Inferring Mental States via Linear and Non-Linear Body Movement Dynamics: A Pilot Study
Highlights
- This pilot study shows that body movement trajectories predict acute stress with moderate-to-high accuracy; workload and uncertainty were not reliably classified.
- The most informative movement-related features were primarily linear spectral and statistical measures, rather than non-linear chaos/complexity metrics.
- Whole-body movement sensing can serve as a low-burden indicator of acute stress for real-time sensing in the context of adaptive human–machine systems.
- Effective monitoring of workload and uncertainty may require larger training samples or multimodal fusion such as pairing with eye, voice, or peripheral physiology.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants, Design & Procedure
2.2. Data Processing
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| CAVE | Cave Automatic Virtual Environment |
| EEG | Electroencephalography |
| DEVCOM | Combat Capabilities Development Command |
| fNIRS | Functional Near-Infrared Spectroscopy |
| FDP | False Discovery Proportion |
| FDR | False Discovery Rate |
| FFT | Fast Fourier Transform |
| IMU | Inertial Measurement Unit |
| IR | Infrared |
| NONAN | Nonlinear Analysis Core |
| OMC | Optical Motion Capture |
| PANAS | Positive and Negative Affect Schedule |
| ROC | Receiver Operating Characteristic |
| AUC | Area Under the Curve |
| SMI | SensoMotoric Instruments |
| STAI | State-Trait Anxiety Inventory |
| TSFEL | Time Series Feature Extraction Library |
| TSFRESH | Time Series Feature Extraction on basis of Scalable Hypothesis tests |
| VRSQ | Virtual Reality Sickness Questionnaire |
| 6DOFs | Six Degrees of Freedom |
References
- MacDonald, W. The Impact of Job Demands and Workload on Stress and Fatigue|EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/doi:10.1080%2F00050060310001707107?sid=ebsco:plink:crawler&id=ebsco:doi:10.1080%2F00050060310001707107 (accessed on 11 August 2025).
- Liu, D.; Peterson, T.; Vincenzi, D.; Doherty, S. Effect of Time Pressure and Target Uncertainty on Human Operator Performance and Workload for Autonomous Unmanned Aerial System. Int. J. Ind. Ergon. 2016, 51, 52–58. [Google Scholar] [CrossRef]
- Phillips-Wren, G.; Adya, M. Decision Making under Stress: The Role of Information Overload, Time Pressure, Complexity, and Uncertainty. J. Decis. Syst. 2020, 29, 213–225. [Google Scholar] [CrossRef]
- Brunyé, T.T.; Goring, S.A.; Navarro, E.; Hart-Pomerantz, H.; Grekin, S.; McKinlay, A.M.; Plessow, F. Identifying the Most Effective Acute Stress Induction Methods for Producing SAM- and HPA-Related Physiological Responses: A Meta-Analysis. Anxiety Stress Coping 2025, 38, 263–285. [Google Scholar] [CrossRef]
- Russell, G.; Lightman, S. The Human Stress Response. Nat. Rev. Endocrinol. 2019, 15, 525–534. [Google Scholar] [CrossRef]
- Oken, B.S.; Chamine, I.; Wakeland, W. A Systems Approach to Stress, Stressors and Resilience in Humans. Behav. Brain Res. 2015, 282, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Plass, J.L.; Moreno, R.; Brünken, R. Cognitive Load Theory; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0-521-86023-9. [Google Scholar]
- Sweller, J. Chapter Two—Cognitive Load Theory. In Psychology of Learning and Motivation; Mestre, J.P., Ross, B.H., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 55, pp. 37–76. [Google Scholar]
- Engström, J.; Markkula, G.; Victor, T.; Merat, N. Effects of Cognitive Load on Driving Performance: The Cognitive Control Hypothesis. Hum. Factors 2017, 59, 734–764. [Google Scholar] [CrossRef]
