Speckle Noise Reduction in Digital Holography by 3D Adaptive Filtering
Abstract
1. Introduction
2. Theory
2.1. Holography
2.2. Speckle Suppression Methods
- Computational postprocessing of the acquired hologram set to suppress noise and improve image quality.
- A 3D stack is formed from multiple reconstructed images with different speckle realizations;
- A filtration window of size is defined, where (odd) denotes the spatial dimensions within each image, and is the number of images in the stack;
- For each voxel in the array, the median value within the window is computed and assigned to the corresponding pixel in the output image;
- This process is repeated until the entire image is filtered;
- This 3D filtering approach has shown a notable improvement in hologram quality compared to classical methods, as it effectively leverages both spatial and cross-frame information to suppress speckle noise.
2.3. Frost Filter
- A filtration window I of the image of size pixels is selected, where the window size must be odd to ensure the central position of the filtered pixel ;
- For the window I, the distances from the central pixel to neighboring pixels are calculated and placed in the matrix S. This approach allows for greater consideration of pixels closer to than those farther away;
- The average value and variation are calculated for the pixels in the window;
- The weighting parameter is then calculated, taking into account the statistical deviations of pixel values in the filtration window:
- The pixel weight matrix is calculated based on the obtained parameters;
- The filtered pixel value is calculated: .
3. The Proposed Method
- Recording a series of holograms with varying speckle distributions, enabled by modifying the optical setup;
- Reconstructing the holograms to form a 3D stack of images;
- Applying the modified adaptive Frost filter to the entire 3D dataset, leveraging cross-layer statistics for enhanced speckle reduction;
- A schematic overview of the proposed method is provided in Figure 1.
4. Numerical Experiments
4.1. Reconstructed Image Quality Metrics
4.2. Filtration Using the Proposed Method
- The classical Frost filter;
- The proposed 3D Frost method applied to multiple reconstructed images;
- The classical Lee filter;
- The newly developed 3D Lee method, applied to multiple reconstructed images;
- The 3D median method, applied to multiple reconstructed images;
- The BM3D filter;
- The BM4D filter, applied to multiple reconstructed images.
5. Optical Experiments
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BM3D | block-matching and 3D filtering |
BM4D | block matching with 4D filtering |
BRISQUE | blind/referenceless image spatial quality evaluator |
NSTD | normalized standard deviation |
PIQE | perception-based image quality evaluator |
SSIM | structural similarity index measure |
References
- Sheridan, J.T.; Kostuk, R.K.; Gil, A.F.; Wang, Y.; Lu, W.; Zhong, H.; Tomita, Y.; Neipp, C.; Francés, J.; Gallego, S.; et al. Roadmap on Holography. J. Opt. 2020, 22, 123002. [Google Scholar] [CrossRef]
- Collier, R.J.; Burckhardt, C.B.; Lin, L.H. Optical Holography; Elsevier BV: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Ahmed, Z.E.; Abdelazeem, R.M.; Attia, Y.A.; Khattab, T.A.; Falldorf, C.; Bergmann, R.B.; Agour, M. A Complementary Approach for Securing and Anti-Counterfeiting of Valuable Documents Based on Encryption of Computer-Generated Hologram. Sensors 2025, 25, 2410. [Google Scholar] [CrossRef] [PubMed]
