A Real-World Data Driven Pharmacovigilance Investigation on Drug-Induced Arrhythmia Using KAERS DB, a Korean Nationwide Adverse Drug Reporting System
Abstract
:1. Introduction
2. Results
2.1. Baseline Demographics
2.2. Association between Seriousness of Drug-Induced Arrhythmia and Medication Classes
2.3. Association between Seriousness of Drug-Induced Arrhythmia and Medications
2.4. Predictors Associated with an Increased Risk of Serious Arrhythmia
3. Discussion
4. Materials and Methods
4.1. Data Source and Definitions
4.2. Data Acquisition
4.3. Statistical Analysis: Descriptive Statistics
4.4. Statistical Analysis: Disproportionality and Predictor Identification Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khurshid, S.; Choi, S.H.; Weng, L.C.; Wang, E.Y.; Trinquart, L.; Benjamin, E.J.; Ellinor, P.T.; Lubitz, S.A. Frequency of cardiac rhythm abnormalities in a half million adults. Circ. Arrhythm. Electrophysiol. 2018, 11, e006273. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, X.; Liang, Y.; Bai, X.; Liu-Huo, W.-S.; Tang, C.; Chen, W.; Zhao, L. Global, regional, and national burden of disease study of atrial fibrillation/flutter, 1990–2019: Results from a global burden of disease study, 2019. BMC Public Health 2022, 22, 2015. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of atrial fibrillation in the 21st century: Novel methods and new insights. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Neha; Sardana, H.K.; Kanwade, R.; Tewary, S. Arrhythmia detection and classification using ECG and PPG techniques: A review. Phys. Eng. Sci. Med. 2021, 44, 1027–1048. [Google Scholar] [CrossRef] [PubMed]
- Kanagasundram, A.; Stevenson, W.G. Atrial fibrillation related mortality: Another curve to bend. J. Am. Heart Assoc. 2021, 10, e022555. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Choi, Y.Y.; Han, K.-D.; Min, K.; Choi, H.Y.; Shim, J.; Choi, J.-I.; Kim, Y.-H. Atrial fibrillation is associated with increased risk of lethal ventricular arrhythmias. Sci. Rep. 2021, 11, 18111. [Google Scholar] [CrossRef] [PubMed]
- LaMori, J.C.; Mody, S.H.; Gross, H.J.; daCosta DiBonaventura, M.; Patel, A.A.; Schein, J.R.; Nelson, W.W. Burden of comorbidities among patients with atrial fibrillation. Ther. Adv. Cardiovasc. Dis. 2013, 7, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Shamloo, A.S.; Dagres, N.; Arya, A.; Hindricks, G. Atrial fibrillation: A review of modifiable risk factors and preventive strategies. Rom. J. Intern. Med. 2019, 57, 99–109. [Google Scholar] [CrossRef]
- Doig, J.C. Drug-induced cardiac arrhythmias: Incidence, prevention and management. Drug Saf. 1997, 17, 265–275. [Google Scholar] [CrossRef]
- Kocadal, K.; Saygi, S.; Alkas, F.B.; Sardas, S. Drug-associated cardiovascular risks: A retrospective evaluation of withdrawn drugs. North. Clin. Istanb. 2019, 6, 196–202. [Google Scholar]
- Killeen, M.J. Drug-induced arrhythmias and sudden cardiac death: Implications for the pharmaceutical industry. Drug Discov. Today 2009, 14, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Fanoe, S.; Kristensen, D.; Fink-Jensen, A.; Jensen, H.K.; Toft, E.; Nielsen, J.; Videbech, P.; Pehrson, S.; Bundgaard, H. Risk of arrhythmia induced by psychotropic medications: A proposal for clinical management. Eur. Heart J. 2014, 35, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, J.E.; Chung, M.K.; Campbell, K.B.; Hammadah, M.; Joglar, J.A.; Leclerc, J.; Rajagopalan, B. Drug-induced arrhythmias: A scientific statement from the American Heart Association. Circulation 2020, 142, e214–e233. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Choi, E.K.; Han, K.D.; Cha, M.J.; Oh, S. Trends in the incidence and prevalence of atrial fibrillation and estimated thromboembolic risk using the CHA(2)DS(2)-VASc score in the entire Korean population. Int. J. Cardiol. 2017, 236, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Health Insurance Review & Assessment Service Statistics of Heart Disease, Septebmer 29th, World Heart Day. Available online: https://www.hira.or.kr/bbsDummy.do?pgmid=HIRAA020041000100&brdScnBltNo=4&brdBltNo=10428&pageIndex=1#none (accessed on 10 August 2023).