- Brunyé, T.T.; Gardony, A.L. Eye Tracking Measures of Uncertainty during Perceptual Decision Making. Int. J. Psychophysiol. 2017, 120, 60–68. [Google Scholar] [CrossRef]
- Aston, S.; Nardini, M.; Beierholm, U. Different Types of Uncertainty in Multisensory Perceptual Decision Making. Philos. Trans. R. Soc. B Biol. Sci. 2023, 378, 20220349. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.K.; Pitz, G.F. Confidence, Uncertainty, and the Use of Information. J. Exp. Psychol. Learn. Mem. Cogn. 1988, 14, 85–92. [Google Scholar] [CrossRef]
- Vine, S.J.; Moore, L.J.; Wilson, M.R. An Integrative Framework of Stress, Attention, and Visuomotor Performance. Front. Psychol. 2016, 7, 1671. [Google Scholar] [CrossRef] [PubMed]
- Brunyé, T.T.; Goring, S.A.; Cantelon, J.A.; Eddy, M.D.; Elkin-Frankston, S.; Elmore, W.R.; Giles, G.E.; Hancock, C.L.; Masud, S.B.; McIntyre, J.; et al. Trait-Level Predictors of Human Performance Outcomes in Personnel Engaged in Stressful Laboratory and Field Tasks. Front. Psychol. 2024, 15, 1449200. [Google Scholar] [CrossRef]
- Bruggen, A. An Empirical Investigation of the Relationship between Workload and Performance. Manag. Decis. 2015, 53, 2377–2389. [Google Scholar] [CrossRef]
- Smith, J.D.; Jackson, B.N.; Church, B.A. The Cognitive Architecture of Uncertainty. Anim. Behav. Cogn. 2019, 6, 236–246. [Google Scholar] [CrossRef]
- Morgado, P.; Sousa, N.; Cerqueira, J.J. The Impact of Stress in Decision Making in the Context of Uncertainty. J. Neurosci. Res. 2015, 93, 839–847. [Google Scholar] [CrossRef]
- Seok, D.; Lee, S.; Kim, M.; Cho, J.; Kim, C. Motion Artifact Removal Techniques for Wearable EEG and PPG Sensor Systems. Front. Electron. 2021, 2, 685513. [Google Scholar] [CrossRef]
- Peck, E.M.; Afergan, D.; Yuksel, B.F.; Lalooses, F.; Jacob, R.J.K. Using fNIRS to Measure Mental Workload in the Real World. In Advances in Physiological Computing; Fairclough, S.H., Gilleade, K., Eds.; Springer: London, UK, 2014; pp. 117–139. ISBN 978-1-4471-6392-3. [Google Scholar]
- Sirois, S.; Brisson, J. Pupillometry. WIREs Cogn. Sci. 2014, 5, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Doumas, M.; Morsanyi, K.; Young, W.R. Cognitively and Socially Induced Stress Affects Postural Control. Exp. Brain Res. 2018, 236, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Richer, R.; Koch, V.; Abel, L.; Hauck, F.; Kurz, M.; Ringgold, V.; Müller, V.; Küderle, A.; Schindler-Gmelch, L.; Eskofier, B.M.; et al. Machine Learning-Based Detection of Acute Psychosocial Stress from Body Posture and Movements. Sci. Rep. 2024, 14, 8251. [Google Scholar] [CrossRef]
- Ghanavati, T.; Salavati, M.; Karimi, N.; Negahban, H.; Ebrahimi Takamjani, I.; Mehravar, M.; Hessam, M. Intra-Limb Coordination While Walking Is Affected by Cognitive Load and Walking Speed. J. Biomech. 2014, 47, 2300–2305. [Google Scholar] [CrossRef]
- Mitra, S.; Knight, A.; Munn, A. Divergent Effects of Cognitive Load on Quiet Stance and Task-Linked Postural Coordination. J. Exp. Psychol. Hum. Percept. Perform. 2013, 39, 323–328. [Google Scholar] [CrossRef]
- Givens, D.B.; White, J. The Routledge Dictionary of Nonverbal Communication; Routledge: London, UK, 2021; ISBN 978-0-429-29366-5. [Google Scholar]
- Hutchins, E.; Palen, L. Constructing Meaning from Space, Gesture, and Speech. In Discourse, Tools and Reasoning: Essays on Situated Cognition; Resnick, L.B., Säljö, R., Pontecorvo, C., Burge, B., Eds.; NATO ASI Series; Springer: Berlin/Heidelberg, Germany, 1997; pp. 23–40. ISBN 978-3-662-03362-3. [Google Scholar]
