1432. [Google Scholar] [CrossRef]
- Martinez, M.A.; Franco, S. Therapy Implications of Hepatitis C Virus Genetic Diversity. Viruses 2020, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, J.; Qing, J.; Huang, M.; Wu, M.; Gao, F.; Li, D.; Hong, Z.; Kong, L.; Huang, W.; et al. Discovery of Novel Hepatitis C Virus NS5B Polymerase Inhibitors by Combining Random Forest, Multiple e-Pharmacophore Modeling and Docking. PLoS ONE 2016, 11, e0148181. [Google Scholar] [CrossRef] [PubMed]
- Plourde, A.R.; Bloch, E.M. A Literature Review of Zika Virus. Emerg. Infect. Dis. 2016, 22, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Pan, P.; Lao, Z.; Xu, J.; Li, Z.; Zhan, S.; Liu, X.; Wu, Y.; Wang, W.; et al. Cinnamic acid inhibits Zika virus by inhibiting RdRp activity. Antivir. Res. 2021, 192, 105117. [Google Scholar] [CrossRef]
- King, C.; Colbourn, T. Global human parainfluenza virus estimates for action on childhood pneumonia. Lancet Glob. Health 2021, 9, e1033–e1034. [Google Scholar] [CrossRef]
- Vilchez, R.A.; Dauber, J.; McCurry, K.; Iacono, A.; Kusne, S. Parainfluenza virus infection in adult lung transplant recipients: An emergent clinical syndrome with implications on allograft function. Am. J. Transpl. 2003, 3, 116–120. [Google Scholar] [CrossRef]
- Tomczyk, T.; Orzechowska, B. Vesicular stomatitis virus (VSV) as a vaccine vector for immunization against viral infections. Postep. Hig. Med. Dosw. (Online) 2013, 67, 1345–1358. [Google Scholar] [CrossRef]
- Barber, G.N. Vesicular stomatitis virus as an oncolytic vector. Viral Immunol. 2004, 17, 516–527. [Google Scholar] [CrossRef]
- Barry, M.A.; Weatherhead, J.E.; Hotez, P.J.; Woc-Colburn, L. Childhood parasitic infections endemic to the United States. Pediatr. Clin. N. Am. 2013, 60, 471–485. [Google Scholar] [CrossRef]
- Pisarski, K. The Global Burden of Disease of Zoonotic Parasitic Diseases: Top 5 Contenders for Priority Consideration. Trop. Med. Infect. Dis. 2019, 4, 44. [Google Scholar] [CrossRef]
- Geary, T.G.; Thompson, D.P. Development of antiparasitic drugs in the 21st century. Vet. Parasitol. 2003, 115, 167–184. [Google Scholar] [CrossRef]
- Ferreira, C.; Soares, D.C.; Barreto-Junior, C.B.; Nascimento, M.T.; Freire-de-Lima, L.; Delorenzi, J.C.; Lima, M.E.F.; Atella, G.C.; Folly, E.; Carvalho, T.M.U.; et al. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry 2011, 72, 2155–2164. [Google Scholar] [CrossRef]
- Chouhan, G.; Islamuddin, M.; Ahmad, F.; Sahal, D.; Afrin, F. Antileishmanial potential of Piper nigrum seed extracts against Leishmania donovani. Open J. Med. Microbiol. 2014, 4, 228–235. [Google Scholar] [CrossRef]
- Vieira-Araújo, F.M.; Macedo Rondon, F.C.; Pinto Vieira, Í.G.; Pereira Mendes, F.N.; Carneiro de Freitas, J.C.; Maia de Morais, S. Sinergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum. Exp. Parasitol. 2018, 188, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Thiengsusuk, A.; Muhamad, P.; Chaijaroenkul, W.; Na-Bangchang, K. Antimalarial Activity of Piperine. J. Trop. Med. 2018, 2018, 9486905. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.A.; Veloso, M.P.; de Souza Reis, K.; de Matos Passarini, G.; Dos Santos, A.P.A.; do Nascimento Martinez, L.; Fokoue, H.H.; Kato, M.J.; Teles, C.B.G.; Kuehn, C.C. In silico evaluation and in vitro growth inhibition of Plasmodium falciparum by natural amides and synthetic analogs. Parasitol. Res. 2020, 119, 1879–1887. [Google Scholar] [CrossRef]
- Khairani, S.; Fauziah, N.; Wiraswati, H.L.; Panigoro, R.; Setyowati, E.Y.; Berbudi, A. Oral Administration of Piperine as Curative and Prophylaxis Reduces Parasitaemia in Plasmodium berghei ANKA-Infected Mice. J. Trop. Med. 2022, 2022, 5721449. [Google Scholar] [CrossRef]
- Jamshidi-Zad, A.; Dastan, D.; Fallah, M.; Azizi-Jalilian, F.; Matini, M. Essential Oil Components and Antitrichomonal Effects of Piper nigrum L. J. Kerman Univ. Med. Sci. 2023, 30, 207–212. [Google Scholar] [CrossRef]
- Ribeiro, T.S.; Freire-de-Lima, L.; Previato, J.O.; Mendonça-Previato, L.; Heise, N.; de Lima, M.E. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorg Med. Chem. Lett. 2004, 14, 3555–3558. [Google Scholar] [CrossRef]
- Cotinguiba, F.; Regasini, L.O.; da Silva Bolzani, V.; Debonsi, H.M.; Duó Passerini, G.; Cicarelli, R.M.B.; Kato, M.J.; Furlan, M. Piperamides and their derivatives as potential anti-trypanosomal agents. Med. Chem. Res. 2009, 18, 703–711. [Google Scholar] [CrossRef]
- Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl. Trop. Dis. 2016, 10, e0004349. [Google Scholar] [CrossRef]
