Generalized Spin–Curl Force Beyond the Stress Tensor
Abstract
1. Introduction
2. Theory
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24, 156. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef]
- Chen, J.; Ng, J.; Lin, Z.; Chan, C.T. Optical pulling force. Nat. Photonics 2011, 5, 531–534. [Google Scholar] [CrossRef]
- Tanaka, Y.Y.; Albella, P.; Rahmani, M.; Giannini, V.; Maier, S.A.; Shimura, T. Plasmonic linear nanomotor using lateral optical forces. Sci. Adv. 2020, 6, eabc3726. [Google Scholar] [CrossRef] [PubMed]
- Yamanishi, J.; Yamane, H.; Naitoh, Y.; Li, Y.J.; Yokoshi, N.; Kameyama, T.; Koyama, S.; Torimoto, T.; Ishihara, H.; Sugawara, Y. Optical force mapping at the single-nanometre scale. Nat. Commun. 2021, 12, 3865. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, Y.; Xu, B.; Wang, X.; Zhang, L.; Chen, J.; Lin, Z.; Chan, C.T. Anomalous lateral optical force as a manifestation of the optical transverse spin. Laser Photonics Rev. 2023, 17, 2300212. [Google Scholar] [CrossRef]
- Yamanishi, J.; Ahn, H.Y.; Yamane, H.; Hashiyada, S.; Ishihara, H.; Nam, K.T.; Okamoto, H. Optical gradient force on chiral particles. Sci. Adv. 2022, 8, eabq2604. [Google Scholar] [CrossRef]
- Yamanishi, J.; Ahn, H.Y.; Okamoto, H. Nanoscopic observation of chiro-optical force. Nano Lett. 2023, 23, 9347–9352. [Google Scholar] [CrossRef]
- Li, T.; Xu, X.; Fu, B.; Wang, S.; Li, B.; Wang, Z.; Zhu, S. Integrating the optical tweezers and spanner onto an individual single-layer metasurface. Photonics Res. 2021, 9, 1062–1068. [Google Scholar] [CrossRef]
- Shan, X.; Ding, L.; Wang, D.; Wen, S.; Shi, J.; Chen, C.; Wang, Y.; Zhu, H.; Huang, Z.; Wang, S.S.; et al. Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy. Nat. Photonics 2024, 18, 913–921. [Google Scholar] [CrossRef]
- Fernández, P.A.; Buchmann, B.; Goychuk, A.; Engelbrecht, L.K.; Raich, M.K.; Scheel, C.H.; Frey, E.; Bausch, A.R. Surface-tensioninduced budding drives alveologenesis in human mammary gland organoids. Nat. Phys. 2021, 17, 1130–1136. [Google Scholar] [CrossRef]
- Xin, H.; Zhao, N.; Wang, Y.; Zhao, X.; Pan, T.; Shi, Y.; Li, B. Optically controlled living micromotors for the manipulation and disruption of biological targets. Nano Lett. 2020, 20, 7177–7185. [Google Scholar] [CrossRef]
- Xin, H.; Li, Y.; Liu, Y.C.; Zhang, Y.; Xiao, Y.F.; Li, B. Optical forces: From fundamental to biological applications. Adv. Mater. 2020, 32, 2001994. [Google Scholar] [CrossRef]
- Jazayeri, A.M.; Mehrany, K. Critical study and discrimination of different formulations of electromagnetic force density and consequent stress tensors inside matter. Phys. Rev. A 2014, 89, 043845. [Google Scholar] [CrossRef]
- Antonoyiannakis, M.; Pendry, J. Electromagnetic forces in photonic crystals. Phys. Rev. B 1999, 60, 2363. [Google Scholar] [CrossRef]
- Kemp, B.A.; Grzegorczyk, T.M.; Kong, J.A. Ab initio study of the radiation pressure on dielectric and magnetic media. Opt. Express 2005, 13, 9280–9291. [Google Scholar] [CrossRef] [PubMed]
- Kemp, B.A.; Grzegorczyk, T.M.; Kong, J.A. Optical momentum transfer to absorbing Mie particles. Phys. Rev. Lett. 2006, 97, 133902. [Google Scholar] [CrossRef] [PubMed]
- Brevik, I. Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep. 1979, 52, 133–201. [Google Scholar] [CrossRef]
- Mansuripur, M. Electromagnetic stress tensor in ponderable media. Opt. Express 2008, 16, 5193–5198. [Google Scholar] [CrossRef]
- Mansuripur, M. Trouble with the Lorentz Law of Force: Incompatibility with Special Relativity and Momentum Conservation. Phys. Rev. Lett. 2012, 108, 193901. [Google Scholar] [CrossRef]
- Barnett, S.M. Comment on “Trouble with the Lorentz law of force: Incompatibility with special relativity and momentum conservation”. Phys. Rev. Lett. 2013, 110, 089402. [Google Scholar] [CrossRef]
