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Abstract

Remote sensing is a widely used tool for crop monitoring to improve water management.
Rice, a crop traditionally grown under flooded conditions, requires farmers to understand
the relationship between crop reflectance, water depth and final yield. This study focused
on seven commercial rice fields in 2022 and six in 2023, analyzing the correlations between
water depth and Sentinel-2 reflectance over two growing seasons in Valencia, Spain. During
the tillering stage across both seasons, water depth showed positive correlations with visible
bands and negative correlations with NIR and SWIR bands. There were no correlations
with the indices NDVI, GNDVI, NDRE and NDWI. The NIR band showed significant
correlations across both seasons, with R? values of 0.69 and 0.71, respectively. In addition,
the calculation of NIR anomalies for each field proved to be a good indicator of final
yield anomalies. In 2022, anomalies above 10% corresponded to yield deviations above
500 kg-ha’l, while in 2023, anomalies above 15% were associated with yield deviations
above 1000 kg-ha~!. The response of final yield to water level was positive up to average
values of 9 cm. The use of the NIR band during the rice crop tillering stage can support
farmers in improving irrigation management.

Keywords: remote sensing; Sentinel-2; rice; vegetation indices; NIR band

1. Introduction

Rice is a staple food for at least half of the world’s population [1], deeply ingrained
in the cultures, economies and food security of its production regions. However, it faces
significant global challenges due to its high water requirements, impacting both the envi-
ronment and economy. Fluctuations in water availability directly affect cultivated areas and
yields. Rice production in Europe’s central producing countries—Italy, Spain, Greece and
Portugal—decreased by 5.96%, 51.23% and 9.97%, respectively, while Portugal experienced
an 8.76% increase, in 2024. Drought conditions in Europe have affected rice cultivation,
with Spain being the most affected European country. In 2024, Spain’s cultivated area
reduced by 42.62% (sowing only 54,500 ha), and the average yield decreased by 13.97%, the
lowest value since 2015 [2].

New tools used in monitoring water management and yield modelling in rice crop
are focused on remote sensing. Current studies in rice are using remote sensing data to
monitor the effects of drought on the crop and to provide information on the impact of
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stress on yield loss [3], or the influence of flooding [4]. Remote sensing data have been used
in rice cultivation to empirically develop new Kc coefficients based on the evolution of crop
reflectance throughout the growing session to estimate crop ETc [5]. Studies conducted by
de Lima [6] and Bwire [7] related vegetation indices to study the variability in irrigation
application and rice growth kinetics and allowed the establishment of guidelines for the
crop management of irrigation water. Although the most widely used indices are the
Normalized Difference Vegetation Index (NDVI) or the Green Normalized Difference
Vegetation Index (GNDVI), the Normalized Difference Red Edge (NDRE) has proven to be
an important index supporting agricultural management practices.

Continuous flooding in rice production is a widely used irrigation system in Europe,
Japan, South Korea and the United States due to the high water requirements of crop [8].
Water plays a crucial role in rice cultivation in several ways: (a) it acts as a thermal regulator,
providing heat to the plant and protecting it from sudden temperature changes; (b) it aids
in the transport of dissolved or suspended nutrients; (c) it facilitates oxygen transfer,
which is essential for plant growth in flooded conditions and also helps control weed
germination [9,10]. Plant growth is limited by the amount of water provided to a field, and
consequently, for a specific crop area, by the height of the water layer. The temperature of
the irrigation water, which is determined by the height of the water depth, influenced rice
seed germination and plant growth rate. Furthermore, the height of the water depth exerts
an influence on the germination and growth of weeds, which in turn affects the growth
and final yield of the rice plants. Consequently, the regulated provision and surveillance of
irrigation water are imperative for the sustainable cultivation of rice [11].

Rice cultivation in Spain primarily takes place in environmentally protected wetlands.
These areas are of high ecological value, so managing irrigation water sustainably is essen-
tial to improve water use efficiency. The water management follows the strategies proposed
by Tinarelli [12] and Osca [13], which involve flooding the crop and making two- or five-day
water cuts for weed control and cover fertilization. The authors suggest a water sheet height
of 10-15 cm. However, no information is provided regarding the relationship between
water depth and the effect on rice growth and final yield. The lack of information and
limited water availability highlights the importance of controlling water depth throughout
the phenological stage to ensure efficient and sustainable irrigation management.