- Stäger, S.; Joshi, T.; Bankoti, R. Immune evasive mechanisms contributing to persistent Leishmania donovani infection. Immunol. Res. 2010, 47, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Ashley, E.A.; Pyae Phyo, A.; Woodrow, C.J. Malaria. Lancet 2018, 391, 1608–1621. [Google Scholar] [CrossRef] [PubMed]
- Menard, D.; Dondorp, A. Antimalarial Drug Resistance: A Threat to Malaria Elimination. Cold Spring Harb. Perspect. Med. 2017, 7, a025619. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Burke, P.; Smalley, H.; Hobbs, G. Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Crit. Rev. Microbiol. 2016, 42, 406–417. [Google Scholar] [CrossRef]
- Borgna, E.; Prochetto, E.; Gamba, J.C.; Marcipar, I.; Cabrera, G. Role of myeloid-derived suppressor cells during Trypanosoma cruzi infection. Int. Rev. Cell Mol. Biol. 2023, 375, 117–163. [Google Scholar] [CrossRef]
- Priotto, G.; Franco, J.R.; Lejon, V.; Büscher, P.; Matovu, E.; Ndung’u, J.; Biéler, S.; Mumba, D.; Van Reet, N.; Verlé, P.; et al. Target product profile: Diagnostic test for Trypanosoma brucei rhodesiense. Bull. World Health Organ. 2023, 101, 529–534. [Google Scholar] [CrossRef]
- MacLean, L.; Chisi, J.E.; Odiit, M.; Gibson, W.C.; Ferris, V.; Picozzi, K.; Sternberg, J.M. Severity of human african trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infect. Immun. 2004, 72, 7040–7044. [Google Scholar] [CrossRef]
- Freire-de-Lima, L.; Ribeiro, T.S.; Rocha, G.M.; Brandão, B.A.; Romeiro, A.; Mendonça-Previato, L.; Previato, J.O.; de Lima, M.E.; de Carvalho, T.M.; Heise, N. The toxic effects of piperine against Trypanosoma cruzi: Ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms. Parasitol. Res. 2008, 102, 1059–1067. [Google Scholar] [CrossRef]
- Khameneh, B.; Eskin, N.A.M.; Iranshahy, M.; Fazly Bazzaz, B.S. Phytochemicals: A Promising Weapon in the Arsenal against Antibiotic-Resistant Bacteria. Antibiotics 2021, 10, 1044. [Google Scholar] [CrossRef]
- Abass, S.; Parveen, R.; Irfan, M.; Malik, Z.; Husain, S.A.; Ahmad, S. Mechanism of antibacterial phytoconstituents: An updated review. Arch. Microbiol. 2024, 206, 325. [Google Scholar] [CrossRef]
- Elgharbawy, A.A.; Samsudin, N.; Benbelgacem, F.F.; Hashim, Y.Z.H.-Y.; Salleh, H.M.; Santhanam, J. Phytochemicals with antifungal properties: Cure from nature. Malays. J. Microbiol. 2020, 16, 323. [Google Scholar] [CrossRef]
- Redondo-Blanco, S.; Fernández, J.; López-Ibáñez, S.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Plant phytochemicals in food preservation: Antifungal bioactivity: A review. J. Food Prot. 2020, 83, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Naithani, R.; Huma, L.C.; Holland, L.E.; Shukla, D.; McCormick, D.L.; Mehta, R.G.; Moriarty, R.M. Antiviral activity of phytochemicals: A comprehensive review. Mini Rev. Med. Chem. 2008, 8, 1106–1133. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Rocchetti, G.; Chadha, S.; Zengin, G.; Bungau, S.; Kumar, A.; Mehta, V.; Uddin, M.S.; Khullar, G.; Setia, D. Phytochemicals from plant foods as potential source of antiviral agents: An overview. Pharmaceuticals 2021, 14, 381. [Google Scholar] [CrossRef] [PubMed]
- Zholdybayeva, E.; Kozhakhmetova, S.; Bayanbek, D.; Bekbayeva, A.; Auganova, D.; Kulmambetova, G.; Tarlykov, P. Multi-omics approach for understanding the response of Bacteroides fragilis to carbapenems. Heliyon 2024, 10, e37049. [Google Scholar] [CrossRef]
- Lasko, M.J.; Gethers, M.L.; Tabor-Rennie, J.L.; Nicolau, D.P.; Kuti, J.L. In Vitro Time-Kill Studies of Trimethoprim/Sulfamethoxazole against Stenotrophomonas maltophilia versus Escherichia coli Using Cation-Adjusted Mueller-Hinton Broth and ISO-Sensitest Broth. Antimicrob. Agents Chemother. 2022, 66, e0216721. [Google Scholar] [CrossRef]
- Genestet, C.; Ader, F.; Pichat, C.; Lina, G.; Dumitrescu, O.; Goutelle, S. Assessing the Combined Antibacterial Effect of Isoniazid and Rifampin on Four Mycobacterium tuberculosis Strains Using In Vitro Experiments and Response-Surface Modeling. Antimicrob. Agents Chemother. 2018, 62, e01413-17. [Google Scholar] [CrossRef]
- Shawar, R.M.; MacLeod, D.L.; Garber, R.L.; Burns, J.L.; Stapp, J.R.; Clausen, C.R.; Tanaka, S.K. Activities of tobramycin and six other antibiotics against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 1999, 43, 2877–2880. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, B.; Zhao, H.; Wang, X.; Rao, L.; Ai, W.; Yu, J.; Guo, Y.; Wu, X.; Yu, F.; et al. In Vitro Activity of Vancomycin, Teicoplanin, Linezolid and Daptomycin Against Methicillin-Resistant Staphylococcus aureus Isolates Collected from Chinese Hospitals in 2018–2020. Infect. Drug Resist. 2021, 14, 5449–5456. [Google Scholar] [CrossRef]