- Melinger, A.; Levelt, W.J.M. Gesture and the Communicative Intention of the Speaker. Gesture 2004, 4, 119–141. [Google Scholar] [CrossRef]
- Brunyé, T.T.; Haga, Z.D.; Houck, L.A.; Taylor, H.A. You Look Lost: Understanding Uncertainty and Representational Flexibility in Navigation. In Representations in Mind and World: Essays Inspired by Barbara Tversky; Zacks, J.M., Taylor, H.A., Eds.; Routledge: New York, NY, USA, 2017; pp. 42–56. ISBN 978-1-315-16978-1. [Google Scholar]
- Lorås, H.; Sandseter, E.B.H.; Sando, O.J.; Storli, L. Distinct Clusters of Movement Entropy in Children’s Exploration of a Virtual Reality Balance Beam. Front. Psychol. 2023, 14, 1227469. [Google Scholar] [CrossRef]
- Goodridge, C.M.; Gonçalves, R.C.; Arabian, A.; Horrobin, A.; Solernou, A.; Lee, Y.T.; Lee, Y.M.; Madigan, R.; Merat, N. Gaze Entropy Metrics for Mental Workload Estimation Are Heterogenous during Hands-off Level 2 Automation. Accid. Anal. Prev. 2024, 202, 107560. [Google Scholar] [CrossRef]
- Keshmiri, S. Entropy and the Brain: An Overview. Entropy 2020, 22, 917. [Google Scholar] [CrossRef]
- Valenza, G.; Allegrini, P.; Lanatà, A.; Scilingo, E.P. Dominant Lyapunov Exponent and Approximate Entropy in Heart Rate Variability during Emotional Visual Elicitation. Front. Neuroeng. 2012, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Parbat, D.; Chakraborty, M. A Novel Methodology to Study the Cognitive Load Induced EEG Complexity Changes: Chaos, Fractal and Entropy Based Approach. Biomed. Signal Process. Control. 2021, 64, 102277. [Google Scholar] [CrossRef]
- Ekizos, A.; Santuz, A.; Schroll, A.; Arampatzis, A. The Maximum Lyapunov Exponent During Walking and Running: Reliability Assessment of Different Marker-Sets. Front. Physiol. 2018, 9, 1101. [Google Scholar] [CrossRef] [PubMed]
- Winter, L.; Taylor, P.; Bellenger, C.; Grimshaw, P.; Crowther, R.G. The Application of the Lyapunov Exponent to Analyse Human Performance: A Systematic Review. J. Sports Sci. 2023, 41, 1994–2013. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Lau, Z.J.; Pham, T.; Chen, S.H.A.; Makowski, D. Brain Entropy, Fractal Dimensions and Predictability: A Review of Complexity Measures for EEG in Healthy and Neuropsychiatric Populations. Eur. J. Neurosci. 2022, 56, 5047–5069. [Google Scholar] [CrossRef]
- Brunyé, T.T.; McIntyre, J.; Hughes, G.I.; Miller, E.L. Movement Sensing Opportunities for Monitoring Dynamic Cognitive States. Sensors 2024, 24, 7530. [Google Scholar] [CrossRef]
- Biggs, A.T. Developing Scenarios That Evoke Shoot/Don’t-Shoot Errors. Appl. Ergon. 2021, 94, 103397. [Google Scholar] [CrossRef]
- Chung, G.K.W.K.; De La Cruz, G.C.; de Vries, L.F.; Kim, J.-O.; Bewley, W.L.; de Souza e Silva, A.; Sylvester, R.M.; Baker, E.L. Determinants of Rifle Marksmanship Performance: Predicting Shooting Performance with Advanced Distributed Learning Assessments; University of California Los Angeles: Los Angeles, CA, USA, 2004. [Google Scholar]
- Azevedo, T.M.; Volchan, E.; Imbiriba, L.A.; Rodrigues, E.C.; Oliveira, J.M.; Oliveira, L.F.; Lutterbach, L.G.; Vargas, C.D. A Freezing-like Posture to Pictures of Mutilation. Psychophysiology 2005, 42, 255–260. [Google Scholar] [CrossRef]
- Woodward, S.H.; Shurick, A.A.; Alvarez, J.; Kuo, J.; Nonyieva, Y.; Blechert, J.; McRae, K.; Gross, J.J. Seated Movement Indexes Emotion and Its Regulation in Posttraumatic Stress Disorder. Psychophysiology 2015, 52, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Brunyé, T.T.; Hayes, J.F.; Mahoney, C.R.; Gardony, A.L.; Taylor, H.A.; Kanarek, R.B. Get in My Belly: Food Preferences Trigger Approach and Avoidant Postural Asymmetries. PLoS ONE 2013, 8, e72432. [Google Scholar] [CrossRef]