Therefore, this work presents the hypothesis that it is possible to monitor and model
the productive response of the rice crop at different phenological stages using remote
sensing data. This work aims to monitor the influence of the height of the water sheet from
satellite images (Sentinel-2) and obtain anomaly maps as a function of the reflectance
recorded to establish crop management strategies adapted to make decisions in the
rice industry.

2. Materials and Methods
2.1. Location Description

The study was carried out during the seasons of 2022 and 2023, in fields located at
Sueca, a traditional rice production area in the Albufera Lake of Valencia (Spain), where
8000 ha of rice are located out of the total 15,000 ha of rice cultivation in Valencia. The
experimental plots are commercial fields owned by the same farmer—a group of 7 plots in
2022 and 6 plots in 2023, totalling 6.42 and 10.84 hectares (Figure 1).
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Figure 1. Location of the experiment and the study area. (a) Location of Valencia in Comunitat

Longitude ©

Valenciana, Spain. (b) Location of fields around L’ Albufera.

The soil is sandy loam with a pH: 7.98 +£ 0.01, organic matter content: 3.0 &+ 0.02%
and electrical conductivity (EC): 3.20 4+ 0.01 dS-m~!. The total amount of nitrogen was
2938 + 21 mg-kg ! (air dried basis), available phosphorus: 8.5 - 0.3 mg-kg ! and available
potassium: 0.87 4 0.01 meq-100 g~ !. Papadakis’ agroclimatic classification system defines
the climate in this area as subtropical Mediterranean with hot and dry summers [14].
Figure 2 shows the mean temperatures and daily precipitation in the 2022 and 2023.
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Figure 2. Monthly climogram of the years 2022 and 2023 in the study area. The lines correspond to
temperature values, and the bars represent precipitation levels.

Table 1 shows the values of mean, maximum and minimum temperature (°C), relative
humidity (%), radiation (M]J-m~2), daily sunshine hours (h) and evapotranspiration (ETo;
mm) of the crop calculated according to Allen et al. [15]. The comparison was performed
for the entire crop season and for first 100 days after sowing (DAS) each 30-day period.
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Table 1. Mean (T mean), maximum (T max) and minimum (T min) temperatures, relative humidity,
radiation, sunshine hours and ETo every 30 days for all rice seasons in the experimental plot area in
2022 and 2023.

Period of DAS 0-30 30-60 60-90 90-120 120-140
Desv Desv Desv Desv Desv
Year 2022 2023 2022 2023 o 202 203 N 202 203 Y 2022 2023 oS
Tmean (°C) 2274 2006 —1179 2594 2568 —1.02 2849 2773 —266 2696 2583 —421 2261 2265 017
T max (°C) 2944 2556 —13.18 3215 30.88 —395 3438 3313 365 3367 3119 -—737 2859 2871 041
T min (°C) 1567 1496 —455 1952 2005 272 2236 2271 153 2049 2049 001 1702 17.06 022
RHmean (%) 6817 73.03 713 6562 7311 1142 6748 7173 631 6647 7294 973 6661 7293 949
f&?ﬁl"{)‘ 2767 2214 —1997 2615 2531 —322 2531 2482 —196 2142 2047 —442 1526 1720 12.69
iﬁﬁi?gs 1251 1121 -1034 1252 1201 —4.08 1216 1201 -1.19 11.03 1084 —171 965 997 335
ETo (mm) 167.68 13059 —22.12 16854 157.84 —6.35 17046 164.68 —3.39 14722 133.65 —9.22 6636 69.13  4.17

Sowing was delayed until June in 2022 due to rainfall in April and May (Table 2), while
in 2023 it was sown in May. Table 2 shows the variation in Accumulated Growing Degree
Days (AGDD); average daily maximum (T max) and minimum temperatures (T min) minus
a base temperature (T base) (in the case of rice is equal to 10 °C) and the Vapour Pressure
Deficit (VPD) values, every 30 DAS. The climatic conditions shown in Tables 1 and 2, justify
how the year 2022 was warmer and drier in the first DAS and thus conditioned the rapid
growth of the crop in the first stages.

Table 2. The Accumulated Growing Degree Days (AGDD) and Vapour Pressure Deficit (VPD) each
30 days in rice seasons in experimental plots in 2022 and 2023.