- Clark, S.A.; Vinson, L.A.; Eckert, G.; Gregory, R.L. Effect of Commonly Prescribed Liquid Medications on Streptococcus mutans Biofilm. An in vitro study. J. Clin. Pediatr. Dent. 2017, 41, 141–146. [Google Scholar] [CrossRef]
- Scrascia, M.; Forcillo, M.; Maimone, F.; Pazzani, C. Susceptibility to rifaximin of Vibrio cholerae strains from different geographical areas. J. Antimicrob. Chemother. 2003, 52, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Omran, S.M.; Taghizadeh-Armaki, M.; Zarrinfar, H.; Hedayati, M.T.; Abastabar, M.; Moqarabzadeh, V.; Ansari, S.; Saber, S.; Hoseinnejad, A.; Miri, A.; et al. In-vitro antifungal susceptibility testing of lanoconazole and luliconazole against Aspergillus flavus as an important agent of invasive aspergillosis. J. Infect. Chemother. 2019, 25, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Maenchantrarath, C.; Khumdee, P.; Samosornsuk, S.; Mungkornkaew, N.; Samosornsuk, W. Investigation of fluconazole susceptibility to Candida albicans by MALDI-TOF MS and real-time PCR for CDR1, CDR2, MDR1 and ERG11. BMC Microbiol. 2022, 22, 153. [Google Scholar] [CrossRef] [PubMed]
- Pruijssers, A.J.; George, A.S.; Schäfer, A.; Leist, S.R.; Gralinksi, L.E.; Dinnon, K.H., III; Yount, B.L.; Agostini, M.L.; Stevens, L.J.; Chappell, J.D.; et al. Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Rep. 2020, 32, 107940. [Google Scholar] [CrossRef]
- Cheng, G.; Tian, Y.; Doehle, B.; Peng, B.; Corsa, A.; Lee, Y.J.; Gong, R.; Yu, M.; Han, B.; Xu, S.; et al. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir. Antimicrob. Agents Chemother. 2016, 60, 1847–1853. [Google Scholar] [CrossRef]
- Mgbeahuruike, E.E.; Stålnacke, M.; Vuorela, H.; Holm, Y. Antimicrobial and Synergistic Effects of Commercial Piperine and Piperlongumine in Combination with Conventional Antimicrobials. Antibiotics 2019, 8, 55. [Google Scholar] [CrossRef]
- Sivashanmugam, A.; Velmathi, S. Synthesis, in vitro and in silico anti-bacterial analysis of piperine and piperic ester analogues. Chem. Biol. Drug Des. 2021, 98, 19–29. [Google Scholar] [CrossRef]
- Petran, E.M.; Periferakis, A.; Troumpata, L.; Periferakis, A.T.; Scheau, A.E.; Badarau, I.A.; Periferakis, K.; Caruntu, A.; Savulescu-Fiedler, I.; Sima, R.M.; et al. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr. Issues Mol. Biol. 2024, 46, 7895–7943. [Google Scholar] [CrossRef]
- Suresh, D.V.; Mahesha, H.G.; Rao, A.G.; Srinivasan, K. Binding of bioactive phytochemical piperine with human serum albumin: A spectrofluorometric study. Biopolymers 2007, 86, 265–275. [Google Scholar] [CrossRef]
- Grace, A.N.; Pandian, K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids Surf. A Physicochem. Eng. Asp. 2007, 297, 63–70. [Google Scholar] [CrossRef]
- Turos, E.; Shim, J.-Y.; Wang, Y.; Greenhalgh, K.; Reddy, G.S.K.; Dickey, S.; Lim, D.V. Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorg. Med. Chem. Lett. 2007, 17, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Bhattacharya, J.; Mukherjee, A.; Ghosh, A.; Santra, C.; Dasgupta, A.K.; Karmakar, P. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res. Lett. 2007, 2, 614–622. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules 2011, 16, 8894–8918. [Google Scholar] [CrossRef]
- Milovanovic, M.; Arsenijevic, A.; Milovanovic, J.; Kanjevac, T.; Arsenijevic, N. Chapter 14—Nanoparticles in antiviral therapy. In Antimicrobial Nanoarchitectonics; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 383–410. [Google Scholar]
- Gurunathan, S.; Qasim, M.; Choi, Y.; Do, J.T.; Park, C.; Hong, K.; Kim, J.-H.; Song, H. Antiviral potential of nanoparticles—Can nanoparticles fight against coronaviruses? Nanomaterials 2020, 10, 1645. [Google Scholar] [CrossRef]
- Trombino, S.; Mellace, S.; Cassano, R. Solid lipid nanoparticles for antifungal drugs delivery for topical applications. Ther. Deliv. 2016, 7, 639–647. [Google Scholar] [CrossRef]
- Soliman, G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J. Pharm. 2017, 523, 15–32. [Google Scholar] [CrossRef]
- Nami, S.; Aghebati-Maleki, A.; Aghebati-Maleki, L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J. 2021, 20, 562. [Google Scholar]
- Elmi, T.; Gholami, S.; Fakhar, M.; Azizi, F. A review on the use of nanoparticles in the treatment. J. Maz. Univ. Med. Sci. 2013, 23, 126–133. [Google Scholar]