- Khodadad, D. Digital Holography and Its Application. Appl. Sci. 2024, 14, 11254. [Google Scholar] [CrossRef]
- Lin, J.-H.; Liang, J.-Q.; Lin, F.-C.; Huang, Q.; Li, N.-N.; Wang, D. Color Holographic 3D Display Method with Low Speckle Noise Based on Improved Iterative GS Algorithm. Opt. Laser Technol. 2025, 184, 112584. [Google Scholar] [CrossRef]
- Zuo, S.; Wang, S.; Pulham, C.; Tang, Y.; Perrie, W.; Allegre, O.J.; Tang, Y.; Sharp, M.; Leach, J.; Whitehead, D.J.; et al. High-Performance NIR Laser-Beam Shaping and Materials Processing at 350 W with a Spatial Light Modulator. Photonics 2025, 12, 544. [Google Scholar] [CrossRef]
- Reztsov, T.V.; Chernykh, A.V.; Orlova, T.; Petrov, N.V. A Dynamic Analysis of Toron Formation in Chiral Nematic Liquid Crystals Using a Polarization Holographic Microscope. Polymers 2025, 17, 1849. [Google Scholar] [CrossRef]
- Kim, H.-W.; Cho, M.; Lee, M.-C. Image Processing Techniques for Improving Quality of 3D Profile in Digital Holographic Microscopy Using Deep Learning Algorithm. Sensors 2024, 24, 1950. [Google Scholar] [CrossRef]
- Huang, C.-H.; He, S.-C.; Chen, T.-Y.; Cheng, C.-J.; Tu, H.-Y. Three-Dimensional Surface Reconstruction for Specular/Diffuse Composite Surfaces. Sensors 2024, 24, 7942. [Google Scholar] [CrossRef]
- Yang, T.; Lu, Z. Holo-U2net for High-Fidelity 3D Hologram Generation. Sensors 2024, 24, 5505. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, F.; Li, J.; Ji, B.; Rong, L.; Ge, L.; Zhao, H.; Shi, Y.; Wang, D.; Wan, M. Total Variation Extrapolation Algorithm for High-Fidelity Terahertz In-Line Digital Holography. Opt. Lasers Eng. 2025, 193, 109048. [Google Scholar] [CrossRef]
- Xu, X.; Luo, W.; Ren, Z.; Song, X. Intelligent Detection and Recognition of Marine Plankton by Digital Holography and Deep Learning. Sensors 2025, 25, 2325. [Google Scholar] [CrossRef]
- Cheremkhin, P.A.; Evtikhiev, N.N.; Krasnov, V.V.; Rodin, V.G.; Starikov, R.S. Shot Noise and Fixed-Pattern Noise Effects on Digital Hologram Reconstruction. Opt. Lasers Eng. 2021, 139, 106461. [Google Scholar] [CrossRef]
- Picart, P. Speckle Noise in Digital Holographic Images: Genesis and Reduction Methods. In Digital Holography and Three-Dimensional Imaging; Th1A.1; Optica Publishing Group: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Buitrago-Duque, C.; Castaneda, R.; Garcia-Sucerquia, J. Pointwise Phasor Tuning for Single-Shot Speckle Noise Reduction in Phase Wave Fields. Opt. Lasers Eng. 2021, 137, 106365. [Google Scholar] [CrossRef]
- Guerrero-Castañeda, R.F.; Garcia-Sucerquia, J.; Doblas, A. Speckle Noise Reduction in Coherent Imaging Systems via Hybrid Median–Mean Filter. Opt. Eng. 2021, 60, 123107. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, D.; Liang, S.; Ma, H.; Wang, Z.; Dong, M.; Wan, X. Noise Suppression in the Reconstructed Image of Digital Holography Based on the BEMDV Method Using Improved Particle Swarm Optimization. Appl. Opt. 2023, 62, 5159–5169. [Google Scholar] [CrossRef] [PubMed]
- Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A. Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction. IEEE Trans. Image Process. 2013, 22, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Jia, S.; Liu, Y.; Dong, J. Phase Coherent Noise Reduction in Digital Holographic Microscopy Based on Adaptive Total Variation. Opt. Lasers Eng. 2020, 134, 106204. [Google Scholar] [CrossRef]