- Petropoulou, E.; Jamshidi, Y.; Behr, E.R. The genetics of pro-arrhythmic adverse drug reactions. Br. J. Clin. Pharmacol. 2014, 77, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Lasser, K.E.; Allen, P.D.; Woolhandler, S.J.; Himmelstein, D.U.; Wolfe, S.M.; Bor, D.H. Timing of new black box warnings and withdrawals for prescription medications. JAMA 2002, 287, 2215–2220. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, P.E. Sevoflurane and QTc prolongation: An interesting observation, or a clinically significant finding? Anesthesiology 2010, 113, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ramos, L.G. Drug-induced QT prolongation and Torsades de Pointes. Pharm. Ther. 2017, 42, 473–477. [Google Scholar]
- Forrest, J.B.; Cahalan, M.K.; Rehder, K.; Goldsmith, C.H.; Levy, W.J.; Strunin, L.; Bota, W.; Boucek, C.D.; Cucchiara, R.F.; Dhamee, S.; et al. Multicenter study of general anesthesia. II. Results. Anesthesiology 1990, 72, 262–268. [Google Scholar] [CrossRef]
- Forrest, J.B.; Rehder, K.; Cahalan, M.K.; Goldsmith, C.H. Multicenter study of general anesthesia. III. Predictors of severe perioperative adverse outcomes. Anesthesiology 1992, 76, 3–15. [Google Scholar] [CrossRef]
- Yoon, J.; Baik, J.; Cho, M.S.; Jo, J.Y.; Nam, S.; Kim, S.H.; Ku, S.; Choi, S.S. Arrhythmia incidence and associated factors during volatile induction of general anesthesia with sevoflurane: A retrospective analysis of 950 adult patients. Anaesth. Crit. Care Pain. Med. 2021, 40, 100878. [Google Scholar] [CrossRef] [PubMed]
- UptoDate. Arrhythmia during Anesthesia. Available online: https://www.uptodate.com/contents/arrhythmias-during-anesthesia (accessed on 21 August 2023).
- Khansari, M.; Sohrabi, M.; Zamani, F. The useage of opioids and their adverse effects in gastrointestinal practice: A review. Middle East. J. Dig. Dis. 2013, 5, 5–16. [Google Scholar]
- Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain. Physician 2008, 11 (Suppl. 2), S105–S120. [Google Scholar] [CrossRef] [PubMed]
- Page, R.; Blanchard, E. Opioids and cancer pain: Patients’ needs and access challenges. J. Oncol. Pract. 2019, 15, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Safdar, A.; Bodey, G.; Armstrong, D. Infections in patients with cancer: Overview. Princ. Pract. Cancer Infect. Dis. 2011, 4, 3–15. [Google Scholar]
- Behzadi, M.; Joukar, S.; Beik, A. Opioids and cardiac arrhythmia: A literature review. Med. Princ. Pract. 2018, 27, 401–414. [Google Scholar] [CrossRef]
- Krantz Mori, J.; Palmer Robert, B.; Haigney Mark, C.P. Cardiovascular complications of opioid use. J. Am. Coll. Cardiol. 2021, 77, 205–223. [Google Scholar] [CrossRef]
- Maimone, S.; Filomia, R.; Saitta, C.; Raimondo, G.; Squadrito, G. Case report: Atrial fibrillation after intravenous administration of iodinated contrast medium in a patient with hepatocellular carcinoma. Med. (Baltim.) 2015, 94, e1406. [Google Scholar] [CrossRef]
- Bottinor, W.; Polkampally, P.; Jovin, I. Adverse reactions to iodinated contrast media. Int. J. Angiol. 2013, 22, 149–154. [Google Scholar]
- Morcos, S.; Thomsen, H. Adverse reactions to iodinated contrast media. Eur. Radiol. 2001, 11, 1267–1275. [Google Scholar] [CrossRef]
- Matucci, A.; Vultaggio, A.; Fassio, F.; Rossi, O.; Maggi, E. Heart as the early main target of severe anaphylactic reactions: Two case reports. Intern. Emerg. Med. 2011, 6, 467–469. [Google Scholar] [CrossRef] [PubMed]
