Efficacy and Safety of Tirzepatide in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Phase II/III Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Quality Assessment
2.5. Data Analysis
3. Results
3.1. Study Characteristics
3.2. Meta-Analyses
3.2.1. Efficacy of Tirzepatide on Glycated Hemoglobin
3.2.2. Efficacy of Tirzepatide on Fasting Serum Glucose
3.2.3. Effect of Tirzepatide on Body Weight
3.2.4. Overall Safety
3.2.5. Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 7843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerstein, H.; Pogue, J.; Mann, J.; Lonn, E.; Dagenais, G.; McQueen, M.; Yusuf, S. The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: A prospective epidemiological analysis. Diabetologia 2005, 48, 1749–1755. [Google Scholar] [CrossRef] [Green Version]
- Bailes, B.K. Diabetes mellitus and its chronic complications. AORN J. 2002, 76, 265–282. [Google Scholar] [CrossRef] [Green Version]
- Colagiuri, S. Optimal management of type 2 diabetes: The evidence. Diabetes Obes. Metab. 2012, 14, 3–8. [Google Scholar] [CrossRef]
- Min, T.; Bain, S.C. The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2021, 12, 143–157. [Google Scholar] [CrossRef]
- Palmer, S.C.; Tendal, B.; Mustafa, R.A.; Vandvik, P.O.; Li, S.; Hao, Q.; Tunnicliffe, D.; Ruospo, M.; Natale, P.; Saglimbene, V.; et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: Systematic review and network meta-analysis of randomised controlled trials. BMJ 2021, 372, m4573. [Google Scholar] [CrossRef]
- Andersen, A.; Lund, A.; Knop, F.K.; Vilsbøll, T. Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 2018, 14, 390–403. [Google Scholar] [CrossRef]
- Holst, J.J.; Rosenkilde, M.M. GIP as a Therapeutic Target in Diabetes and Obesity: Insight from Incretin Co-agonists. J. Clin. Endocrinol. Metab. 2020, 105, e2710–e2716. [Google Scholar] [CrossRef]
- Coskun, T.; Sloop, K.W.; Loghin, C.; Alsina-Fernandez, J.; Urva, S.; Bokvist, K.B.; Cui, X.; Briere, D.A.; Cabrera, O.; Roell, W.C.; et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol. Metab. 2018, 18, 3–14. [Google Scholar] [CrossRef]
- Frías, J.P. Tirzepatide: A glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) dual agonist in development for the treatment of type 2 diabetes. Expert. Rev. Endocrinol. Metab. 2020, 15, 379–394. [Google Scholar] [CrossRef]
- Nauck, M.; Bartels, E.; Orskov, C.; Ebert, R.; Creutzfeldt, W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J. Clin. Endocrinol. Metab. 1993, 76, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Elahi, D.; McAloon-Dyke, M.; Fukagawa, N.K.; Meneilly, G.S.; Sclater, A.L.; Minaker, K.L.; Habener, J.F.; Andersen, D.K. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul. Pept. 1994, 51, 63–74. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, Ed000142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions. 2019. Available online: https://training.cochrane.org/handbook/current (accessed on 27 July 2021).
- Rosenstock, J.; Wysham, C.; Frías, J.P.; Kaneko, S.; Lee, C.J.; Fernández Landó, L.; Mao, H.; Cui, X.; Karanikas, C.A.; Thieu, V.T. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): A double-blind, randomised, phase 3 trial. Lancet 2021, 398, 143–155. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Kutner, M.E.; Cui, X.; Benson, C.; Urva, S.; Gimeno, R.E.; Milicevic, Z.; Robins, D.; et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018, 392, 2180–2193. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Benson, C.; Bray, R.; Cui, X.; Milicevic, Z.; Urva, S.; Haupt, A.; Robins, D.A. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: A 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes. Metab. 2020, 22, 938–946. [Google Scholar] [CrossRef]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef]
- Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S90–S102. [CrossRef] [Green Version]
- Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S111–S124. [CrossRef] [PubMed]
- Gault, V.A.; Kerr, B.D.; Harriott, P.; Flatt, P.R. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity. Clin. Sci. 2011, 121, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04657016 (accessed on 31 August 2021).