- Kosonogov, V.; Martínez-Selva, J.M.; Torrente, G.; Carrillo-Verdejo, E.; Arenas, A.; Sánchez-Navarro, J.P. Head Motion Elicited by Viewing Affective Pictures as Measured by a New LED-Based Technique. Multisensory Res. 2019, 32, 575–588. [Google Scholar] [CrossRef]
- Behnke, M.; Bianchi-Berthouze, N.; Kaczmarek, L.D. Head Movement Differs for Positive and Negative Emotions in Video Recordings of Sitting Individuals. Sci. Rep. 2021, 11, 7405. [Google Scholar] [CrossRef] [PubMed]
- Brunyé, T.T.; Giles, G.E. Methods for Eliciting and Measuring Behavioral and Physiological Consequences of Stress and Uncertainty in Virtual Reality. Front. Virtual Real. 2023, 4, 951435. [Google Scholar] [CrossRef]
- Okano, K.; Lee, M.M.; Hart-Pomerantz, H.; Smith, M.; Sandone, M.K.; Harvey, T.; Brunyé, T.T. Effects of Repeated Cranial Electrotherapy Stimulation on Physiological and Behavioral Responses to Acute Stress: A Double-Blind Randomized Clinical Trial. Front. Hum. Neurosci. 2025, 19, 1641801. [Google Scholar] [CrossRef] [PubMed]
- Unity Technologies, Inc. Unity3d Engine 2022. Available online: https://unity.com/releases/editor/whats-new/2022.3.62f3#notes (accessed on 11 August 2025).
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, P.R.; Vagg, P.R.; Jacobs, G.A. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, J.; Choi, Y.; Choe, M. Virtual Reality Sickness Questionnaire (VRSQ): Motion Sickness Measurement Index in a Virtual Reality Environment. Appl. Ergon. 2018, 69, 66–73. [Google Scholar] [CrossRef]
- Barandas, M.; Folgado, D.; Fernandes, L.; Santos, S.; Abreu, M.; Bota, P.; Liu, H.; Schultz, T.; Gamboa, H. TSFEL: Time Series Feature Extraction Library. SoftwareX 2020, 11, 100456. [Google Scholar] [CrossRef]
- Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time Series FeatuRe Extraction on Basis of Scalable Hypothesis Tests (Tsfresh—A Python Package). Neurocomputing 2018, 307, 72–77. [Google Scholar] [CrossRef]
- UNO Biomechanics Nonlinear-Analysis-Core/NONANLibrary 2020. Available online: https://www.mathworks.com/matlabcentral/fileexchange/71907-uno-biomechanics-nonlinear-analysis-toolbox (accessed on 11 August 2025).
- Machkour, J.; Muma, M.; Palomar, D.P. The Terminating-Random Experiments Selector: Fast High-Dimensional Variable Selection with False Discovery Rate Control. Signal Process. 2022, 231, 109894. [Google Scholar] [CrossRef]
- Koenig-Robert, R.; Quek, G.L.; Grootswagers, T.; Varlet, M. Movement Trajectories as a Window into the Dynamics of Emerging Neural Representations. Sci. Rep. 2024, 14, 11499. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.M.; Mahdi, A.; Kamel, A.Z.; Jawad, H.F.; Saad, A. Prevalence and Factors Associated with Enhanced Physiologic Tremor among Health Personnel: A Cross-Sectional Study. Int. J. Occup. Saf. Ergon. 2025, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.-S.; Chen, Y.-C.; Wu, P.-S. Differential Load Impact upon Arm Tremor Dynamics and Coordinative Strategy between Postural Holding and Position Tracking. Eur. J. Appl. Physiol. 2009, 105, 945–957. [Google Scholar] [CrossRef]
- Charles, P.D.; Esper, G.J.; Davis, T.L.; Maciunas, R.J.; Robertson, D. Classification of Tremor and Update on Treatment. Am. Fam. Physician 1999, 59, 1565–1572. [Google Scholar] [PubMed]
- Budini, F.; Mocnik, R.; Tilp, M.; Crognale, D. Mental Calculation Increases Physiological Postural Tremor, but Does Not Influence Physiological Goal-Directed Kinetic Tremor. Eur. J. Appl. Physiol. 2022, 122, 2661–2671. [Google Scholar] [CrossRef]