- Sharma, A.; Sheoran, G.; Jaffery, Z.A.; Moinuddin. Improvement of Signal-To-Noise Ratio in Digital Holography Using Wavelet Transform. Opt. Lasers Eng. 2008, 46, 42–47. [Google Scholar] [CrossRef]
- Fu, Y.; Leng, J.; Xu, Z. Speckle Reduction in Digital Holography by Fast Logistic Adaptive Non-Local Means Filtering. Photonics 2024, 11, 147. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Cheremkhin, P.A.; Svistunov, A.S.; Rodin, V.G.; Starikov, R.S.; Evtikhiev, N.N. Interpolation-Filtering Method for Image Improvement in Digital Holography. Appl. Sci. 2024, 14, 8790. [Google Scholar] [CrossRef]
- Garcia-Sucerquia, J.; Ramírez, J.A.; Prieto, D.V. Reduction of Speckle Noise in Digital Holography by Using Digital Image Processing. Optik 2005, 116, 44–48. [Google Scholar] [CrossRef]
- Kreis, T.; Werner, W. Suppression of the Dc Term in Digital Holography. Opt. Eng. 1997, 36, 2357. [Google Scholar] [CrossRef]
- Montresor, S.; Quehe, P.Y.; Verhaeghe, S.; Picard, P. Evaluation of Denoising Algorithms Applied to the Reduction of Speckle in Digital Holography. In Proceedings of the 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 2316–2320. [Google Scholar]
- Lee, J.-S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtzman, J.C. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-4, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Katkovnik, V.; Shevkunov, I.A.; Petrov, N.V.; Egiazarian, K. Wavefront Reconstruction in Digital Off-Axis Holography via Sparse Coding of Amplitude and Absolute Phase. Opt. Lett. 2015, 40, 2417–2420. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Jia, S.; Zhou, X.; Zhang, H.; Wang, L.; Li, G.; Wang, Z. Digital Holographic Microscopy Phase Noise Reduction Based on an Over-Complete Chunked Discrete Cosine Transform Sparse Dictionary. Opt. Lasers Eng. 2023, 166, 107571. [Google Scholar] [CrossRef]
- Pan, F.; Xiao, W.; Liu, S.; Rong, L. Application of Three-Dimensional Spatial Correlation Properties of Coherent Noise in Phase Noise Suppression for Digital Holographic Microscopy. Opt. Laser Technol. 2013, 51, 67–71. [Google Scholar] [CrossRef]
- Panezai, S.; Zhao, J.; Wang, Y.; Wang, D.; Rong, L. Speckle Suppression in Off-Axis Lensless Fourier Transform Digital Holography. Opt. Commun. 2017, 397, 100–104. [Google Scholar] [CrossRef]
- Kubota, S.; Goodman, J.W. Very Efficient Speckle Contrast Reduction Realized by Moving Diffuser Device. Appl. Opt. 2010, 49, 4385–4391. [Google Scholar] [CrossRef]
- Dong, J.; Jia, S.; Yu, H. Hybrid Method for Speckle Noise Reduction in Digital Holography. J. Opt. Soc. Am. A 2019, 36, D14–D22. [Google Scholar] [CrossRef]
- Rong, L.; Xiao, W.; Pan, F.; Liu, S.; Li, R. Speckle Noise Reduction in Digital Holography by Use of Multiple Polarization Holograms. Chin. Opt. Lett. 2010, 8, 653–655. [Google Scholar] [CrossRef]
- Leng, J.; Sang, X.; Yan, B. Speckle Suppression in Digital Holographic Imaging with Random Phases and Different Wavelengths. Opt. Eng. 2014, 53, 033105. [Google Scholar] [CrossRef]
- Che, L.; Xiao, W.; Pan, F.; Dong, B.; Zhong, Z. Reduction of Speckle Noise in Digital Holography by Combination of Averaging Several Reconstructed Images and Modified Nonlocal Means Filtering. Opt. Commun. 2018, 426, 9–15. [Google Scholar] [CrossRef]
- Cheremkhin, P.A.; Evtikhiev, N.N.; Kozlov, A.V.; Krasnov, V.V.; Rodin, V.G.; Starikov, R.S. An Optical-Digital Method of Noise Suppression in Digital Holography. J. Opt. 2022, 24, 115702. [Google Scholar] [CrossRef]