- Rahul, S.; Chandrashekhar, P.; Hemant, B.; Bipinchandra, S.; Mouray, E.; Grellier, P.; Satish, P. In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol. Int. 2015, 64, 353–356. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, D.; Pan, Y.; Qu, W.; Hao, H.; Wang, X.; Liu, Z.; Xie, S. Nanoparticles for antiparasitic drug delivery. Drug Deliv. 2019, 26, 1206–1221. [Google Scholar] [CrossRef] [PubMed]
- Teli, D.; Satasia, R.; Patel, V.; Nair, R.; Khatri, R.; Gala, D.; Balar, P.C.; Patel, K.; Sharma, A.; Vadodariya, P.; et al. Nature meets technology: Harnessing nanotechnology to unleash the power of phytochemicals. Clin. Tradit. Med. Pharmacol. 2024, 5, 200139. [Google Scholar] [CrossRef]
- Jia, L.; Zhao, Y.; Liang, X.-J. Current evaluation of the millennium phytomedicine-ginseng (II): Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine. Curr. Med. Chem. 2009, 16, 2924–2942. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Gogoi, N.R.; Vaghela, D.A.; Balar, P.C.; Dawre, S.; Dave, D.J. Parenteral microemulsions for drug delivery: Advances and update. J. Drug Deliv. Sci. Technol. 2023, 89, 104991. [Google Scholar] [CrossRef]
- Zuhrotun, A.; Oktaviani, D.J.; Hasanah, A.N. Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compounds. Molecules 2023, 28, 3240. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Pinilla, C.M.B.; Brandelli, A. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innov. Food Sci. Emerg. Technol. 2016, 36, 287–293. [Google Scholar] [CrossRef]
- Ahmady, A.R.; Solouk, A.; Saber-Samandari, S.; Akbari, S.; Ghanbari, H.; Brycki, B.E. Capsaicin-loaded alginate nanoparticles embedded polycaprolactone-chitosan nanofibers as a controlled drug delivery nanoplatform for anticancer activity. J. Colloid Interface Sci. 2023, 638, 616–628. [Google Scholar] [CrossRef]
- Cai, Z.-Y.; Li, X.-M.; Liang, J.-P.; Xiang, L.-P.; Wang, K.-R.; Shi, Y.-L.; Yang, R.; Shi, M.; Ye, J.-H.; Lu, J.-L. Bioavailability of tea catechins and its improvement. Molecules 2018, 23, 2346. [Google Scholar] [CrossRef]
- Lao, C.D.; Ruffin, M.T.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006, 6, 10. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, Y.; Xiang, M.; Wu, F.; Sun, M.; Du, X.; Chen, L. Biocompatible polyelectrolyte complex nanoparticles for lycopene encapsulation attenuate oxidative stress-induced cell damage. Front. Nutr. 2022, 9, 902208. [Google Scholar] [CrossRef]
- Teskač, K.; Kristl, J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm. 2010, 390, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, P.R.; Philbert, M.; Vu, T.Q.; Huang, Q.; Kokini, J.L.; Saos, E.; Chen, H.; Peterson, C.M.; Friedl, K.E.; McDade-Ngutter, C. Nanotechnology research: Applications in nutritional sciences. J. Nutr. 2010, 140, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Date, A.A.; Joshi, M.D.; Patravale, V.B. Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv. Drug Deliv. Rev. 2007, 59, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Matei, A.-M.; Caruntu, C.; Tampa, M.; Georgescu, S.R.; Matei, C.; Constantin, M.M.; Constantin, T.V.; Calina, D.; Ciubotaru, D.A.; Badarau, I.A. Applications of nanosized-lipid-based drug delivery systems in wound care. Appl. Sci. 2021, 11, 4915. [Google Scholar] [CrossRef]
- Scheau, C.; Didilescu, A.C.; Caruntu, C. Medical Application of Functional Biomaterials—The Future Is Now. J. Funct. Biomater. 2022, 13, 244. [Google Scholar] [CrossRef]
- Timofticiuc, I.-A.; Călinescu, O.; Iftime, A.; Dragosloveanu, S.; Caruntu, A.; Scheau, A.-E.; Badarau, I.A.; Didilescu, A.C.; Caruntu, C.; Scheau, C. Biomaterials adapted to VAT photopolymerization in 3D printing: Characteristics and medical applications. J. Funct. Biomater. 2023, 15, 7. [Google Scholar] [CrossRef]
- Timofticiuc, I.-A.; Dragosloveanu, S.; Caruntu, A.; Scheau, A.-E.; Badarau, I.A.; Garofil, N.D.; Didilescu, A.C.; Caruntu, C.; Scheau, C. 3D Bioprinting in Limb Salvage Surgery. J. Funct. Biomater. 2024, 15, 383. [Google Scholar] [CrossRef]
- Scheau, C.; Didilescu, A.C.; Caruntu, C. Innovative Biomaterials: The Cornerstone of Next-Generation Medical Solutions. J. Funct. Biomater. 2024, 15, 218. [Google Scholar] [CrossRef]
