The Physicochemical and Antimicrobial Properties of Silver/Gold Nanoparticles Obtained by “Green Synthesis” from Willow Bark and Their Formulations as Potential Innovative Pharmaceutical Substances
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of SAgNPs-WT
2.2. Synthesis of SauNPs-WT
2.3. Physicochemical Characterization of the Nanoparticles
2.3.1. X-ray Diffraction Analysis
2.3.2. Scanning Electron Microscopy Imaging of the Nanoparticles
2.3.3. Dynamic Light Scattering and Zeta Potential for the Polydispersity of the Nanoparticles
2.3.4. UV–Vis Characterization for Temporal Stability and the Influence of pH
2.3.5. FT-IR Spectroscopy Analysis
2.3.6. Florescence Imaging of the Silver Nanoparticles
2.4. Physicochemical Characterization of the Hydrogels with SAgNPs-WT
2.5. Antimicrobial Results
2.5.1. SAg/AuNPs-WT
- Diffusimetric method
- Antibacterial and antibiofilm effect
2.5.2. Hydrogels with SAg/NPs-WT
2.5.3. Ointments with SAg/NPs-WT
2.6. Biological Tests Results
3. Materials and Methods
3.1. Plant Material and Preparation of the Plant Extract
3.2. Biosynthesis of SAg/AuNPs-WT
3.3. Preparation of Formulations
- Ointment with SAgNPs-WT
3.4. Antimicrobial Activity
- Diffusimetric antibiogram
- Plate microdilution
The Bacterial Strains
3.5. The Samples
3.6. Evaluation of the Antimicrobial Efficiency
3.7. Characterizations Methods
3.8. Biological Tests
3.8.1. MTT Assay
3.8.2. LDH Release
3.8.3. NO Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Govindaraju, K.; Basha, S.K.; Kumar, V.G.; Singaravelu, G. Silver, gold and bimetallic nanoparticles production using sin-gle-cell protein (Spirulina platensis). Geitler. J. Mater. Sci. 2008, 43, 5115–5122. [Google Scholar] [CrossRef]
- Rai, P.K.; Kumar, V.; Lee, S.; Raza, N.; Kim, K.H.; Ok, Y.S.; Tsang, D.C. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ. Int. 2018, 119, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017, 43, 907–914. [Google Scholar] [CrossRef]
- Agarwal, H.; Kumar, S.V.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour. Effic. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Parveen, K.; Banse, V.; Ledwani, L. Green Synthesis of Nanoparticles: Their Advantages and Disadvantages. In AIP Conference Proceedings; AIP Publishing LLC: Rajasthan, India, 2016; Volume 1724, p. 020048. [Google Scholar]
- Kaabipour, S.; Hemmati, S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J. Nanotech. 2021, 12, 102–136. [Google Scholar] [CrossRef]
- Santhosh, P.B.; Genova, J.; Chamati, H. Green Synthesis of Gold Nanoparticles: An Eco-Friendly Approach. Chemistry 2022, 4, 345–369. [Google Scholar] [CrossRef]
- Mavani, K.; Shah, M. Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. Int. J. Eng. Res. Tech. 2013, 2, 1–5. [Google Scholar]
- Hachem, K.; Ansari, M.J.; Saleh, R.O.; Kzar, H.H.; Al-Gazally, M.E.; Altimari, U.S.; Hussein, S.A.; Mohammed, H.T.; Hammid, A.T.; Kianfar, E. Methods of Chemical Synthesis in the Synthesis of Nanomaterial and Nanoparticles by the Chemical Deposition Method: A Review. BioNanoScience 2022, 12, 1032–1057. [Google Scholar] [CrossRef]
- Gălăţanu, M.L.; Panţuroiu, M.; Popescu, M.; Mihăilescu, C.M. Handbook of Research on Advanced Phytochemicals and Plant-Based Drug Discovery. In Plant Extracts with Antibiotic Effect; IGI Global: Hershey, PA, USA, 2022; pp. 49–72. [Google Scholar]