- Kumar, V.; Dubey, A.K.; Gupta, M.; Singh, V.; Butola, A.; Mehta, D.S. Speckle Noise Reduction Strategies in Laser-Based Projection Imaging, Fluorescence Microscopy, and Digital Holography with Uniform Illumination, Improved Image Sharpness, and Resolution. Opt. Laser Technol. 2021, 141, 107079. [Google Scholar] [CrossRef]
- Guo, X.; Xie, F.; Yang, T.; Ming, M.; Chen, T. Physics-Informed Generative Adversarial Networks for Laser Speckle Noise Suppression. Sensors 2025, 25, 3842. [Google Scholar] [CrossRef]
- Xie, Z.Q.; Chen, L.; Chen, H.H.; Wen, K.H.; Guo, J.W. Speckle Noise Reduction for Digital Holographic Images Using Swin Transformer. Opt. Lasers Eng. 2025, 184, 108605. [Google Scholar] [CrossRef]
- Khorin, P.A.; Dzyuba, A.P.; Chernykh, A.V.; Georgieva, A.O.; Petrov, N.V.; Khonina, S.N. Neural Network-Assisted Interferogram Analysis Using Cylindrical and Flat Reference Beams. Appl. Sci. 2023, 13, 4831. [Google Scholar] [CrossRef]
- Pavillon, N.; Seelamantula, C.S.; Kühn, J.; Unser, M.; Depeursinge, C. Suppression of the Zero-Order Term in Off-Axis Digital Holography through Nonlinear Filtering. Appl. Opt. 2009, 48, H186–H195. [Google Scholar] [CrossRef]
- Stoykova, E.S.; Kang, H.; Park, J.P. Twin-Image Problem in Digital Holography—A Survey (Invited Paper). Chin. Opt. Lett. 2014, 12, 060013–60024. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, H.; Wang, F.; Gu, X.; Qian, X.; Poon, T.-C. Polygon-Based Computer-Generated Holography: A Review of Fundamentals and Recent Progress (Invited). Appl. Opt. 2022, 61, B363–B374. [Google Scholar] [CrossRef]
- Pi, D.; Liu, J.; Wang, Y. Review of Computer-Generated Hologram Algorithms for Color Dynamic Holographic Three-Dimensional Display. Light Sci. Appl. 2022, 11, 231. [Google Scholar] [CrossRef]
- Schnars, U.; Falldorf, C.; Watson, J.; Jüptner, W. Digital Holography and Wavefront Sensing: Principles, Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–226. [Google Scholar]
- Cuche, E.; Marquet, P.; Depeursinge, C. Spatial Filtering for Zero-Order and Twin-Image Elimination in Digital Off-Axis Holography. Appl. Opt. 2000, 39, 4070–4075. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; SPIE Press: Bellingham, WA, USA, 2020. [Google Scholar] [CrossRef]
- Skipetrov, S.E.; Peuser, J.; Cerbino, R.; Zakharov, P.; Scheffold, F. Noise in Laser Speckle Correlation and Imaging Techniques. Opt. Express 2010, 18, 14519–14534. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chen, L.; Xiao, J.; Li, J.; Wen, K. Reduction of Speckle Noise in Digital Holography Using a Neighborhood Filter Based on Multiple Sub-Reconstructed Images. Opt. Express 2022, 30, 9222–9232. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Jia, Z.; Yang, J.; Kasabov, N.K.; Huang, X. Quasi-Noise-Free and Detail-Preserved Digital Holographic Reconstruction. IEEE Access 2019, 7, 52155–52167. [Google Scholar] [CrossRef]
- Verrier, N.; Atlan, M. Off-Axis Digital Hologram Reconstruction: Some Practical Considerations. Appl. Opt. 2011, 50, H136–H146. [Google Scholar] [CrossRef]
- Fienup, J.R. Invariant Error Metrics for Image Reconstruction. Appl. Opt. 1997, 36, 8352–8357. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, B.A. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Venkatanath, N.; Praneeth, D.; Chandrasekhar Bh, M.; Channappayya, S.S.; Medasani, S. Blind Image Quality Evaluation Using Perception Based Features. In Proceedings of the 2015 Twenty First National Conference on Communications (NCC), Mumbai, India, 27 February–1 March 2015. [Google Scholar]