- Timofticiuc, I.-A.; Caruntu, A.; Dragosloveanu, C.D.M.; Scheau, A.-E.; Badarau, I.A.; Periferakis, A.; Dragosloveanu, S.; Didilescu, A.C.; Caruntu, C.; Scheau, C. Head and Neck 3D Bioprinting—A Review on Recent Advancements in Soft Tissue 3D Bioprinting and Medical Applications. J. Funct. Biomater. 2025, 16, 240. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, A.-T.; Troumpata, L.; Dragosloveanu, S.; Timofticiuc, I.-A.; Georgatos-Garcia, S.; Scheau, A.-E.; Periferakis, K.; Caruntu, A.; Badarau, I.A. Use of biomaterials in 3D printing as a solution to microbial infections in arthroplasty and osseous reconstruction. Biomimetics 2024, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, A.; Chrcanovic, B. Effects of the local administration of antibiotics on bone formation on implant surface in animal models: A systematic review and meta-analysis. Jpn. Dent. Sci. Rev. 2020, 56, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Steadman, W.; Chapman, P.R.; Schuetz, M.; Schmutz, B.; Trampuz, A.; Tetsworth, K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics 2023, 12, 752. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Blanco, J.; López-Torres, I.I.; Alonso-Berenguel, M.; Torres-Suárez, A.I.; Martín-Sabroso, C. Local antimicrobial delivery systems for prophylaxis and treatment of periprosthetic traumatological infections. Eur. J. Pharm. Sci. 2025, 204, 106940. [Google Scholar] [CrossRef]
- Tack, P.; Victor, J.; Gemmel, P.; Annemans, L. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online 2016, 15, 115. [Google Scholar] [CrossRef]
- Roca, M.; Villegas, L.; Kortabitarte, M.L.; Althaus, R.L.; Molina, M.P. Effect of heat treatments on stability of β-lactams in milk. J. Dairy Sci. 2011, 94, 1155–1164. [Google Scholar] [CrossRef]
- Stănciuc, N.; Râpeanu, G. 13—Kinetics of Phytochemicals Degradation During Thermal Processing of Fruits Beverages. In Non-Alcoholic Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 407–440. [Google Scholar] [CrossRef]
- Alcorn, J.B. Huastec Mayan Ethnobotany; University of Texas Press: Austin, TX, USA, 1984. [Google Scholar]
- Jain, S.K. Ethnobotany. Interdiscip. Sci. Rev. 1986, 11, 285–292. [Google Scholar] [CrossRef]
- Cotton, C.M. Ethnobotany: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Heinrich, M. Ethnobotany and its role in drug development. Phytother. Res. 2000, 14, 479–488. [Google Scholar] [CrossRef]
- Petran, M.; Dragos, D.; Gilca, M. Historical ethnobotanical review of medicinal plants used to treat children diseases in Romania (1860s–1970s). J. Ethnobiol. Ethnomed. 2020, 16, 15. [Google Scholar] [CrossRef]
- Balick, M.J.; Cox, P.A. Plants, People, and Culture: The Science of Ethnobotany; Garland Science: New York, NY, USA, 2020. [Google Scholar]
- Periferakis, A.; Tsigas, G.; Periferakis, A.-T.; Tone, C.M.; Hemes, D.A.; Periferakis, K.; Troumpata, L.; Badarau, I.A.; Scheau, C.; Caruntu, A.; et al. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr. Issues Mol. Biol. 2024, 46, 9721–9759. [Google Scholar] [CrossRef]
- Caruntu, C.; Negrei, C.; Ilie Ghita, M.; Caruntu, A.; Bădărău, A.; ioan Buraga, I.B.; Boda, D.; Albu, A.; Brănişteanu, D. Capsaicin, a hot topic in skin pharmacology and physiology. Farmacia 2015, 63, 487–491. [Google Scholar]
- Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef] [PubMed]
- Periferakis, A.; Periferakis, A.T.; Troumpata, L.; Periferakis, K.; Scheau, A.E.; Savulescu-Fiedler, I.; Caruntu, A.; Badarau, I.A.; Caruntu, C.; Scheau, C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int. J. Mol. Sci. 2023, 24, 16299. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Liu, Y.; Li, L.; Feng, J.; Lou, B.; Zhou, X.; Wu, H. Antibacterial activity of quercetin on oral infectious pathogens. Afr. J. Microbiol. Res. 2011, 5, 5358–5361. [Google Scholar] [CrossRef]
- Jaisinghani, R.N. Antibacterial properties of quercetin. Microbiol. Res. 2017, 8, 6877. [Google Scholar] [CrossRef]
- Teow, S.Y.; Ali, S.A. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pak. J. Pharm. Sci. 2015, 28, 2109–2114. [Google Scholar]
- Yun, D.G.; Lee, D.G. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl. Microbiol. Biotechnol. 2016, 100, 5505–5514. [Google Scholar] [CrossRef]
- Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health 2016, 32, 246–250. [Google Scholar] [CrossRef]
- Liao, Y.; Yao, Y.; Yu, Y.; Zeng, Y. Enhanced antibacterial activity of curcumin by combination with metal ions. Colloid. Interface Sci. Commun. 2018, 25, 1–6. [Google Scholar] [CrossRef]
- Smyth, T.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents 2009, 33, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Periferakis, A.; Periferakis, A.-T.; Troumpata, L.; Periferakis, K.; Georgatos-Garcia, S.; Touriki, G.; Dragosloveanu, C.D.M.; Caruntu, A.; Savulescu-Fiedler, I.; Dragosloveanu, S.; et al. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr. Issues Mol. Biol. 2025, 47, 204. [Google Scholar] [CrossRef] [PubMed]