- Pradeep, M.; Kruszka, D.; Kachlicki, P.; Mondal, D.; Franklin, G. Uncovering the phytochemical basis and the mechanism of plant extract-mediated eco-friendly synthesis of silver nanoparticles using ultra-performance liquid chromatography coupled with a photodiode array and high-resolution mass spectrometry. ACS Sustain. Chem. Eng. 2022, 10, 562–571. [Google Scholar] [CrossRef]
- Dowlath, M.J.H.; Musthafa, S.A.; Mohamed Khalith, S.B.; Varjani, S.; Karuppannan, S.K.; Ramanujam, G.M.; Arunachalam, A.M.; Aru-nachalam, K.D.; Chandrasekaran, M.; Chang, S.W.; et al. Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles. Environ. Res. 2021, 201, 111585. [Google Scholar] [CrossRef]
- Boldeiu, A.; Simion, M.; Mihalache, I.; Radoi, A.; Banu, M.; Varasteanu, P.; Nadejde, P.; Vasile, E.; Acasandrei, A.; Popescu, R.C.; et al. Comparative analysis of honey and citrate stabilized gold nanoparticles: In vitro interaction with proteins and toxicity studies. J. Photoch. Photobio. B 2019, 197, 111519. [Google Scholar] [CrossRef]
- Abdelmigid, H.M.; Hussien, N.A.; Alyamani, A.A.; Morsi, M.M.; AlSufyani, N.M.; Kadi, H.A. Green Synthesis of Zinc Oxide Nanoparticles Using Pomegranate Fruit Peel and Solid Coffee Grounds vs. Chemical Method of Synthesis, with Their Biocompatibility and Antibacterial Properties Investigation. Molecules 2022, 27, 1236. [Google Scholar] [CrossRef]
- Amooaghaie, R.; Saeri, M.R.; Azizi, M. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol. Environ. Saf. 2015, 120, 400–408. [Google Scholar] [CrossRef]
- Dotto, D.; Scatolini, M.; Pugini, S.; Vercik, L.; Melo, M.; Vercik, A.; Rigo, E. A novel antibacterial and biocompatible wound cover made of gelatin/chitosan with silver nanoparticles of green synthesis. Mater. Res. Express 2021, 8, 115402. [Google Scholar] [CrossRef]
- Crisan, D.; Scharffetter-Kochanek, K.; Crisan, M.; Schatz, S.; Hainzl, A.; Olenic, L.; Filip, A.; Schneider, L.A.; Sindrilaru, A.; Hainzl, H. Topical silver and gold nanoparticles complexed with Cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF-κB activity. Exp. Dermatol. 2018, 27, 1166–1169. [Google Scholar] [CrossRef] [Green Version]
- Crisan, D. Anti-Inflammatory Effect of Metallic Silver and Gold Nanoparticles Complexed with Polyphenolic Compounds in Human Chronic Stationary Plaque Psoriasis. Ph.D. Thesis, Universität Ulm, Ulm, Germany, 18 May 2016. [Google Scholar]
- Jyothi, S.L.; Krishna, K.L.; Shirin, V.A.; Sankar, R.; Pramod, K.; Gangadharappa, H.V. Drug delivery systems for the treatment of psoriasis: Current status and prospects. J. Drug Deliv. Sci. Technol. 2021, 62, 102364. [Google Scholar] [CrossRef]
- Said, L.A.; Khalaf, K.J.; Muhammad, M.K. Biosynthesis of Silver nanoparticles from Enterobacter cloacae, Raoultella ter-rigena and some other Enterobacteria and their antibacterial activity. ejbps 2016, 3, 86–92. [Google Scholar]
- Shakhatreh, M.A.; Al-Rawi, O.F.; Swedan, S.F.; Alzoubi, K.H.; Khabour, O.F.; Al-Fandi, M. Biosynthesis of silver nano-particles from Citrobacter freundii as antibiofilm agents with their cytotoxic effects on human cells. Curr. Pharm. Biotechno. 2021, 22, 1254–1263. [Google Scholar] [CrossRef]