- A Study of Tirzepatide (LY3298176) in Participants with Obesity or Overweight for the Maintenance of Weight Loss (SURMOUNT-4). Available online: https://clinicaltrials.gov/ct2/show/NCT04660643 (accessed on 31 August 2021).
- A Study of Tirzepatide (LY3298176) In Participants after a Lifestyle Weight Loss Program (SURMOUNT-3). Available online: https://clinicaltrials.gov/ct2/show/NCT04657016 (accessed on 31 August 2021).
- A Study of Tirzepatide (LY3298176) Versus Insulin Lispro (U100) in Participants with Type 2 Diabetes Inadequately Controlled on Insulin Glargine (U100) with or without Metformin (SURPASS-6). Available online: https://clinicaltrials.gov/ct2/show/NCT04537923 (accessed on 31 August 2021).
- A Study of Tirzepatide in Participants with Type 2 Diabetes Mellitus (T2DM). Available online: https://clinicaltrials.gov/ct2/show/NCT03951753 (accessed on 31 August 2021).
- A Study of Tirzepatide (LY3298176) in Participants with Type 2 Diabetes Who Have Obesity or Are Overweight (SURMOUNT-2). Available online: https://clinicaltrials.gov/ct2/show/NCT04657003 (accessed on 31 August 2021).
- Sun, F.; Chai, S.; Yu, K.; Quan, X.; Yang, Z.; Wu, S.; Zhang, Y.; Ji, L.; Wang, J.; Shi, L. Gastrointestinal adverse events of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetes Technol. Ther. 2015, 17, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Study of Tirzepatide (LY3298176) Compared with Dulaglutide on Major Cardiovascular Events in Participants with Type 2 Diabetes (SURPASS-CVOT). 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04255433 (accessed on 31 August 2021).
Author Name | NCTID | Location | Design | Participants Condition at Baseline | Disease Duration (years) | Primary Outcome | Treatment Duration (weeks) | Intervention | Patients on Metformin Therapy (%) | Number Randomized | Age (Years) | Male (%) | Average Change in HbA1c (%) From Baseline |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rosenstock J et al., 2021 [17] | NCT03954834 (SURPASS-1) | India, Japan, Mexico, and USA | Multicenter, double-blind, randomized, placebo-controlled, phase 3 trial | T2DM ([HbA1c] 7.0–9.5%) that was inadequately controlled with diet and exercise alone. They were naive to injectable diabetes therapy. | 4.7 | Change in HbA1c | 40 | Tirzepatide 5 mg/day | NR | 121 | 54.1 | 46 | −1.87 |
Tirzepatide 10 mg/day | NR | 121 | 55.8 | 60 | −1.89 | ||||||||
Tirzepatide 15 mg/day | NR | 121 | 52.9 | 52 | −2.07 | ||||||||
Placebo | NR | 115 | 53.6 | 49 | 0.04 | ||||||||
Frias JP et al., 2018 [18] | NCT03131687 | Poland, Puerto Rico, Slovakia, and USA | Multicenter, phase 2b, randomized, double-blind study | T2DM for at least 6 months ([HbA1c] 7.0–10.5%) that was inadequately controlled with diet and exercise alone or with stable metformin therapy for at least 3 months before screening. | 9.0 | Change in HbA1c | 26 | Tirzepatide 1 mg/day | 88.5 | 52 | 57.4 | 56 | −0.7 |
Tirzepatide 5 mg/day | 89.1 | 55 | 57.9 | 62 | −1.6 | ||||||||
Tirzepatide 10 mg/day | 86.3 | 51 | 56.5 | 59 | −2.0 | ||||||||