- Molina-Torres, J.; García-Chávez, A.; Ramírez-Chávez, E. Antimicrobial properties of alkamides present in flavouring plants traditionally used in Mesoamerica: Affinin and capsaicin. J. Ethnopharmacol. 1999, 64, 241–248. [Google Scholar] [CrossRef]
- Rosas-Piñón, Y.; Mejía, A.; Díaz-Ruiz, G.; Aguilar, M.I.; Sánchez-Nieto, S.; Rivero-Cruz, J.F. Ethnobotanical survey and antibacterial activity of plants used in the Altiplane region of Mexico for the treatment of oral cavity infections. J. Ethnopharmacol. 2012, 141, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Flores-Vallejo, R.D.C.; Cardoso-Taketa, A.; Villarreal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2017, 208, 264–329. [Google Scholar] [CrossRef]
- Singh, G.; Marimuthu, P.; Catalan, C.; deLampasona, M. Chemical, antioxidant and antifungal activities of volatile oil of black pepper and its acetone extract. J. Sci. Food Agric. 2004, 84, 1878–1884. [Google Scholar] [CrossRef]
- Leal, S.M.; Pino, N.; Stashenko, E.E.; Martínez, J.R.; Escobar, P. Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. J. Essent. Oil Res. 2013, 25, 512–519. [Google Scholar] [CrossRef]
- Lee, S.E.; Campbell, B.C. Inhibition of aflatoxin B1 biosynthesis by piperlongumine isolated from Piper longum L. J. Microbiol. Biotechnol. 2002, 12, 679–682. [Google Scholar]
- Krahe, N.-K.; Berger, R.G.; Kahlert, L.; Ersoy, F. Co-Oxidative Transformation of Piperine to Piperonal and 3,4-Methylenedioxycinnamaldehyde by a Lipoxygenase from Pleurotus sapidus. ChemBioChem 2021, 22, 2857–2861. [Google Scholar] [CrossRef]
- Zhao, K.; Wonta, K.B.; Xia, J.; Zhong, F.; Sharma, V. Phytochemical profiling and evaluation of antimicrobial activities of common culinary spices: Syzygium aromaticum (clove) and Piper nigrum (black pepper). Front. Nutr. 2024, 11, 1447144. [Google Scholar] [CrossRef]
- Bukhari, I.A.; Alhumayyd, M.; Mahesar, A.; Gilani, A. The analgesic and anticonvulsant effects of piperine in mice. J. Physiol. Pharmacol. 2013, 64, 789. [Google Scholar]
- Kaleem, M.; Sheema, S.H.; Bano, B. Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats. Indian. J. Physiol. Pharmacol. 2005, 49, 65–71. [Google Scholar]
- Venkatachalapathi, A.; Sangeeth, T.; Ali, M.A.; Tamilselvi, S.S.; Paulsamy, S.; Al-Hemaidc, F.M.A. Ethnomedicinal assessment of Irula tribes of Walayar valley of Southern Western Ghats, India. Saudi J. Biol. Sci. 2018, 25, 760–775. [Google Scholar] [CrossRef]
- Periferakis, A.; Troumpata, L.; Periferakis, K.; Adalis, G.; Periferakis, A.; Georgatos-Garcia, S.; Maier, C.; Costache, A.; Garofil, D.; Costache, D. Traditional Ethnomedical and Ethnobotanical Applications and Uses of Piper Nigrum. R. J. Mil. Med. 2025, 128, 286–303. [Google Scholar] [CrossRef]
Family | Genus | Species | Extracted From | Type of Experiment | Toxicity Limit | Effective Concentration | Mechanism | Year | Reference |
---|---|---|---|---|---|---|---|---|---|
Bacillaceae | Bacillus | B. sphaericus | P. longum | In vitro | n/a | 12 mg/mL | n/a | 2001 | [27] |
Bacteroidaceae | Bacteroides | B. fragilis | n/a (pure compound) | In vitro | n/a | 0.10 mg/mL | Unclear | 2020 | [28] |
Enterobacteriaceae | Escherichia | E. coli | n/a (pure compound) | In vitro | n/a | up to 50 μg/mL | Slight growth inhibition (high dose) to promotion of motility (lower concentration) | 2014 | [29] |
Helicobacteraceae | Helicobacter | H. Pylori | n/a (pure compound) | In vitro | n/a | 115 μΜ | Suppression of cellular adhesion and motility | 2014 | [30] |
n/a (pure compound) | In vitro | 100 μΜ | 125 μΜ | Inhibition of virulence and pro-inflammatory factors and reduction in oncogenic potential | 2016 | [31] | |||
n/a (pure compound) | In vitro | n/a | 100 ppm | Suppression of pro-inflammatory factor secretion | 2016 | [32] | |||
Mycobacteriaceae | Mycobacterium | M. tuberculosis | n/a (pure compound) | In vivo—mice | 10 μg/mL | 1 and 10 μg/mL | Upregulation of Th1 lymphocytes and interleukin upregulation | 2014 | [33] |
Pseudomonadaceae | Pseudomonas | P. aeruginosa | n/a (pure compound) | In vitro | n/a | 8 and 16 µg/mL | Inhibition of biofilm formation, ROS accumulation, and quorum sensing system inhibition | 2023 | [34] |
n/a (pure compound) | In silico | n/a | n/a | Molecular docking | 2023 | [35] | |||
Staphylococcaceae | Staphylococcus | S. aureus | P. longum | In vitro | n/a | 12.5 μg/mL | n/a | 2001 | [27] |
