Olanzapine Increases Neural Chemorepulsant—Draxin Expression in the Adult Rat Hippocampus
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shinmyo, Y.; Asrafuzzaman Riyadh, M.; Ahmed, G.; Bin Naser, I.; Tanaka, H. Draxin from neocortical neurons controls the guidance of thalamocortical projections into the neocortex. Nat. Commun. 2015, 14, 10232. [Google Scholar] [CrossRef]
- Hossain, M.; Ahmed, G.; Naser, I.B.; Shinmyo, Y.; Ito, A.; Tanaka, H. The combinatorial guidance activities of draxin and Tsukushi are essential for forebrain commissure formation. Dev. Biol. 2013, 374, 58–70. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Naser, I.B.; Su, Y.; Islam, S.M.; Shinmyo, Y.; Zhang, S.; Ahmed, G.; Chen, S.; Tanaka, H. Analysis of a repulsive axon guidance molecule, draxin, on ventrally directed axon projection in chick early embryonic midbrain. Dev. Biol. 2009, 332, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Su, Y.; Shinmyo, Y.; Islam, S.M.; Naser, I.B.; Ahmed, G.; Tamamaki, N.; Tanaka, H. Draxin, a repulsive axon guidance protein, is involved in hippocampal development. Neurosci. Res. 2010, 66, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhang, S.; Islam, S.M.; Shinmyo, Y.; Naser, I.B.; Tanaka, H. Draxin is involved in the proper development of the dI3 interneuron in chick spinal cord. Dev. Dyn. 2010, 239, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.M.; Shinmyo, Y.; Okafuji, T.; Su, Y.; Naser, I.B.; Tanaka, H. Draxin, a repulsive guidance protein for spinal cord and forebrain commissures. Science 2009, 323, 388–393. [Google Scholar] [CrossRef]
- Liu, Y.; Bhowmick, T.; Liu, Y.; Gao, X.; Mertens, H.D.T.; Meijers, R. Structural Basis for Draxin-Modulated Axon Guidance and Fasciculation by Netrin-1 through DCC. Neuron 2018, 97, 261–1267. [Google Scholar] [CrossRef] [PubMed]
- Tawarayama, H.; Yamada, H.; Amin, R.; Morita-Fujimura, Y.; Cooper, H.M.; Ikawa, S. Draxin-mediated Regulation of Granule Cell Progenitor Differentiation in the Postnatal Hippocampal Dentate Gyrus. Neuroscience 2020, 431, 184–192. [Google Scholar] [CrossRef]
- Tawarayama, H.; Yamada, H.; Amin, R.; Morita-Fujimura, Y.; Cooper, H.M.; Tanaka, H. Draxin regulates hippocampal neurogenesis in the postnatal dentate gyrus by inhibiting DCC-induced apoptosis. Sci. Rep. 2018, 16, 840. [Google Scholar] [CrossRef]
- Miyake, A.; Nihno, S.; Murakoshi, Y.; Satsuka, A.; Nakayama, Y.; Itoh, N. Neucrin, a novel secreted antagonist of canonical Wnt signaling, plays roles in developing neural tissues in zebrafish. Mech. Dev. 2012, 128, 577–590. [Google Scholar] [CrossRef]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.T.; Nasrallah, H.A. Neuroprotective effects of the second generation antipsychotics. Schizophr Res. 2019, 208, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Krzystanek, M.; Krzystanek, E.; Skałacka, K.; Pałasz, A. Enhancement in Phospholipase D Activity as a New Proposed Molecular Mechanism of Haloperidol-Induced Neurotoxicity. Int. J. Mol. Sci. 2020, 4, 23–9265. [Google Scholar]
- Huhn, M.; Nikolakopoulou, A.; Schneider-Thoma, J.; Krause, M.; Samara, M.; Peter, N.; Arndt, T.; Bäckers, L.; Rothe, P.; Cipriani, A.; et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. Lancet 2019, 14, 939–951. [Google Scholar] [CrossRef]