- Adler, J.; Colegrove, D.J. Contrast induced thyrotoxicosis in a patient with new onset atrial fibrillation: A case report and review. J. Atr. Fibrillation 2013, 6, 379. [Google Scholar] [PubMed]
- Kariki, O.; Kontonika, M.; Miliopoulos, D.; Bazoukis, G.; Vlachos, K.; Dragasis, S.; Gouziouta, A.; Letsas, K.P.; Efremidis, M.; Voudris, V. Contrast-induced early repolarization pattern and ventricular fibrillation. Clin. Case Rep. 2021, 9, e04630. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.J.; Griffin, J.F. A comparison of the incidence of cardiac arrhythmias produced by two intravenous contrast media in coronary artery disease. Clin. Radiol. 1987, 38, 399–401. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.G.; Jeong, K.; Ryu, J.Y.; Park, S.; Choi, Y.S.; Kwack, W.G.; Choi, Y.J.; Chung, E.K. Fatal events associated with adverse drug reactions in the Korean national pharmacovigilance database. J. Pers. Med. 2021, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Frommeyer, G.; Eckardt, L. Drug-induced proarrhythmia: Risk factors and electrophysiological mechanisms. Nat. Rev. Cardiol. 2016, 13, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, K.; Georgopoulos, S.; Efremidis, M.; Sideris, A.; Letsas, K.P. An update on risk factors for drug-induced arrhythmias. Expert. Rev. Clin. Pharmacol. 2016, 9, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Westerman, S.; Wenger, N. Gender differences in atrial fibrillation: A review of epidemiology, management, and outcomes. Curr. Cardiol. Rev. 2019, 15, 136–144. [Google Scholar] [CrossRef]
- Zeitler, E.P.; Poole, J.E.; Albert, C.M.; Al-Khatib, S.M.; Ali-Ahmed, F.; Birgersdotter-Green, U.; Cha, Y.M.; Chung, M.K.; Curtis, A.B.; Hurwitz, J.L.; et al. Arrhythmias in female patients: Incidence, presentation and management. Circ. Res. 2022, 130, 474–495. [Google Scholar] [CrossRef]
- Lehmann, M.H.; Timothy, K.W.; Frankovich, D.; Fromm, B.S.; Keating, M.; Locati, E.H.; Taggart, P.R.T.; Towbin, J.A.; Moss, A.J.; Schwartz, P.J.; et al. Age-gender influence on the rate-corrected QT Interval and the QT-heart rate relation in families with genotypically characterized long QT syndrome. J. Am. Coll. Cardiol. 1997, 29, 93–99. [Google Scholar] [CrossRef]
- Rabkin, S.W. Impact of age and sx on QT prolongation in paients receiving psychotropics. Can. J. Psychiatry 2015, 60, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.H.; Ehlert, F.A.; Kruse, J.T.; Parker, M.A.; Goldberger, J.J.; Kadish, A.H. Gender-specific differences in the QT interval and the effect of autonomic tone and menstrual cycle in healthy adults. Am. J. Cardiol. 1997, 79, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Barnes, B.J.; Hollands, J.M. Drug-induced arrhythmias. Crit. Care Med. 2010, 38 (Suppl. 6), S188–S197. [Google Scholar] [CrossRef]
- Hamid, A.A.A.; Rahim, R.; Teo, S.P. Pharmacovigilance and Its Importance for Primary Health Care Professionals. Korean J. Fam. Med. 2022, 43, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Celi, L.A.; Moseley, E.; Moses, C.; Ryan, P.; Somai, M.; Stone, D.; Tang, K.O. From Pharmacovigilance to Clinical Care Optimization. Big Data 2014, 2, 134–141. [Google Scholar] [CrossRef]
- HIRA Bigdata Open Portal. Human Resources on Healthcare Professionals. Available online: https://opendata.hira.or.kr/op/opc/olapHumanResourceStatInfoTab2.do (accessed on 8 November 2023).