AGDD VPD (kPa)
DAS 2022 2023 Desv % 2022 2023 Desv %
0-30 476 462 —2.96 1.53 1.24 —18.89
30-60 556 529 —4.90 1.69 1.13 —32.89
60-90 539 596 10.54 1.83 1.29 —29.76
90-120 410 541 32.05 1.26 1.11 —12.24
120-140 234 317 35.48 0.82 0.99 20.80

2.2. Design of the Experiment

In all the plots, the same crop management of all the cultivation tasks has been carried
out, including irrigation and fertilization. Although all plots received water from the same
canal system, water depth varied naturally due to microtopographic differences and farmer
practices. This observational setup allows for studying real-world variability but limits
causal interpretation. So, the flooding and drying of the fields are performed on the same
date. Table 3 shows the sowing and harvesting dates for the study plots in 2022 and 2023.
The rice variety cultivated was ‘JSendra’, a round grain rice, sub-species Oryza sativa L. ssp.
Japonica sowing was conducted under flooded conditions (“water seeding”) at 2-3 cm of
water sheet and at a dose of 215 kg-ha™1.

Table 3. Dates of sow and harvest for 2022 and 2023 season.

2022 2023

Sowing 9 June 15 May
Harvest 22 October 6 October
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Once the crop was planted, the water level in the plots was increased, maintaining the
level set by the farmer in each plot. The soil remained flooded for most of the crop cycle,
and Table 4 shows the dates of drying carried out.

Table 4. Dates about drying seasons in 2022 and 2023.

Year First Drying Second Drying Final Drying
2022 21 June 19 June 20 September
2023 30 May 15 June 10 September

Nutritional plant, weed and pest management followed common grower practices
and recommendations of Osca [13]. Nitrogen fertilizer was applied two times: 140 UF for
base fertilizer (applied before flooding) and 30 UF for panicle fertilizer.

Harvesting of all the plots studied was carried out in October of both years. Yield
values were obtained by the Deutz-Fahr B9306 TSB combine harvester (Deutz-Fahr, Bavaria,
Germany) fitted with Yield Trakk software (Topcon company, Tokyo, Japan), capable of
measuring crop yield in real time. The cutting width used by the combine was 7.6 m,
providing continuous yield data (approximately every metre travelled). The processing of
these yield maps was carried out according to the methodology described in Fita et al. [16],
the yield map was transferred to a grid composed of 100 m? polygons (coinciding with the
spatial resolution of the satellite), obtaining the average of each of them. All computational
transformation and data processing was performed with the QGIS 3.10.14 software [17].

2.3. Remote Sensing Data

The images were obtained from the Sentinel-2 constellation (downloaded from the
official website of the Copernicus programme). The T30SY] tile (level 2A) has been used to
obtain the images, in a period from May to October of both seasons. Data processing was
also carried out using QGIS software.

All the available spectral bands at a 10 m and 20 m spatial resolution and temporal
resolution of 5 days were studied, but only for cloud-free days images (Table 5); the main
characteristics of each band are shown in Table 6. In addition to the surface reflectance in
the spectral bands, these were combined into the vegetation indices (VIs) shown in Table 7.

Table 5. Dates studied from Sentinel-2 for DAS and phenological state of BBCH observed in the fields
in 2022 and 2023.

ke DAS BBCH Scale o DAS BBCH Scale
9 June 0 0—Germination 15 May 0 0—Germination
14 June 5 0 20 May 5 0
24 June 15 1—Leaf development 4 June 20 1—Leaf development
29 June 20 2—Tillering 14 June 30 2—Tillering
4 July 25 2 24 June 40 2
14 July 35 2 4 July 50 2
19 July 40 2 9 July 55 2
24 July 45 2 14 July 60 3—Stem elongation
29 July 50 3—Stem elongation 29 July 75 4—Booting
3 August 55 3 8 August 85 5—Inflorescence
emergence
8 August 60 3 13 August 90 6—Flowering
18 August 70 4—Booting 23 August 100 6
23 August 75 5—Inflorescence emergence 28 August 105 7—Development of grain
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Table 5. Cont.
Date Date
2022 DAS BBCH Scale 2023 DAS BBCH Scale
2 September 85 6—Flowering 22 September 130 9—Senescence
7 September 90 6
27 September 110 7—Development of grain
2 October 115 8—Ripening
12 October 125 9—Senescence
Table 6. Spectral characteristics and spatial resolutions of Sentinel-2 bands used in study [18].
Spectral Band Name Wavelength (nm) Spatial Resolution (m)
B02—Blue 458-523 10
B03—Green 543-578 10
B04—Red 650-680 10
B05—Vegetation Red Edge 1 698-713 20
B06—Vegetation Red Edge 2 733-748 20
B07—Vegetation Red Edge 3 773-793 20
BO8—NIR 785-899 10
B8A—NIR narrow 855-875 20
B11—SWIR 1 1565-1655 20
B12—SWIR 2 2100-2280 20
Table 7. Spectral characteristics and spatial resolutions of Sentinel-2 bands used.
Vegetation Index Equation Equation Reference
: : : (B08—B04)
Normalized Difference Vegetation Index (NDVI) EB 08B0 (1) [19]
B08—B03
Green NDVI (GNDVI) EB ST (2) [20]
Normalized Difference Red Edge (NDRE) Eg;_ggg 3) [21]
Normalized Difference Water Index (NDWI) EBOS Bl 4) [22]