- Wilson, M. Six Views of Embodied Cognition. Psychon. Bull. Rev. 2002, 9, 625–636. [Google Scholar] [CrossRef]
- Dove, G. On the Need for Embodied and Dis-Embodied Cognition. Front. Psychol. 2010, 1, 242. [Google Scholar] [CrossRef]
- Lakie, M. The Influence of Muscle Tremor on Shooting Performance. Exp. Physiol. 2010, 95, 441–450. [Google Scholar] [CrossRef]
- Nieuwenhuys, A.; Oudejans, R.R.D. Anxiety and Perceptual-Motor Performance: Toward an Integrated Model of Concepts, Mechanisms, and Processes. Psychol. Res. 2012, 76, 747–759. [Google Scholar] [CrossRef]
- Freeman, J.B.; Ambady, N. MouseTracker: Software for Studying Real-Time Mental Processing Using a Computer Mouse-Tracking Method. Behav. Res. Methods 2010, 42, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Dale, R.; Farmer, T. Hand in Motion Reveals Mind in Motion. Front. Psychol. 2011, 2, 59. [Google Scholar] [CrossRef] [PubMed]
- Balaban, C.D.; Cohn, J.; Redfern, M.S.; Prinkey, J.; Stripling, R.; Hoffer, M. Postural Control as a Probe for Cognitive State: Exploiting Human Information Processing to Enhance Performance. Int. J. Hum.–Comput. Interact. 2004, 17, 275–286. [Google Scholar] [CrossRef]







| F(1, 9) | ηp2 | f | Power | |
|---|---|---|---|---|
| Stress | 3.13 | 0.26 | 0.59 | 0.46 |
| Uncertainty | 63.19 | 0.88 | 2.71 | 0.99 |
| Workload | 2.24 | 0.20 | 0.05 | 0.35 |
| Full Raise | Early Raise | Middle Raise | Late Raise | Face-to-Face | |
|---|---|---|---|---|---|
| Stress | 0.76 | 0.66 | 0.70 | 0.58 | 0.69 |
| Uncertainty | 0.57 | 0.55 | N/A | 0.53 | 0.56 |
| Workload | 0.54 | 0.50 | N/A | 0.53 | 0.94 * |
| Feature | Analysis Package | Description |
|---|---|---|
| Spectrogram Mean Coefficient (7.26 Hz) | TSFEL | The mean spectral amplitude (at 7.26 Hz) for the velocity magnitude signal. |
| Spectral Amplitude Decrease | TSFEL | The average rate at which spectral amplitude declines from lower to higher frequencies. |
| Mel-Frequency Cepstral Coefficient | TSFEL | The 10th mel-frequency cepstral coefficient reflecting spectral envelope shape. |
| 84th FFT Frequency (14 Hz) Magnitude | TSFRESH | Magnitude of the 84th discrete Fourier transform (FFT) coefficient (14 Hz) from the velocity magnitude signal. |
| Minimum of X-axis Value | TSFEL | Minimum observed value along the X-axis signal. |
| 53rd FFT Frequency (8.83 Hz) Magnitude | TSFRESH | Magnitude of the 53rd discrete FFT coefficient (8.83 Hz) from the velocity magnitude signal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunyé, T.T.; Okano, K.; McIntyre, J.; Sandone, M.K.; Townsend, L.N.; Lee, M.M.; Smith, M.; Hughes, G.I. Inferring Mental States via Linear and Non-Linear Body Movement Dynamics: A Pilot Study. Sensors 2025, 25, 6990. https://doi.org/10.3390/s25226990
Brunyé TT, Okano K, McIntyre J, Sandone MK, Townsend LN, Lee MM, Smith M, Hughes GI. Inferring Mental States via Linear and Non-Linear Body Movement Dynamics: A Pilot Study. Sensors. 2025; 25(22):6990. https://doi.org/10.3390/s25226990
Chicago/Turabian StyleBrunyé, Tad T., Kana Okano, James McIntyre, Madelyn K. Sandone, Lisa N. Townsend, Marissa Marko Lee, Marisa Smith, and Gregory I. Hughes. 2025. "Inferring Mental States via Linear and Non-Linear Body Movement Dynamics: A Pilot Study" Sensors 25, no. 22: 6990. https://doi.org/10.3390/s25226990
APA StyleBrunyé, T. T., Okano, K., McIntyre, J., Sandone, M. K., Townsend, L. N., Lee, M. M., Smith, M., & Hughes, G. I. (2025). Inferring Mental States via Linear and Non-Linear Body Movement Dynamics: A Pilot Study. Sensors, 25(22), 6990. https://doi.org/10.3390/s25226990