- Alomar, M.J. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm. J. 2014, 22, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Strengthening the Reporting of Observational Studies in Epdiemiology (STROBE). Available online: https://www.strobe-statement.org/ (accessed on 25 February 2023).
- Korea Adverse Evernt Reporting System. Available online: https://kaers.drugsafe.or.kr/ (accessed on 20 February 2023).
- Shin, Y.S.; Lee, Y.W.; Choi, Y.H.; Park, B.; Jee, Y.K.; Choi, S.K.; Kim, E.G.; Park, J.W.; Hong, C.S. Spontaneous reporting of adverse drug events by Korean regional pharmacovigilance centers. Pharmacoepidemiol. Drug Saf. 2009, 18, 910–915. [Google Scholar] [CrossRef]
- Shin, J.Y.; Jung, S.Y.; Ahn, S.H.; Lee, S.H.; Kim, S.J.; Seong, J.M.; Chung, S.Y.; Park, B.J. New initiatives for pharmacovigilance in South Korea: Introducing the Korea Institute of Drug Safety and Risk Management (KIDS). Pharmacoepidemiol. Drug Saf. 2014, 23, 1115–1122. [Google Scholar] [CrossRef]
- Uppsala Monitoring Center. The Use of the WHO-UMC System for Standardised Case Causality Assessment. Available online: https://who-umc.org/media/164200/who-umc-causality-assessment_new-logo.pdf (accessed on 18 December 2022).
- International Conference on Harmonisation of Technical Requirements for Registration of Pharamceutical for Human Use. Post-Approval Safety Data Management: Definitions and Standard for Expedited Reporting E2D. Available online: https://database.ich.org/sites/default/files/E2D_Guideline.pdf (accessed on 18 December 2022).
- Micromedex. Available online: https://www.micromedexsolutions.com/home/dispatch (accessed on 8 November 2023).