- Kozlov, A.V.; Rodin, V.G.; Starikov, R.S.; Evtikhiev, N.N.; Cheremkhin, P.A. Estimation of Camera’s Noise by Uniform Target Segmentation. IEEE Sens. J. 2023, 23, 4883–4891. [Google Scholar] [CrossRef]
- Stangner, T.; Zhang, H.; Dahlberg, T.; Wiklund, K.; Andersson, M. Step-By-Step Guide to Reduce Spatial Coherence of Laser Light Using a Rotating Ground Glass Diffuser. Appl. Opt. 2017, 56, 5427–5435. [Google Scholar] [CrossRef]
- Goodman, J.W. Some Fundamental Properties of Speckle. J. Opt. Soc. Am. 1976, 66, 1145–1150. [Google Scholar] [CrossRef]
- Restrepo, J.; Correa-Rojas, N.; Herrera-Ramirez, J. Speckle Noise Reduction in Digital Holography Using a DMD and Multi-Hologram Resampling. Appl. Sci. 2020, 10, 8277. [Google Scholar] [CrossRef]
Filter | NSTD (Baboon) | SSIM (Baboon) | NSTD (Peppers) | SSIM (Peppers) |
---|---|---|---|---|
Frost | 0.244 | 0.290 | 0.210 | 0.349 |
The Proposed Method | 0.092 | 0.762 | 0.061 | 0.915 |
Lee | 0.154 | 0.471 | 0.183 | 0.348 |
3D Lee | 0.112 | 0.656 | 0.078 | 0.886 |
3D Median | 0.122 | 0.580 | 0.105 | 0.669 |
BM3D | 0.151 | 0.346 | 0.111 | 0.746 |
BM4D | 0.118 | 0.392 | 0.109 | 0.618 |
BM4D | The Proposed Method | |||||
---|---|---|---|---|---|---|
Image | Processing Time, s | NSTD | SSIM | Processing Time, s | NSTD | SSIM |
Cameraman | 220 | 0.096 | 0.681 | 0.94 | 0.067 | 0.867 |
Lake | 224 | 0.135 | 0.538 | 0.86 | 0.079 | 0.890 |
Walbridge | 227 | 0.135 | 0.447 | 0.96 | 0.095 | 0.833 |
Number of Images | Zone | BM4D | The Proposed Method |
---|---|---|---|
10 | 1 | 0.101 | 0.186 |
2 | 0.117 | 0.178 | |
3 | 0.131 | 0.177 | |
20 | 1 | 0.091 | 0.130 |
2 | 0.111 | 0.119 | |
3 | 0.127 | 0.134 | |
40 | 1 | 0.086 | 0.092 |
2 | 0.115 | 0.085 | |
3 | 0.121 | 0.102 | |
60 | 1 | 0.087 | 0.060 |
2 | 0.108 | 0.061 | |
3 | 0.123 | 0.078 |
Number of Images | BRISQUE | PIQE | ||
---|---|---|---|---|
BM4D | The Proposed Method | BM4D | The Proposed Method | |
10 | 29.5 | 31.9 | 26.0 | 39.7 |
20 | 29.2 | 28.6 | 25.5 | 33.5 |
40 | 29.2 | 21.3 | 25.0 | 28.3 |
60 | 29.1 | 4.8 | 24.8 | 16.0 |
Number of Images | Processing Time, s | |
---|---|---|
BM4D | The Proposed Method | |
10 | 216 | 17.7 |
20 | 522 | 18.16 |
40 | 1172 | 18.23 |
60 | 1781 | 18.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerov, A.A.; Kozlov, A.V.; Cheremkhin, P.A.; Shifrina, A.V.; Starikov, R.S.; Zlokazov, E.Y.; Petrova, E.K.; Nebavskiy, V.A.; Evtikhiev, N.N. Speckle Noise Reduction in Digital Holography by 3D Adaptive Filtering. Sensors 2025, 25, 5402. https://doi.org/10.3390/s25175402
Kerov AA, Kozlov AV, Cheremkhin PA, Shifrina AV, Starikov RS, Zlokazov EY, Petrova EK, Nebavskiy VA, Evtikhiev NN. Speckle Noise Reduction in Digital Holography by 3D Adaptive Filtering. Sensors. 2025; 25(17):5402. https://doi.org/10.3390/s25175402
Chicago/Turabian StyleKerov, Andrey A., Alexander V. Kozlov, Pavel A. Cheremkhin, Anna V. Shifrina, Rostislav S. Starikov, Evgenii Y. Zlokazov, Elizaveta K. Petrova, Vsevolod A. Nebavskiy, and Nikolay N. Evtikhiev. 2025. "Speckle Noise Reduction in Digital Holography by 3D Adaptive Filtering" Sensors 25, no. 17: 5402. https://doi.org/10.3390/s25175402
APA StyleKerov, A. A., Kozlov, A. V., Cheremkhin, P. A., Shifrina, A. V., Starikov, R. S., Zlokazov, E. Y., Petrova, E. K., Nebavskiy, V. A., & Evtikhiev, N. N. (2025). Speckle Noise Reduction in Digital Holography by 3D Adaptive Filtering. Sensors, 25(17), 5402. https://doi.org/10.3390/s25175402