Tirzepatide 15 mg/day | 96.2 | 53 | 56.0 | 42 | −2.4 | ||||||||
Dulaglutide 1.5 mg/day | 88.1 | 54 | 58.7 | 44 | −1.1 | ||||||||
Placebo | 92.2 | 51 | 56.6 | 57 | 0.1 | ||||||||
Frias JP et al., 2020 [19] | NCT03311724 (SURPASS) | USA | Multicenter, phase 2, randomized, double-blind, placebo-controlled | T2DM for at least 6 months ([HbA1c] 7.0–10.5%) that was inadequately controlled with diet and exercise alone or with stable metformin therapy. | 9.1 | Change in HbA1c | 12 | Tirzepatide 12 mg/day | 86.2 | 29 | 61.2 | 51.7 | −1.7 |
Tirzepatide 15 mg/day-1 | 89.3 | 28 | 55.5 | 57.1 | −2 | ||||||||
Tirzepatide 15 mg/day-2 | 82.1 | 28 | 56.6 | 82.1 | −1.8 | ||||||||
Placebo | 88.5 | 26 | 56 | 46.2 | 0.2 | ||||||||
Frias JP et al., 2021 [20] | NCT03987919 (SURPASS-2) | USA, UK, Argentina, Australia, Brazil, Canada, Israel, Mexico | Multicenter, phase 3, open-label, parallel-group, randomized, active-controlled | T2DM for at least 6 months ([HbA1c] 7.0–10.5%) that was inadequately controlled with metformin therapy. | 8.6 | Change in HbA1c | 40 | Tirzepatide 5 mg/day | 100 | 470 | 56.3 | 43.6 | −2.01 |
Tirzepatide 10 mg/day | 100 | 469 | 57.2 | 50.7 | −2.24 | ||||||||
Tirzepatide 15 mg/day | 100 | 470 | 55.9 | 45.5 | −2.3 | ||||||||
Semaglutide 1 mg/day | 100 | 469 | 56.9 | 48 | −1.86 |
Events | Proportion (95% CI) | I2 | Phetetogeneity | |||
---|---|---|---|---|---|---|
Total | Tirzepatide, 5 mg | Tirzepatide, 10 mg | Tirzepatide, 15 mg | |||
Total adverse events | 70 (67–74) | 66 (61–71) | 70 (65–75) | 73 (65–81) | 58.5% | 0.305 |
Serious adverse events | 4 (2–6) | 5 (1–8) | 4 (1–7) | 3 (0–7) | 73.2% | 0.071 |
Hypoglycaemia | 3 (2–5) | 4 (1–8) | 5 (1–11) | 7 (2–13) | 80.1% | 0.594 |
All gastrointestinal events | 44 (40–48) | 39 (35–43) | 46 (42–49) | 50 (38–61) | 63.6% | 0.025 |
Nausea | 5 (2–7) | 1 (0–2) | 3 (0–7) | 12 (6–18) | 89.9% | <0.001 |
Diarrhea | 3 (2–5) | 0 (0–1) | 3 (1–8) | 13 (6–19) | 89.9% | <0.001 |
Adverse events leading to discontinuation of therapy | 7 (5–8) | 5 (3–8) | 7 (5–10) | 8 (4–12) | 51.7% | 0.441 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhagavathula, A.S.; Vidyasagar, K.; Tesfaye, W. Efficacy and Safety of Tirzepatide in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Phase II/III Trials. Pharmaceuticals 2021, 14, 991. https://doi.org/10.3390/ph14100991
Bhagavathula AS, Vidyasagar K, Tesfaye W. Efficacy and Safety of Tirzepatide in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Phase II/III Trials. Pharmaceuticals. 2021; 14(10):991. https://doi.org/10.3390/ph14100991
Chicago/Turabian StyleBhagavathula, Akshaya Srikanth, Kota Vidyasagar, and Wubshet Tesfaye. 2021. "Efficacy and Safety of Tirzepatide in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Phase II/III Trials" Pharmaceuticals 14, no. 10: 991. https://doi.org/10.3390/ph14100991
APA StyleBhagavathula, A. S., Vidyasagar, K., & Tesfaye, W. (2021). Efficacy and Safety of Tirzepatide in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Phase II/III Trials. Pharmaceuticals, 14(10), 991. https://doi.org/10.3390/ph14100991