- Bate, A.; Evans, S.J. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol. Drug Saf. 2009, 18, 427–436. [Google Scholar] [CrossRef]
- Caster, O.; Aoki, Y.; Gattepaille, L.M.; Grundmark, B. Disproportionality analysis for pharmacovigilance signal detection in small databases or subsets: Recommendations for limiting false-positive associations. Drug Saf. 2020, 43, 479–487. [Google Scholar] [CrossRef]
- Noseda, R.; Bonaldo, G.; Motola, D.; Stathis, A.; Ceschi, A. Adverse event reporting with immune checkpoint inhibitors in older patients: Age subgroup disproportionality analysis in VigiBase. Cancers 2021, 13, 1131. [Google Scholar] [CrossRef] [PubMed]
- Morgovan, C.; Dobrea, C.M.; Chis, A.A.; Juncan, A.M.; Arseniu, A.M.; Rus, L.L.; Gligor, F.G.; Ardelean, S.A.; Stoicescu, L.; Ghibu, S.; et al. A Descriptive Analysis of Direct Oral Anticoagulant Drugs dosing errors based on spontaneous reports from the EudraVigilance database. Pharmaceuticals 2023, 16, 455. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Choi, C.Y.; Kim, C.U.; Shin, S. A nationwide pharmacovigilance investigation on trends and seriousness of adverse events induced by anti-obesity medication. J. Glob. Health 2023, 13, 04095. [Google Scholar] [CrossRef] [PubMed]
Sex a | |
Men | 364 (55.0%) |
Women | 292 (44.1%) |
Age b | |
<20 | 10 (1.5%) |
20~39 | 29 (4.4%) |
40~59 | 61 (9.2%) |
60~79 | 197 (29.8%) |
80~99 | 28 (4.2%) |
Causality | |
Certain | 11 (1.7%) |
Probable/Likely | 91 (13.7%) |
Possible | 560 (84.5%) |
ADE type | |
Non-serious ADE | 609 (92%) |
Serious ADE | 53 (8%) |
Death | 0 (0%) |
Life-threatening condition | 20 (37.7%) |
Hospitalization and prolonged hospitalization | 19 (35.8%) |
Others | 19 (35.9%) |
Reporter Types | |
Doctors | 655 (98.9%) |
Pharmacist | 5 (0.8%) |
Nurses | 2 (0.3%) |
Indications/Comorbidities c | |
Anesthesia | 328 (49.5%) |
Cancer | 57 (8.6%) |
Cardiovascular Disorders | 55 (8.3%) |
Infections | 47 (7.1%) |
Pain | 11 (1.67%) |
Psychiatric Disorders | 4 (0.6%) |
COVID-19 | 3 (0.5%) |
Others | 102 (15.4%) |
Number of Concomitant Medications | |
1 | 575 (86.9%) |
2 | 60 (9.1%) |
≥3 | 27 (4.1%) |
Drug Class | Risk of Arrhythmia a | No SAE (n = 609) | SAE (n = 53) | Total (n = 662) |
---|---|---|---|---|
Anesthetic | 336 (55.17%) | 0 (0.00%) | 336 (50.76%) | |
Sevoflurane | very rare | 328 (53.86%) | 0 (0.00%) | 328 (49.55%) |
Propofol | reported in overdosed patients (unknown) | 8 (1.31%) | 0 (0.00%) | 8 (1.21%) |
Antipyretic drugs | 27 (4.43%) | 0 (0.00%) | 27 (4.08%) | |
Propacetamol Hydrochloride | unknown | 22 (3.61%) | 0 (0.00%) | 22 (3.32%) |
Acetaminophen | unknown | 5 (0.82%) | 0 (0.00%) | 5 (0.76%) |
Narcotic analgesic | 35 (5.75%) | 9 (16.98%) | 44 (6.65%) | |
