Abstract
Scientific studies have demonstrated how certain insect species can be used as bioindicators and reverse environmental degradation through their behavior and organization. Studying these species involves capturing and extracting hundreds of insects from a colony for subsequent study, analysis, and observation. This allows researchers to classify the individuals and also determine the organizational structure and behavioral patterns of the insects within colonies. The miniaturization of hardware devices for data and image acquisition, coupled with new Artificial Intelligence techniques such as Scene Graph Generation (SGG), has evolved from the detection and recognition of objects in an image to the understanding of relationships between objects and the ability to produce textual descriptions based on image content and environmental parameters. This research paper presents the design and functionality of a distributed computing architecture for image and video acquisition of bees and ants in their natural environment, in addition to a parallel computing architecture that hosts two datasets with images of real environments from which scene graphs are generated to recognize, classify, and analyze the behaviors of bees and ants while preserving and protecting these species. The experiments that were carried out are classified into two categories, namely the recognition and classification of objects in the image and the understanding of the relationships between objects and the generation of textual descriptions of the images. The results of the experiments, conducted in real-life environments, show recognition rates above 70%, classification rates above 80%, and comprehension and generation of textual descriptions with an assertive rate of 85%.