- Kalantari, K.; Mostafavi, E.; Afifi, A.M.; Izadiyan, Z.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T.J. Wound dressings functionalized with silver nanoparticles: Promises and pitfalls. Nanoscale 2020, 12, 2268–2291. [Google Scholar] [CrossRef]
- Madkour, L.H. Biogenic–biosynthesis metallic nanoparticles (MNPs) for pharmacological, biomedical and environmental nanobiotechnological applications. Chron. Pharm. Sci. J. 2018, 2, 384–444. [Google Scholar]
- Skrigan, A.I.; Murashkevich, T.V.; Pershina, G.N.; Khorevskaya, N.M.; Pimenova, S.V. The chemical composition of the wood of some species of willow. Chem. Nat. Compd. 1967, 3, 392–395. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, N.; Luan, Y.; Sun, X. Thermogravimetry-infrared spectroscopy analysis of the pyrolysis of willow leaves, stems, and branches. Adv. Mater. Sci. Eng. 2015, 2015, 303212. [Google Scholar] [CrossRef] [Green Version]
- Burlacu, E.; Tanase, C.; Coman, N.-A.; Berta, L. A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications. Molecules 2019, 24, 4354. [Google Scholar] [CrossRef] [PubMed]
- Rossos, A.K.; Banti, C.N.; Raptis, P.K.; Papachristodoulou, C.; Sainis, I.; Zoumpoulakis, P.; Mavromoustakos, T.; Hadjikakou, S.K. Silver nanoparticles using eucalyptus or willow extracts (AgNPs) as contact lens hydrogel components to reduce the risk of microbial infection. Molecules 2021, 26, 5022. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.S.; Chen, G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today 2015, 20, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Bawazeer, S.; Rauf, A.; Shah, S.U.A.; Shawky, A.M.; Al-Awthan, Y.S.; Bahattab, O.S.; Uddin, G.; Sabir, J.; El-Esawi, M.A. Green synthesis of silver nanoparticles using Tropaeolum majus: Phytochemical screening and antibacterial studies. Green Process. Synth. 2021, 10, 85–94. [Google Scholar] [CrossRef]
- Galandáková, A.; Franková, J.; Ambrožová, N.; Habartová, K.; Pivodová, V.; Zálešák, B.; Šafářová, K.; Smékalová, M.; Ulrichova, J. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Hum. Exp. Toxicol. 2016, 35, 946–957. [Google Scholar] [CrossRef]
- Dhawan, S.; Nanda, S.; Verma, S.; Nirbhavane, P.; Singh, B. Exploring Nanoformulations of Pomegranate as Promising Nutraceuticals. In NanoNutraceuticals; CRC Press: Boca Raton, FL, USA, 2018; pp. 271–292. [Google Scholar]
- Shrestha, S.; Adhikari, S. Size Dependent Optical Properties of Silver Nanoparticles Synthesized from Fruit Extract of Malus pumila. J. Nepal Chem. Soc. 2017, 37, 43–48. [Google Scholar] [CrossRef]
- Ediyilyam, S.; Lalitha, M.M.; George, B.; Shankar, S.S.; Wacławek, S.; Černík, M.; Padil, V.V.T. Synthesis, Characterization and Physicochemical Properties of Biogenic Silver Nanoparticle-Encapsulated Chitosan Bionanocomposites. Polymers 2022, 14, 463. [Google Scholar] [CrossRef]
- Lee, J.H.; Lim, J.M.; Velmurugan, P.; Park, Y.J.; Park, Y.J.; Bang, K.S.; Oh, B.T. Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity. J. Photoch. Photobio. B 2016, 162, 93–99. [Google Scholar] [CrossRef]
- Islam, N.U.; Jalil, K.; Shahid, M.; Rauf, A.; Muhammad, N.; Khan, A.; Shah, M.R.; Khan, M.A. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab. J. Chem. 2019, 12, 2914–2925. [Google Scholar] [CrossRef] [Green Version]