B08+B11

Table 5 shows the recording dates of the satellite data and their correspondence with

the days after planting, together with the main phenological stage of the plants, using the

BBCH (Biologische Bundesanstalt, Bundessortenamt y CHemische Industrie) scale as a

reference [23].

The satellite data were processed according to the methodology proposed by San

Bautista et al. [24], which allows crop monitoring based on reflectance values. In this way,

the following data processing has been carried out:

Spectral evolution of the Red and NIR bands, and average NDVI values for each plot

in the years 2022 and 2023.

Study of correlations between water height and Sentinel-2 bands.

Study of anomalies in NIR reflectance values and performance data.

2.4. Measurement of Water Height

The process of measuring the height of the water sheet was carried out at 35 DDS, on 12
July 2022 and 19 June 2023 (coinciding with the phenological stage: 2—tillering). This date
was chosen because it is the moment when the crop has a constant and regular water height
over time (it is not influenced by droughts); furthermore, it has been set in accordance with
the study carried out by Franch et al. [25], which identifies this period as a critical time
for achieving high yields (tillering phase). In addition, insufficient water uptake during
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this stage can inhibit tillering, leading to lower final yield [26,27]. Consequently, water
management is a key decision in rice farming to improve tillering, increase final yield and
correct field anomalies. A representative sample of each plot was chosen by measuring
the height in 10% of the Sentinel-2 pixels of each plot, selecting the pixels randomly and
geo-referencing their location with GPS. A 30 cm ruler was used to measure the points, with
6 repetitions per control point. Interpolation was performed via IDW (Inverse Distance
Weighted) in QGIS. While this method provides a practical estimate, potential interpolation
error should be considered in pixel-level analyses. The formula used is as follows:

n [z
i=1 d’?

p= ———=- (©)
4(3)

Zp: estimated value for unmeasured p-point;

where

n: number of points used in interpolation;

i: measured value of point i;

z;: value of the coordinate at the i-th point;

df : distance between the i-th point and the known point , raised to the power (p = 2).

2.5. Statistical Analysis

Statistics were run using R software (version 4.2.3). The ANOVA statistic was used to
study the differences in water depth and crop yield between the study plots, correlation
analysis was used to find out the strength of the relationship (r) and whether it is positive
or negative, and the coefficient of determination (R?) of the models was proposed for
estimating the height of the sheet of water. The separation of means was carried out with
the Least Significant Difference (LSD) statistical test with a p < 0.05.

3. Results

The results of the experiment are presented to evaluate (1) crop monitoring using
Sentinel-2 imagery over two growing seasons to assess whether differences in growth kinet-
ics could influence the analysis; (2) the correlation between spectral bands and vegetation
indices with field-measured water depth, in order to identify key physical parameters and
phenological stages for estimating water depth via remote sensing; (3) the parcel-level
anomaly in the near-infrared (NIR) band and its relationship with final yield, to quantify
yield variability using Sentinel-2 data; and (4) the direct influence of water depth on crop
yield, to determine which water levels are associated with higher productivity.