Pethidine Hydrochloride | reported as SAE (unknown) | 15 (2.46%) | 3 (5.66%) | 18 (2.72%) |
Fentanyl Citrate | reported as SAE (unknown) | 1 (0.16%) | 6 (11.32%) | 7 (1.06%) |
Tramadol Hydrochloride | common | 11 (1.81%) | 0 (0.00%) | 11 (1.66%) |
Morphine Hydrochloride | reported as SAE | 7 (1.15%) | 0 (0.00%) | 7 (1.06%) |
Oxycodone Hydrochloride | reported in overdosed patients | 1 (0.16%) | 0 (0.00%) | 1 (0.15%) |
Antihypertensive drugs | 22 (3.61%) | 4 (7.55%) | 26 (3.93%) | |
Bisoprolol Fumarate | very common | 8 (1.31%) | 4 (7.55%) | 12 (1.81%) |
Nicardipine Hydrochloride | common | 6 (0.99%) | 0 (0.00%) | 6 (0.91%) |
Others | N/A | 8 (1.31%) | 0 (0.00%) | 8 (1.21%) |
Adrenal hormone drugs | 21 (3.45%) | 0 (0.00%) | 21 (3.17%) | |
Norepinephrine Tartrate Hydrate | common | 12 (1.97%) | 0 (0.00%) | 12 (1.81%) |
Others | N/A | 9 (1.48%) | 0 (0.00%) | 9 (1.36%) |
Antibiotics | 15 (2.46%) | 5 (9.43%) | 20 (3.02%) | |
Levofloxacin | common | 5 (0.82%) | 0 (0.00%) | 5 (0.76%) |
Cefazedone Sodium | unknown | 0 (0.00%) | 4 (7.55%) | 4 (0.60%) |
Ceftazidime Hydrate | unknown | 4 (0.66%) | 0 (0.00%) | 4 (0.60%) |
Others | N/A | 6 (0.99%) | 1 (1.89%) | 7 (1.06%) |
Peptic ulcer drugs | 19 (3.12%) | 0 (0.00%) | 19 (2.87%) | |
Famotidine | unknown | 18 (2.96%) | 0 (0.00%) | 18 (2.72%) |
Rabeprazole Sodium | rare | 1 (0.16%) | 0 (0.00%) | 1 (0.15%) |
Antispasmodic drugs | 15 (2.46%) | 4 (7.55%) | 19 (2.87%) | |
Cimetropium Bromide | reported in high doses (unknown) | 11 (1.81%) | 0 (0.00%) | 11 (1.66%) |
Atropine Sulfate Hydrate | common | 0 (0.00%) | 4 (7.55%) | 4 (0.60%) |
Scopolamine Butylbromide | uncommon | 4 (0.66%) | 0 (0.00%) | 4 (0.60%) |
Bronchodilator and Pulmonary acting agents | 13 (2.13%) | 0 (0.00%) | 13 (1.96%) | |
Salbutamol Sulfate | rare | 9 (1.48%) | 0 (0.00%) | 9 (1.36%) |
Others | N/A | 4 (0.66%) | 0 (0.00%) | 4 (0.60%) |
Sympathomimetics | 5 (0.82%) | 0 (0.00%) | 5 (0.76%) | |
Ephedrine Hydrochloride | rare | 5 (0.82%) | 0 (0.00%) | 5 (0.76%) |
Contrast media | 11 (1.81%) | 7 (13.21%) | 18 (2.72%) | |
Iohexol | rare | 4 (0.66%) | 3 (5.66%) | 7 (1.06%) |
Ioversol | rare | 3 (0.49%) | 4 (7.55%) | 7 (1.06%) |
Others | N/A | 4 (0.66%) | 0 (0.00%) | 4 (0.60%) |
Psychotropic agent | 10 (1.64%) | 4 (7.55%) | 14 (2.11%) | |
Quetiapine Fumarate | common | 5 (0.82%) | 0 (0.00%) | 5 (0.76%) |
Haloperidol | common | 1 (0.16%) | 1 (1.89%) | 2 (0.30%) |
Lorazepam | unknown | 0 (0.00%) | 2 (3.77%) | 2 (0.30%) |
Olanzapine | common with overdose | 0 (0.00%) | 1 (1.89%) | 1 (0.15%) |
Others | N/A | 4 (0.66%) | 0 (0.00%) | 4 (0.60%) |
Anti-malignant tumor drug | 9 (1.48%) | 5 (9.43%) | 14 (2.11%) | |
Paclitaxel | uncommon | 2 (0.33%) | 3 (5.66) | 5 (0.76%) |
Oxaliplatin | common | 4 (0.66%) | 0 (0.00%) | 4 (0.60%) |