S. aureus (MRSA) | n/a (pure compound) | In vitro | n/a | 8 and 16 μg/mL | n/a | 2024 | [36] | ||
Streptococcaceae | Streptococcus | S. mutans | n/a (pure compound) | In vitro | n/a | 0.33 ± 0.02 mg/mL | Inhibition of biofilm formation | 2016 | [37] |
Vibrionaceae | Vibrio | V. cholerae | P. nigrum | In vitro | n/a | 200 and 300 µg/mL | Growth inhibition | 2022 | [38] |
Family | Genus | Species | Extracted From | Type of Experiment | Toxicity Limit | Concentration | Mechanism | Year | Reference |
---|---|---|---|---|---|---|---|---|---|
Aspergillaceae | Aspergillus | A. flavus | P. nigrum | In vitro | n/a | 1000–3000 μg/mL | Aflatoxin production inhibition | 2016 | [63] |
A. fumigatus | P. nigrum | In vitro | n/a | n/a 1 | Unknown | 2020 | [64] | ||
A. niger | |||||||||
Saccharomycetaceae | Candida | C. albicans | n/a (pure compound) | In vitro | n/a | Various (alone and in mixtures) | Probably associated with oxidative stress induction | 2020 | [65] |
n/a (pure compound) | In vitro | n/a | 5–25 mg/L | Oxidative stress induction | 2021 | [66] |
Family | Genus and Species | Extracted From | Type of Experiment | Toxicity Limit | Effective Concentration | Mechanism | Year | Reference |
---|---|---|---|---|---|---|---|---|
Coronaviridae | MERS-CoV | n/a (pure compound) | In vitro | 0.6 μg/mL (ΤC50) | 14.62 ± 1.7 mcg/mL (Cmax) | Anti-inflammatory and anti-oxidant effect | 2021 | [74] |
n/a (pure compound) | In vitro | 183.33 g/mL (IC50) | n/a | Surface lipid disorganization and fusion inhibition | 2021 | [75] | ||
SARS-CoV2 | n/a (pure compound) | In vitro | 183.33 μg/mL (IC50) | 1.56 g/mL | Surface lipid disorganization and fusion inhibition | 2021 | [75] | |
n/a (pure compound) | In silico | n/a | n/a | Molecular docking | 2022 | [76] | ||
P. nigrum | In vitro | 131.67 ± 2.91 μM (EC50) | 100 μΜ (70% inhibition) | Inhibition of 3CLPro protein | 2022 | [77] | ||
P. nigrum | In vitro | n/a | 4.7 mg 1 | Increase in curcumin potency | 2022 | [78] | ||
Filoviridae | Ebola virus (EBOV) | Piper nigrum | In silico | n/a | n/a | Molecular docking | 2020 | [79] |
Flaviviridae | Dengue Virus (DENV) | Piper nigrum | In silico | n/a | n/a | Molecular docking | 2020 | [79] |
Hepatitis C virus (HCV) | n/a (pure compound) | In vitro | n/a | 52.18 ± 3.21 μM (IC50) | Replication inhibition—Binding to NS5B protein | 2023 | [80] | |
Zika virus (ZKV) | Piper nigrum | In silico | n/a | n/a | Replication inhibition—Binding to RdRp protein | 2021 | [81] | |
Paramyxoviridae | Human parainfluenza viruses (HPIV) | P. nigrum, P. longum | In vitro—HeLa cell lines | 24.18–33.43 μg/mL1 (IC50 at 48 h) | 200–1000 2 mcg | Cytotoxicity towards virus-infected cells | 2017 | [82] |
Rhabdoviridae | Indian vesiculovirus (VSV) | P. nigrum, P. longum | In vitro—HeLa cell lines | 24.18–33.43 μg/mL1 (IC50 at 48 h) | 200–1000 2 mcg | Cytotoxicity towards virus-infected cells | 2017 | [82] |
Family | Genus | Species | Extracted From | Type of Experiment | Toxicity Limit | Concentration | Mechanism | Year | Reference |
---|---|---|---|---|---|---|---|---|---|
Trypanosomatidae | Leishmania | L. amazonensis | P. nigrum | In vitro | n/a | 15 μΜ (IC50) | n/a | 2011 | [106] |
L. donovani | P. nigrum | In vivo—BALB/c mice | n/a | 14.6 μΜ (min. IC50 1) | Inhibition of the intracellular parasite stage | 2014 | [107] | ||
L. infantum | P. nigrum | In vitro | n/a | 2.09 ± 0.25 μg/mL 2 | n/a | 2018 | [108] | ||
Plasmodiidae | Plasmodium | P. falciparum | n/a (pure compound) | In vitro | n/a | 59, 111.5 μM (median IC50 depending on strain) | Perhaps an additive/synergistic effect with other phytochemicals | 2018 | [109] |
P. falciparum | P. nigrum | In vitro | >500 μΜ (CC50) | >200 μΜ (IC50) | Unknown | 2020 | [110] | ||
In silico | n/a | n/a | Molecular docking | ||||||
P. berghei | n/a (pure compound) | In vivo—Swiss Webster mice | 87.0 g/mL (TC50) 3 | 40 mg/kg bw | Parasitemia chemosuppression | 2022 | [111] | ||
P. falciparum | P. nigrum | In vitro | 131.67 ± 2.91 μM (EC50) | 24.55 ± 1.91 μM (IC50) | Unknown | 2022 | [77] | ||
Trichomonadidae | Trichomonas | T. vaginalis | P. nigrum | In vitro | No toxicity up to MLC | 156, 312, 1250 μg/mL (MLCs for different extracts) | Cell membrane disruption and ATPase inhibition 4 | 2023 | [112] |
Trypanosomatidae | Trypanosoma | T. cruzi | P. nigrum | In vitro | n/a | 4.91/7.36 μΜ (amastigotes/epimastigotes) | n/a | 2004 | [113] |
T. cruzi | P. tuberculatum | In vitro | n/a | 233 μΜ (IC50) | Reduction in biological activity | 2009 | [114] | ||