3.1. Spectral Reflectance

To assess interannual crop growth dynamics, the average spectral response of the
plots was analyzed over the growing season based on days after sowing (DAS). Reflectance
values from B04 (Red) and B08 (NIR) bands and the NDVI were used to monitor vegetation
development. This temporal analysis, presented in Figure 3, highlights differences in
canopy vigour between seasons. The reflectance values of both bands decrease after
flooding (0 DAS), presenting previously higher values (dry soil). In the first 30 days of
cultivation, due to the water management (first drying of the crop), a different behaviour
in the spectral evolution of bands and NDVI can be observed. Thus, it is from this moment
when in some plots, some anomalies could be identified, caused by a different development
of the crop.
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Crop growth resulted in a decrease in reflectance in the Red band, until the crop
flowered (78-85 DAS). During gleaning and at later stages, the rice plant started to lose
the green colouring (chlorophyll). This process was accelerated during the maturation and
senescence of the crop, coinciding with the increase in the value of red reflectance.

—0—3022 —0~2023 —0=2023 —0=2023 2022 —+2023

0.18 I 0.45 1.00 — -

0.14 0.40 br - = 0.90 }Eﬁww
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o0 | M 0.30 7 ! 1 X
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(a) (b) (c)

Figure 3. Evolution of red reflectance (B04) (a), NIR (B08) (b) and NDVI (c). Vertical bars indicate
standard errors.

.25

NDVI
c o
B i
S o

B04 Reflectance
B08 Reflectance

Reflectance in the NIR showed an increasing value since 30 DAS, in vegetative phase,
where the highest Aboveground Biomass (AGB) is produced. The values increased until
the crop reached the reproductive phase in its last stages (110 DAS). Reflectance values in
2022 were higher during the first 60 DAS, indicating a high biomass growth rate. Since 90
DAS, the loss of NIR value started, with very similar values between years.

NDVI values followed the characteristic evolution of rice cultivation, with a constant
increase after planting, with maximum values around 60 DAS in 2022 and 80 DAS in 2023.
The displacement of the NDVI evolution in 2023 to the right of the graph indicated the time
differences in growth and maturation between the two years.

3.2. Study of Correlations Between the Height of the Water Surface and Sentinel-2 Bands

The correlation between water depth and the Sentinel-2 spectral bands was analyzed
across all acquisition dates (expressed as DAS) for the 2022 and 2023 growing seasons, as
illustrated in Figure 4 (panels (a) and (b), respectively).

It was observed that at 0 DAS, the correlations for 2023 were high; however, the
values did not follow a linear trend. In both study years, the correlations followed similar
evolutions, represented at DAS. The visible bands (B02, B03, B04) and the BO5 band followed
a similar and opposite trend to the NIR and SWIR bands (B06, B07, B08, B11 and B12). Until
the end of tillering (40 and 55 DAS in 2022 and 2023) the correlations were positive for the
visible bands and negative for the NIR and SWIR bands. Since flowering stage (60 DAS), in
2022 correlations were negative and close to 0 until the end of the cycle. This evolution was
also observed in 2023, up to 100 DAS where correlations were all positive.

The highest correlation values resulted with the NIR band in the tillering season,
namely at 35 and 55 DAS, with negative values of r = —0.79 and r = —0.71 in the years
2022 and 2023, respectively (Figure 4). The relationship between NIR reflectance and water
depth was analyzed for all pixels within the rice field at 35 and 55 DAS in 2022 and 2023
season (Figure 5a,b). In both years, a clear negative correlation was observed, indicating
that higher reflectance values in the NIR region were associated with lower water depths. In
2022, the linear model obtained an R? of 0.623, while the quadratic model slightly improved
the fit with an R? of 0.697, suggesting a polynomic behaviour between water depth and
NIR reflectance. Similarly, in 2023, the quadratic model also improved over the linear
model, with R? values of 0.717 and 0.644, respectively. These results confirm the consistent
inverse relationship across both seasons and highlight the potential of NIR reflectance as a
reliable indicator of water depth variability in flooded rice fields in the tillering phase. At
shallower depths (3-8 cm), small variations in water height produce significant changes
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in NIR reflectance, due to the greater sensitivity of the spectral response in that region.
From approximately 8-10 cm, this response stabilizes, and between 12 and 14 cm it tends
to saturate, showing less variability. Therefore, the polynomial trend better captures this
transition, especially at the inflexion point of around 8 cm.