Fluorouracil | uncommon | 2 (0.33%) | 0 (0.00%) | 2 (0.30%) |
Trastuzumab | very common | 2 (0.33%) | 2 (3.77) | 2 (0.30%) |
Irinotecan Hydrochloride | unknown | 1 (0.16%) | 0 (0.00%) | 1 (0.15%) |
NSAIDs | 13 (2.13%) | 0 (0.00%) | 13 (1.96%) | |
Nefopam Hydrochloride | unknown | 4 (0.66%) | 0 (0.00%) | 4 (0.60%) |
Ibuprofen | unknown | 3 (0.49%) | 0 (0.00%) | 3 (0.45%) |
Others | N/A | 6 (0.99%) | 0 (0.00%) | 6 (0.90%) |
Hypnotic sedative | 7 (1.15%) | 3 (5.66%) | 10 (1.51%) | |
Dexmedetomidine Hydrochloride | rare | 5 (0.82%) | 2 (3.77%) | 7 (1.05%) |
Midazolam | uncommon | 1 (0.16%) | 1 (1.89%) | 2 (0.30%) |
Melatonin | unknown | 1 (0.16%) | 0 (0.00%) | 1 (0.15%) |
Local Anesthetic | 4 (0.66%) | 4 (7.55%) | 8 (1.21%) | |
Lidocaine | unknown | 4 (0.66%) | 4 (7.55%) | 8 (1.21%) |
Muscle Relaxants | 3 (0.49%) | 3 (5.66%) | 6 (0.90%) | |
Rocuronium | uncommon | 3 (0.49%) | 3 (5.66%) | 6 (0.90%) |
ETC | N/A | 46 (7.55%) | 3 (5.66%) | 49 (7.40%) |
Total | N/A | 609 (100%) | 53 (100%) | 662 (100%) |
ROR (95% CI) | p-Value | OR (95% CI) | p-Value | |
---|---|---|---|---|
Age | 5.153 (1.984–13.379) | <0.05 | 1.015 (0.9941–1.036) | >0.05 |
Sex (male) | 1.480 (0.826–2.654) | 0.239 | 1.640 (0.8250–3.296) | >0.05 |
Multiple Medications | 1.193 (0.542–2.624) | 0.821 | 0.568 (0.3074–1.049) | >0.05 |
Comorbidity (Patient History) | 2.089 (1.000–4.367) | 0.082 | 1.310 (0.4995–3.434) | >0.05 |
Cancer | 2.779 (1.008–7.666) | 0.040 | 0.600 (0.1064–3.380) | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Go, C.; Kim, S.; Kim, Y.; Sunwoo, Y.; Eom, S.H.; Yun, J.; Shin, S.; Choi, Y.J. A Real-World Data Driven Pharmacovigilance Investigation on Drug-Induced Arrhythmia Using KAERS DB, a Korean Nationwide Adverse Drug Reporting System. Pharmaceuticals 2023, 16, 1612. https://doi.org/10.3390/ph16111612
Go C, Kim S, Kim Y, Sunwoo Y, Eom SH, Yun J, Shin S, Choi YJ. A Real-World Data Driven Pharmacovigilance Investigation on Drug-Induced Arrhythmia Using KAERS DB, a Korean Nationwide Adverse Drug Reporting System. Pharmaceuticals. 2023; 16(11):1612. https://doi.org/10.3390/ph16111612
Chicago/Turabian StyleGo, Chaerin, Semi Kim, Yujin Kim, Yongjun Sunwoo, Sae Hyun Eom, Jiseong Yun, Sooyoung Shin, and Yeo Jin Choi. 2023. "A Real-World Data Driven Pharmacovigilance Investigation on Drug-Induced Arrhythmia Using KAERS DB, a Korean Nationwide Adverse Drug Reporting System" Pharmaceuticals 16, no. 11: 1612. https://doi.org/10.3390/ph16111612
APA StyleGo, C., Kim, S., Kim, Y., Sunwoo, Y., Eom, S. H., Yun, J., Shin, S., & Choi, Y. J. (2023). A Real-World Data Driven Pharmacovigilance Investigation on Drug-Induced Arrhythmia Using KAERS DB, a Korean Nationwide Adverse Drug Reporting System. Pharmaceuticals, 16(11), 1612. https://doi.org/10.3390/ph16111612