T. brucei rhodesiense | P. nigrum | In vitro | 131.67 ± 2.91 μM (EC50) | 15.46 ± 3.09 μM (IC50) | Unknown | 2022 | [77] |
Mechanism of Action | Pathogens | References |
---|---|---|
Antibacterial and Antifungal Mechanisms of Action | ||
Growth inhibition | E. coli, P. aeruginosa, V. cholerae | [29,38] |
Motility alteration | E. coli | [30] |
Cellular adhesion suppression | H. pylori | [30] |
Reduction in oncogenic potential | H. pylori | [31] |
Reduction in pro-inflammatory and virulence factors | H. pylori | [32] |
Lymphocyte upregulation | M. tuberculosis | [33] |
Interleukin upregulation | M. tuberculosis | [33] |
Biofilm formation inhibition | P. aeruginosa, S. mutans | [34,37] |
Quorum sensing system inhibition | P. aeruginosa | [34] |
ROS accumulation/oxidative stress induction | P. aeruginosa, C. albicans | [34,65,66] |
Aflatoxin production inhibition | A. flavus | [63] |
Antiviral Mechanisms of Action | ||
Anti-inflammatory effect | MERS-CoV | [74] |
Anti-oxidant effect | MERS-CoV | [74] |
Surface structure disorganization | MERS-CoV, SARS-CoV2 | [75] |
Cellular fusion inhibition | MERS-CoV, SARS-CoV2 | [75] |
Viral protein inhibition | SARS-CoV2 | [77] |
Inhibition replication | HCV | [80] |
Cytotoxicity towards infected cells | HPIV, VSV | [82] |
Antiparasitic Mechanisms of Action | ||
Intracellular parasite stage inhibition | L. donovani | [107] |
Parasitemia chemosuppression | P. berghei | [111] |
Cellular membrane disruption | T. vaginalis | [112] |
Parasite protein inhibition | T. vaginalis | [112] |
Reduction in biological activity | T. cruzi | [114] |
Pathogen | Drug | Drug EC | Piperine EC | Drug References | Piperine References |
---|---|---|---|---|---|
B. fragilis | Meropenem | 106 μg/L (MIC) | 1 μg/L | [130] | [28] |
E. coli | Trimethoprim | 0.25–4 μg/mL (MIC) | 50 μg/mL | [131] | [29] |
Sulfamethoxazole | 4.75–76 μg/mL (MIC) | ||||
M. tuberculosis | Isoniazid | 0.03–0.06 mg/L (MIC) | 104 mg/L | [132] | [33] |
Rifampin | 0.12–0.25 mg/L (MIC) | ||||
P. aeruginosa | Tobramycin | 1 μg/mL (MIC) | 8 µg/mL | [133] | [34] |
S. aureus | Vancomycin | 0.25–2 mg/L (MIC) | 8 mg/L | [134] | [36] |
Teicoplanin | 0.125–4 mg/L (MIC) | ||||
Linezolid | 0.25–4 mg/L (MIC) | ||||
Daptomycin | 0.06–1 mg/L (MIC) | ||||
S. mutans | Amoxicillin | 1.95 × 10−3 mg/mL (MIC) | 0.33 ± 0.02 mg/mL | [135] | [37] |
Penicillin | 1.95 × 10−3 mg/mL (MIC) | ||||
Clindamycin | 9.375 × 10−3 mg/mL (MIC) | ||||
V. cholerae | Rifaximin | 0.5–4 mg/L (MIC) | 200 mg/L | [136] | [38] |
A. flavus | Luliconazole | 0.004–0.062 μg/mL (MIC) | 1000–3000 μg/mL | [137] | [63] |
Lanoconazole | 0.004–0.125 μg/mL (MIC) | ||||
C. albicans | Fluconazole | 0.25–2 mg/L (MIC) | 5–25 mg/L | [138] | [66] |
SARS-CoV2 | Redemsivir | 0.01 μΜ (EC50) | 131.67 ± 2.91 μM | [139] | [77] |
HCV | Ledipasvir | 0.004–1.1 nM (EC50) | 52.18 ± 3.21 × 103 nM (IC50) | [140] | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periferakis, A.-T.; Adalis, G.-M.; Periferakis, A.; Troumpata, L.; Periferakis, K.; Dragosloveanu, C.D.M.; Caruntu, A.; Savulescu-Fiedler, I.; Dragosloveanu, S.; Scheau, A.-E.; et al. The Multifaceted Antimicrobial Profile of Piperine in Infectious Disease Management: Current Perspectives and Potential. Pharmaceuticals 2025, 18, 1581. https://doi.org/10.3390/ph18101581
Periferakis A-T, Adalis G-M, Periferakis A, Troumpata L, Periferakis K, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau A-E, et al. The Multifaceted Antimicrobial Profile of Piperine in Infectious Disease Management: Current Perspectives and Potential. Pharmaceuticals. 2025; 18(10):1581. https://doi.org/10.3390/ph18101581
Chicago/Turabian StylePeriferakis, Aristodemos-Theodoros, Grigorios-Marios Adalis, Argyrios Periferakis, Lamprini Troumpata, Konstantinos Periferakis, Christiana Diana Maria Dragosloveanu, Ana Caruntu, Ilinca Savulescu-Fiedler, Serban Dragosloveanu, Andreea-Elena Scheau, and et al. 2025. "The Multifaceted Antimicrobial Profile of Piperine in Infectious Disease Management: Current Perspectives and Potential" Pharmaceuticals 18, no. 10: 1581. https://doi.org/10.3390/ph18101581
APA StylePeriferakis, A.-T., Adalis, G.-M., Periferakis, A., Troumpata, L., Periferakis, K., Dragosloveanu, C. D. M., Caruntu, A., Savulescu-Fiedler, I., Dragosloveanu, S., Scheau, A.-E., Badarau, I. A., Scheau, C., & Caruntu, C. (2025). The Multifaceted Antimicrobial Profile of Piperine in Infectious Disease Management: Current Perspectives and Potential. Pharmaceuticals, 18(10), 1581. https://doi.org/10.3390/ph18101581