2022
1.00

— B2
— &3
0.75 —_— 04
— 805
— 86
— 807

0.50

e BO3
B3A
B11
812

0.25

T 0.00

—0.25 =

—-0.50

-0.75

-1.00

DAS

(a)

2023

1.00
—

= B03
— 04
— B05
— BO6
e BO7
e BOB
B3A
B11
812

0.75

0.50

0.25

r 0.00

-0.25

-0.50

-0.75

-1.00
DAS

(b)

Figure 4. Temporal evolution of the correlation coefficients (r) between measured water depth in
the field and Sentinel-2 spectral bands across the 2022 (a) and 2023 (b) growing seasons, expressed
as DAS.

Conversely, correlations between vegetation indices and water depth were generally
low. The highest R? values were observed for GNDVI at 35 DAS in 2022 (R? = 0.37) and for
NDWI at 80 DAS in 2023 (R? = 0.36) (Supplementary Materials, Table S1).
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Figure 5. The relationship between NIR reflectance and water depth measured in all pixels of study
area in season 2022 (a) and 2023 (b). The relationship was statistically significant (p < 0.05).

3.3. Relationship Between Field-Level NIR Anomalies and Yield Variability

For each plot, the average of the yield anomalies represented per pixel has been
calculated, as well as the average in absolute value of all anomalies in percentage of the NIR
at 35 and 55 DAS in 2022 and 2023. The correlation between the two averages is shown in
Figure 6. A strong positive linear correlation was observed in both seasons (R? = 0.8986 and
R? = 0.9777), indicating that higher deviations in NIR reflectance were strongly associated
with higher deviations in grain yield. This suggests that NIR anomalies, derived from
satellite imagery, effectively captured intra-seasonal variability in crop yield.
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Figure 6. Relationship between NIR reflectance anomaly and final yield anomaly at the field level
during the 2022 (a) and 2023 (b) season.

The linear regression has a slope of 55.49 and 67.06 in the years 2022 and 2023, re-
spectively. Each point of anomaly in the NIR is associated with an average variation
of 67.06 kg-ha~! in yield, which represents an increase of 21% with respect to the value
obtained in 2022. The main similarity between the two seasons is the strength of the
correlation observed, with R? values above 0.89 in both cases. Both graphs show a linear
regression model; however, in 2023, the NIR anomalies exhibit higher anomaly, with values
reaching up to 15%, compared to a maximum anomaly of 11% recorded in the 2022 season.
No anomaly values between 8 and 10% have been recorded in Figure 6a; however, a linear
correlation is still present. Figure 7 shows the NIR anomaly per pixel in the tillering phase
of the 2022 and 2023 fields.
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Figure 7. NIR anomaly map at pixel level in fields during the 2022 (a) and 2023 (b) season.

3.4. Influence of Water Depth on Final Yield
3.4.1. Comparison Between Mean Water Height and Yield in the Plots

Table 8 shows the relationship of plots with the mean values of water depth and
final yield (kg-ha~1!) in 2022 and 2023 recorded in the Yield Trakk software of the combine
harvester, together with the mean comparison study using the LSD statistical test (p < 0.05).

The analysis of variance for the variables water depth and crop yield shows that the
plot effect is statistically significant (p < 0.01). The statistical differences between the plots
allow sulfficient variability to be generated to address the proposed modelling.
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Table 8. Average water depth and yield for each plot in 2022 and 2023. Different letters in the same

column indicate statistically significant differences in the LSD test (p < 0.05) between plots.

2022 2023
. . Yield . . Yield
Field Height (cm) (kg-ha-1) Field Height (cm) (kg-ha-1)
1 1141 a 73335 a 1 434 ¢ 5988.23 f
2 584d 6574.04 d 2 5.98 ¢ 9003.42 a
3 8.24Db 7244.56 ab 3 545d 7898.82 ¢
4 5.78d 5425.50 e 4 1240 a 6950.02 d
5 7.20 ¢ 7208.03 b 5 1222 a 6623.03 e
6 8.07b 7124.09 b
7 812b 6772.18 ¢ 6 991b 8316.22 b
p Value <0.01 <0.01 p Value <0.01 <0.01
Average 8.31 6961.24 Average 6.94 7325.23
Standard 2.14 571.29 Standard 3.12 1254.32
deviation deviation
Variation 25.77 8.21 Variation 4494 17.12

coefficient (%)

coefficient (%)

The study between the two years shows that the average water depth decreased from
8.31 cm in 2022 to 6.94 cm in 2023 and yield increased from 6961.24 kg-ha~! in 2022 to
7325.23 kg‘ha_1 in 2023. In addition, in 2023, the coefficient of variation in water height and
yield also increased compared to the previous year. If the study is analyzed by year, in 2022
there seems to be a positive correlation between water height and yield. Plot 1 recorded
the highest depth (11.41 cm) and had the highest yield (7333.5 kg-ha~!). Plots with lower
depth, such as plot 4 (5.78 cm), showed significantly lower yields (5425.50 kg-ha~!). Plots
with greater average water depths tended to exhibit higher yields.