- Khorrami, M. Comment on “Trouble with the Lorentz Law of Force: Incompatibility with Special Relativity and Momentum Conservation”. Phys. Rev. Lett. 2013, 110, 089404. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, P.L. Comment on “Trouble with the Lorentz law of force: Incompatibility with special relativity and momentum conservation”. Phys. Rev. Lett. 2013, 110, 089403. [Google Scholar] [CrossRef] [PubMed]
- Vanzella, D.A. Comment on “Trouble with the Lorentz law of force: Incompatibility with special relativity and momentum conservation”. Phys. Rev. Lett. 2013, 110, 089401. [Google Scholar] [CrossRef] [PubMed]
- Albaladejo, S.; Marqués, M.I.; Laroche, M.; Sáenz, J.J. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 2009, 102, 113602. [Google Scholar] [CrossRef]
- Ruffner, D.B.; Grier, D.G. Optical forces and torques in nonuniform beams of light. Phys. Rev. Lett. 2012, 108, 173602. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface micro/nano-optical sensors: Principles and applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
- Ferreira, M.F.; Brambilla, G.; Thévenaz, L.; Feng, X.; Zhang, L.; Sumetsky, M.; Jones, C.; Pedireddy, S.; Vollmer, F.; Dragic, P.D.; et al. Roadmap on optical sensors. J. Opt. 2023, 26, 013001. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, M.; Yinguo, H.; Zhang, H.; Guo, N.; Zheng, Y. Micro-force sensing techniques and traceable reference forces: A review. Meas. Sci. Technol. 2022, 33, 114010. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to Electrodynamics; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Melia, F. Electrodynamics; University of Chicago Press: Chicago, IL, USA, 2020. [Google Scholar]
- Chen, H.C. Theory of Electromagnetic Waves: A Coordinate-Free Approach; McGraw-Hill Book Co.: Columbus, OH, USA, 1983. [Google Scholar]
- Lebedev, L.P.; Cloud, M.J.; Eremeyev, V.A. Tensor Analysis with Applications in Mechanics; World Scientific: Singapore, 2010. [Google Scholar]
- Berry, M.V. Optical currents. J. Opt. A Pure Appl. Opt. 2009, 11, 094001. [Google Scholar] [CrossRef]
- Neugebauer, M.; Bauer, T.; Aiello, A.; Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett. 2015, 114, 063901. [Google Scholar] [CrossRef]
- Kemp, B.; Grzegorczyk, T.; Kong, J. Lorentz force on dielectric and magnetic particles. J. Electromagn. Waves Appl. 2006, 20, 827–839. [Google Scholar] [CrossRef]
- Mahdy, M.R.C.; Gao, D.; Ding, W.; Mehmood, M.Q.; Nieto-Vesperinas, M.; Qiu, C.W. A unified theory correcting Einstein-Laub electrodynamics solves dilemmas in the photon momenta and electromagnetic stress tensors. arXiv 2015, arXiv:1509.06971. [Google Scholar] [CrossRef]
- Sun, W.; Wang, S.; Ng, J.; Zhou, L.; Chan, C.T. Analytic derivation of electrostrictive tensors and their application to optical force density calculations. Phys. Rev. B 2015, 91, 235439. [Google Scholar] [CrossRef]
- Cui, L.; Wang, N.; Ng, J. Computation of internal optical forces using the Helmholtz tensor. Phys. Rev. A 2021, 104, 013508. [Google Scholar] [CrossRef]
- Li, M.; Pernice, W.; Xiong, C.; Baehr-Jones, T.; Hochberg, M.; Tang, H. Harnessing optical forces in integrated photonic circuits. Nature 2008, 456, 480–484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Zhu, G.; Li, C.; Shi, B.; Feng, R.; Cao, Y.; Fang, Y.; Ding, W. Generalized Spin–Curl Force Beyond the Stress Tensor. Sensors 2025, 25, 5367. https://doi.org/10.3390/s25175367
Zhu T, Zhu G, Li C, Shi B, Feng R, Cao Y, Fang Y, Ding W. Generalized Spin–Curl Force Beyond the Stress Tensor. Sensors. 2025; 25(17):5367. https://doi.org/10.3390/s25175367
Chicago/Turabian StyleZhu, Tongtong, Guodong Zhu, Chuang Li, Bojian Shi, Rui Feng, Yongyin Cao, Yurui Fang, and Weiqiang Ding. 2025. "Generalized Spin–Curl Force Beyond the Stress Tensor" Sensors 25, no. 17: 5367. https://doi.org/10.3390/s25175367
APA StyleZhu, T., Zhu, G., Li, C., Shi, B., Feng, R., Cao, Y., Fang, Y., & Ding, W. (2025). Generalized Spin–Curl Force Beyond the Stress Tensor. Sensors, 25(17), 5367. https://doi.org/10.3390/s25175367