- Ungureanu, D.F.; Ticiu, A.; Ungureanu, D.; Brașoveanu, A.; Popescu, C.; Popescu, L.; Olaru, M.; Costin, T.M.; Malaescu, D.G.; Buiculescu, D.; et al. The International Conference ‘Education and Creativity for a Knowledge-Based Society’—Medicine, Dental Medicine & Pharmacy, 12th ed.; Vienna National Library: Wien, Austria, 2018. [Google Scholar]
- Lim, J.J.; Shameli, K.; Ibrahim, N.A.; Tay, M.Y. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules 2011, 16, 7237–7248. [Google Scholar]
- Zhao, J.; Xiuwen, W.; Hu, J.; Liu, Q.; Shen, D.; Xiao, R. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym. Degrad. Stabil. 2014, 108, 133–138. [Google Scholar] [CrossRef]
- Pattabi, M.; Pattabi, R.M. Photoluminescence from Gold and Silver Nanoparticles. In Nano Hybrids; Trans Tech Publications Ltd.: Warsaw, Poland, 2014; Volume 6, pp. 1–35. [Google Scholar]
- Ediyilyam, S.; George, B.; Shankar, S.S.; Dennis, T.T.; Wacławek, S.; Černík, M.; Padil, V.V. Chitosan/gelatin/silver nano-particles composites films for biodegradable food packaging applications. Polymers 2021, 13, 1680. [Google Scholar] [CrossRef]
- Habibi, S.; Saket, M.; Nazockdast, H.; Hajinasrollah, K. Fabrication and characterization of exfoliated chitosan–gelatin–montmorillonite nanocomposite nanofibers. J. Text. Inst. 2019, 110, 1672–1677. [Google Scholar] [CrossRef]
- Li, L.; Lu, Y.; Chen, Y.; Bian, J.; Wang, L.; Li, L. Antibacterial Chitosan-Gelatin Microcapsules Modified with Green-Synthesized Silver Nanoparticles for Food Packaging. J. Renew. Mater. 2023, 11, 291–307. [Google Scholar] [CrossRef]
- Sethi, S.; Kaith, B.S. A review on chitosan-gelatin nanocomposites: Synthesis, characterization and biomedical applications. React. Funct. Polym. 2022, 179, 105362. [Google Scholar] [CrossRef]
- Vo, T.S.; Vo, T.T.B.C.; Nguyen, T.S.; Tien, T.T. Fabrication and Characterization of Gelatin/Chitosan Hydrogel Mem-branes. J. Turk. Chem. Soc. A 2021, 8, 1045–1056. [Google Scholar] [CrossRef]
- Simonelli, F.; Bochicchio, D.; Ferrando, R.; Rossi, G. Monolayer-protected anionic Au nanoparticles walk into lipid membranes step by step. J. Phys. Chem. Lett. 2015, 6, 3175–3179. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, O.; Ren, J.; Wu, C.; Zhao, Y. Aromaticity/bulkiness of surface ligands to promote the interaction of anionic amphiphilic gold nanoparticles with lipid bilayers. Langmuir 2016, 32, 1601–1610. [Google Scholar] [CrossRef]
- Maillard, A.P.F.; Dalmasso, P.R.; de Mishima, B.A.L.; Hollmann, A. Interaction of green silver nanoparticles with model membranes: Possible role in the antibacterial activity. Colloid. Surface. B 2018, 171, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Griess, P. Bemerkungen zu der abhandlung der H.H., Weselsky und Benedikt. Ueber einige azoverbindungen. Chem. Ber. 1879, 12, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Legrand, C.; Bour, J.M.; Jacob, C.; Capiaumont, J.; Martial, A.; Marc, A.; Wudtke, M.; Kretzmer, G.; Demangel, C.; Duval, D. Lactate dehydrogenase (LDH) activity of the cultured eukaryotic cells as marker of the number of dead cells in the medium. J. Biotechnol. 1992, 25, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Mossman, B.T. In vitro approaches for determining mechanisms of toxicity and carcinogenicity by asbestos in the gastrointestinal and respiratory tracts. Environ. Health Persp. 1983, 53, 155–161. [Google Scholar] [CrossRef]