- Novick, D.; Montgomery, W.; Treuer, T.; Moneta, M.V.; Haro, J.M. Real-world Effectiveness of Antipsychotics for the Treatment of Negative Symptoms in Patients with Schizophrenia with Predominantly Negative Symptoms. Pharmacopsychiatry 2017, 50, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Krzystanek, M.; Pałasz, A. NMDA Receptor Model of Antipsychotic Drug-Induced Hypofrontality. Int. J. Mol. Sci. 2019, 21, 1442. [Google Scholar] [CrossRef] [PubMed]
- Bishara, D.; Olofinjana, O.; Sparshatt, A.; Kapur, S.; Taylor, D.; Patel, M.X. Olanzapine: A systematic review and meta-regression of the relationships between dose, plasma concentration, receptor occupancy, and response. J. Clin. Psychopharmacol. 2013, 33, 329–335. [Google Scholar] [CrossRef]
- Olijslagers, J.E.; Werkman, T.R.; McCreary, A.C.; Kruse, C.G.; Wadman, W.J. Modulation of midbrain dopamine neurotransmission by serotonin, a versatile interaction between neurotransmitters and significance for antipsychotic drug action. Curr. Neuropharmacol. 2006, 4, 59–68. [Google Scholar] [CrossRef]
- Duggan, L.; Fenton, M.; Rathbone, J.; Dardennes, R.; El-Dosoky, A.; Indran, S. Olanzapine for schizophrenia. Cochrane Database Syst. Rev. 2005, 18, CD001359. [Google Scholar] [CrossRef]
- Wakade, C.G.; Mahadik, S.P.; Waller, J.L.; Chiu, F.C. Atypical neuroleptics stimulate neurogenesis in adult rat brain. J. Neurosci. Res. 2002, 1, 72–79. [Google Scholar] [CrossRef]
- Bai, O.; Chlan-Fourney, J.; Bowen, R.; Keegan, D.; Li, X.M. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J. Neurosci. Res. 2003, 71, 1127–1131. [Google Scholar] [CrossRef]
- Lieberman, J.A.; Tollefson, G.D.; Charles, C.; Zipursky, R.; Sharma, T.; Kahn, R.S.; Keefe, R.S.; Green, A.I.; Gur, R.E.; McEvoy, J.; et al. HGDH Study Group. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch. Gen. Psychiatry 2005, 62, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Vita, A.; De Peri, L.; Deste, G.; Barlati, S.; Sacchetti, E. The Effect of Antipsychotic Treatment on Cortical Gray Matter Changes in Schizophrenia: Does the Class Matter? A Meta-analysis and Meta-regression of Longitudinal Magnetic Resonance Imaging Studies. Biol. Psychiatry. 2015, 78, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.T.; Zhang, Y.; Liu, R.; Wang, X.D.; Su, Y.A. Prenatal Exposure to Antipsychotics Disrupts the Plasticity of Dentate Neurons and Memory in Adult Male Mice. Int. J. Neuropsychopharmacol. 2019, 22, 71–82. [Google Scholar] [CrossRef]
- Zheng, P.; Hu, M.; Xie, Y.; Yu, Y.; Jaaro-Peled, H.; Huang, X.F. Aripiprazole and haloperidol protect neurite lesions via reducing excessive D2R-DISC1 complex formation. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 92, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cui, H.; Wang, L.; Kang, L.; Huang, G.; Su, Y. Potential Involvement of Draxin in the Axonal Projection of Cranial Nerves, Especially Cranial Nerve X, in the Chick Hindbrain. J. Histochem. Cytochem. 2016, 64, 412–424. [Google Scholar] [CrossRef]