In 2023, the relationship between water height and yield did not follow the same
trend as in the previous year. Plot 1, with the lowest water depth, had the lowest yield
(5988 kg-ha~1). However, plots 4 and 5 had the highest mean depth (12.4 cm and 12.22 cm,
respectively) but not the highest yields. Plot 2, with a mean depth of 5.98 cm, had the
highest yield (9003.42 kg-ha~!), with no statistical difference with the yield of plot 6
(8316.22 kg-ha~!) which had a mean height of 9.91 cm.

3.4.2. Analysis of the Correlation Between the Water Depth and Yield

Figure 8 shows the evolution of the yield as a function of the height of the water depth,
considering the values at pixel level, using a grade 2 polynomial adjustment.

The values obtained for the coefficient of determination were 0.50 and 0.53 considering
the yield values of 2022 and 2023, respectively, being p < 0.01. This value decreases
considering the average value of the yield in both years (R? = 0.19; p < 0.01) due to the
differences in yields between both years.

For the year 2022 the graph shows a positive polynomial relationship between the
height of the water depth and the yield, represented by the adjusted curve. The coefficient
of determination is R? = 0.50. It is observed that, in general, as the water depth increases
up to 8-11 cm, the yield tends to increase. Plots with water depths in the range of 6 to 9 cm
tend to show a consistent increase in yield. This suggests a positive correlation, but with a
tendency to stabilize when the water table height reaches values of 11 cm.

The relationship between water depth and yield in the year 2023 shows an inverted
parabola shape in the polynomial curve, with a coefficient of determination R? = 0.53. The
yield shows an increase with increasing water table height up to an optimum value of 9 cm,
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and once this optimum height was obtained, the yield started to decrease with increasing
water depth.
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Figure 8. Relationship between water depth and final yield at all pixels of the fields during the 2022
(a) and 2023 (b) season. The relationship was statistically significant (p < 0.05).

4. Discussion

Based on the remote sensing results, it can be observed that the evolution of reflectance
values for the rice crop during the 2022-2023 study seasons followed a characteristic trend
for this crop [28-32]. Reflectance in the NIR band is correlated with crop biomass [31]. In
both years, the NIR values increased from 30 to 100-110 DAS, corresponding to the vegeta-
tive and reproductive phases of the crop, where the greatest accumulation of Aboveground
Biomass (AGB) occurs [32]. NDVI is the most frequently employed index in the scientific
literature for vegetation assessment [33], as it combines the NIR and Red bands to calculate
a value ranging from —1 to 1. This index is highly useful for monitoring the different
phenological stages; however, a limitation of NDVI is its tendency to exhibit saturation
effects during periods of rapid growth [34]. The rapid evolution and saturation of the
NDVI in 2022 allowed us to explain the fast growth rate of the crop.
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Across the two years of the study, water depth showed the strongest correlation with
NIR values at the tillering stage in both seasons, with R 2 = 0.67 and 0.71 following a
polynomial adjustment. During the tillering stage of the rice crop, the canopy has not yet
fully covered the surface, allowing the soil background—whether dry, moist or covered
by a water layer—to significantly influence reflectance values. The water layer in the rice
field during the tillering period, if the traditional hyperspectral acquisition time is used,
will be interfered with by specular reflection causing spectral pollution [35]. In this context,
a decrease in reflectance values across the spectrum with increasing moisture in soils
without vegetation is commonly reported in the relevant literature [36,37]. In rice studies,
Niel et al. [38] confirm that background water absorption can reduce canopy reflectance
compared to individual leaf reflectance when vegetation cover is less than 100%. The
reflectance of natural waters, both turbid and clear, can be significantly higher than that
of green vegetation in the visible range of the spectrum [39,40]. Green vegetation reflects
strongly in the NIR, while the presence of surface water drastically reduces this reflectance
due to its high absorption capacity in this spectral region [41,42]. For these reasons, the
correlations between water depth and Sentinel-2 bands were positive for visible bands and
negative for NIR bands.