No. | Samples | Bacteria Strains | SIR * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Staphylococcus aureus | Escherichia coli | Pseudomonas aeruginosa | |||||||||
D0 | D1 | D2 | D0 | D1 | D2 | D0 | D1 | D2 | |||
1. | SNPAu-WT 10S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 7 | Weak on P.a |
2. | Ointment 1 with SNPAg-WT 10S + Tween 20, 1% | 14.5 | 0 | 0 | 0 | 0 | 0 | 10.5 | 7 | 0 | Good on S.a and weak on P.a |
3. | Hydrogel A | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 7 | 0 | Weak on P.a |
No. | Substance | Antibiogram Diffusimetric (mm) | ||||||
---|---|---|---|---|---|---|---|---|
Staphylococcus aureus | Escherichia coli | Pseudomonas aeruginosa | SIR Interpretation | |||||
10 µL | 100 µL | 10 µL | 100 µL | 10 µL | 100 µL | |||
1. | CS 1% in acetic acid 2% (D0) | 7 | 19.5 | 0 | 22.5 | 10 | 15 | Very Sensitive |
2. | G 2.5% in water (D0) | 0 | 0 | 0 | 0 | 0 | 0 | Does not diffuse |
3. | CS + G (D1) | 0 | 0 | 10 (MR) | 20 (MR) | 0 | 0 | Does not diffuse |
4. | Hydrogel: A (D1) | 0 | 0 | 0 | 0 | 0 | 22.5 | Does not diffuse |
5. | SAgNPs-WT 10S | 0 * | 8 | 0 | 17.5 | 20 | 24 | * Colors the culture medium orange Very Sensitive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandulovici, R.C.; Carmen-Marinela, M.; Grigoroiu, A.; Moldovan, C.A.; Savin, M.; Ordeanu, V.; Voicu, S.N.; Cord, D.; Costache, G.M.; Galatanu, M.L.; et al. The Physicochemical and Antimicrobial Properties of Silver/Gold Nanoparticles Obtained by “Green Synthesis” from Willow Bark and Their Formulations as Potential Innovative Pharmaceutical Substances. Pharmaceuticals 2023, 16, 48. https://doi.org/10.3390/ph16010048
Sandulovici RC, Carmen-Marinela M, Grigoroiu A, Moldovan CA, Savin M, Ordeanu V, Voicu SN, Cord D, Costache GM, Galatanu ML, et al. The Physicochemical and Antimicrobial Properties of Silver/Gold Nanoparticles Obtained by “Green Synthesis” from Willow Bark and Their Formulations as Potential Innovative Pharmaceutical Substances. Pharmaceuticals. 2023; 16(1):48. https://doi.org/10.3390/ph16010048
Chicago/Turabian StyleSandulovici, Roxana Colette, Mihailescu Carmen-Marinela, Alexandru Grigoroiu, Carmen Aura Moldovan, Mihaela Savin, Viorel Ordeanu, Sorina Nicoleta Voicu, Daniel Cord, Gabriela Mariana Costache, Mona Luciana Galatanu, and et al. 2023. "The Physicochemical and Antimicrobial Properties of Silver/Gold Nanoparticles Obtained by “Green Synthesis” from Willow Bark and Their Formulations as Potential Innovative Pharmaceutical Substances" Pharmaceuticals 16, no. 1: 48. https://doi.org/10.3390/ph16010048
APA StyleSandulovici, R. C., Carmen-Marinela, M., Grigoroiu, A., Moldovan, C. A., Savin, M., Ordeanu, V., Voicu, S. N., Cord, D., Costache, G. M., Galatanu, M. L., Popescu, M., Sarbu, I., Mati, E., Ionescu, L. E., Neagu, R., Ţucureanu, V., Claudia, R. M., Mihalache, I., Romanitan, C., ... Dragomir, D. (2023). The Physicochemical and Antimicrobial Properties of Silver/Gold Nanoparticles Obtained by “Green Synthesis” from Willow Bark and Their Formulations as Potential Innovative Pharmaceutical Substances. Pharmaceuticals, 16(1), 48. https://doi.org/10.3390/ph16010048