- Łasut, B.; Pałasz, A.; Filipczyk, L.; Arias-Carrion, O.; Rojczyk, E.; Wiaderkiewicz, R. Long-term Treatment with Olanzapine Increases the Number of Sox2 and Doublecortin Expressing Cells in the Adult Subventricular Zone. CNS Neurol. Disord. Drug Targets 2018, 17, 458–463. [Google Scholar] [CrossRef]
- Song, J.C.; Seo, M.K.; Park, S.W.; Lee, J.G.; Kim, Y.H. Differential Effects of Olanzapine and Haloperidol on MK-801-induced Memory Impairment in Mice. Clin. Psychopharmacol. Neurosci. 2016, 31, 279–285. [Google Scholar] [CrossRef]
- Rojczyk, E.; Pałasz, A.; Wiaderkiewicz, R. Effects of neuroleptics administration on adult neurogenesis in the rat hypothalamus. Pharmacol. Rep. 2015, 67, 1208–1214. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Y.; Huang, X.F. Olanzapine Prevents the PCP-induced Reduction in the Neurite Outgrowth of Prefrontal Cortical Neurons via NRG1. Sci. Rep. 2016, 6, 19581. [Google Scholar] [CrossRef]
- Matsushima, Y.; Terada, K.; Takata, J.; Karube, Y.; Kamei, C.; Sugimoto, Y. Effects of fluvoxamine on nerve growth factor-induced neurite outgrowth inhibition by dexamethasone in PC12 cells. Biosci. Biotechnol. Biochem. 2019, 83, 659–665. [Google Scholar] [CrossRef]
- Hoeffer, C.A.; Klann, E. mTOR signaling: At the crossroads of plasticity, memory and disease. Trends Neurosci. 2010, 33, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Takamura, N.; Nakagawa, S.; Masuda, T.; Boku, S.; Kato, A.; Kusumi, I. The effect of dopamine on adult hippocampal neurogenesis. Prog Neuropsychopharmacol. Biol. Psychiatry. 2014, 50, 116–124. [Google Scholar]
- Höglinger, G.U.; Rizk, P.; Muriel, M.P.; Duyckaerts, C.; Oertel, W.H.; Hirsch, E.C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci. 2004, 7, 726–735. [Google Scholar] [CrossRef]
- Singh, K.P.; Singh, M.K.; Singh, M. Effects of prenatal exposure to antipsychotic risperidone on developmental neurotoxicity, apoptotic neurodegeneration and neurobehavioral sequelae in rat offspring. Int. J. Dev. Neurosci. 2016, 52, 13–23. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pałasz, A.; Suszka-Świtek, A.; Francikowski, J.; Krzystanek, M.; Bogus, K.; Skałbania, J.; Worthington, J.J.; Mrzyk, I. Olanzapine Increases Neural Chemorepulsant—Draxin Expression in the Adult Rat Hippocampus. Pharmaceuticals 2021, 14, 298. https://doi.org/10.3390/ph14040298
Pałasz A, Suszka-Świtek A, Francikowski J, Krzystanek M, Bogus K, Skałbania J, Worthington JJ, Mrzyk I. Olanzapine Increases Neural Chemorepulsant—Draxin Expression in the Adult Rat Hippocampus. Pharmaceuticals. 2021; 14(4):298. https://doi.org/10.3390/ph14040298
Chicago/Turabian StylePałasz, Artur, Aleksandra Suszka-Świtek, Jacek Francikowski, Marek Krzystanek, Katarzyna Bogus, Jakub Skałbania, John J. Worthington, and Inga Mrzyk. 2021. "Olanzapine Increases Neural Chemorepulsant—Draxin Expression in the Adult Rat Hippocampus" Pharmaceuticals 14, no. 4: 298. https://doi.org/10.3390/ph14040298
APA StylePałasz, A., Suszka-Świtek, A., Francikowski, J., Krzystanek, M., Bogus, K., Skałbania, J., Worthington, J. J., & Mrzyk, I. (2021). Olanzapine Increases Neural Chemorepulsant—Draxin Expression in the Adult Rat Hippocampus. Pharmaceuticals, 14(4), 298. https://doi.org/10.3390/ph14040298