In other bands, the study of correlations with the various vegetative indices (NDVI,
GNDVI, NDRE and NDWI) did not show correlations with water depth. Scientific bibliog-
raphy deals with these indices to monitor the flooding of rice plots and to detect production
zones. Boschetti et al. [43] described the potential use of visible bands (Green or Red) with
the SWIR for detecting flooded areas. Subsequently Albertini et al. [44] evaluated different
studies analyzing the potential use of the MNDWI and NDWI for monitoring and detection
of water on the land surface. Other studies use EVI and NDFI to establish rice crop cycles
in different areas of the world [45]. And although Pedroso de Lima et al. [6] analyzed the
variability between plots using drone and satellite vegetative indices and confirmed their
potential for irrigation management in the Portuguese growing area, no previous study
has analyzed the relationship between crop reflectance, water depth and final productivity.
As a result, higher water table levels would improve crop tillering, causing consequent
increases in biomass that would translate into higher NIR reflectance values [46] and
higher chlorophyll content, which would result in lower reflectance values in the visible
bands [47]. In addition to the absolute reflectance values, it would be important to monitor
the variability in reflectances in each field, since wide deviations from these values would
indicate anomalies and therefore deviations from the crop’s potential yield, given the fact
that agricultural management decisions are usually made on a per-field basis [48].

In this context, crop monitoring is essential to ensure optimal growth and development.
Therefore, it is important to identify the critical phenological stages to achieve high yields.
Abid Nazir et al. [49] identified the end of tillering and flowering as the best phenological
stages to develop a linear regression model to predict yield using Sentinel-2 vegetative
indices in the production area of Pakistan. Soriano-Gonzélez et al. [50] reported the highest
correlation with final yield at the end of tillering, based on the maximum NDVI and
minimum NDWI values. Preliminary studies on Sentinel-2 band reflectance in the same
production area (Albufera de Valencia) also identified the tillering stage as showing the
highest correlation with final yield [24]. In addition, Fita et al. [16] reported that crop
yield had the strongest correlation with NIR reflectance, with higher R? values than those
obtained using various vegetation indices. As observed in this study, a 10% anomaly in
NIR reflectance during the tillering stage in the 2022 season was associated with a yield
reduction of approximately 500 kg-ha~!, while a 15% anomaly in 2023 resulted in losses
of up to 1046 kg-ha~!. In this context, analyzing NIR reflectance variability during the
tillering stage could be a valuable tool for preventing deviations in final yield.
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In 2022, the highest yields were recorded at water depths of 8 and 11 cm with values
of 7244 and 7333 kg-ha~!, respectively. These final yield values showed no statistically
significant differences, suggesting that yields were maintained from 8 to 13 cm water
depth. In 2023, the highest yields were observed at lower depths (6—7 cm), reaching
9003 kg-ha~!, followed by yields around 8316 kg-ha~! at 9 cm. However, deeper water
levels of 11 to 13.5 cm during the 2023 season resulted in lower yields, averaging around
6700 kg-ha~!. These results suggest that the optimum water depth range for maximum
productivity in both years was around 9 cm. According to the literature, water depths under
continuous flooding systems have shown diverse results. Talpur et al. [51] reported that
maintaining 5 cm of water during the vegetative stage and 10 cm during the reproductive
and grain filling stages was optimal for maximum yield, while deeper water levels (20 cm)
resulted in reduced growth and yield. Similarly, Juraimi et al. [52] recommended a depth
of 10 cm combined with longer inundation periods for higher productivity. Chiba et al. [53]
conducted field experiments to evaluate different flooding depths (2, 8, 12, 15, 18 cm) and
recommended 10 cm as the ideal depth to ensure high grain quality. In the same line,
Anbumozhi et al. [54] evaluated flooding depths (0, 3, 6, 9, 12, 15, 18 cm) and found that
9 cm resulted in the highest rice yield. Although most studies converge on 10 cm as the
recommended depth, Fan et al. [55], established that 15 cm of flood depth can increase
yield production by 4% and 18% compared to 5 cm and 10 cm, and saves 36% of water
compared with 20 cm. Therefore, although 9 cm seems to be an optimal value, the ideal
depth for rice cultivation depends on the study area, climatic conditions, water quality and
availability, field levelling and irrigation system.

Monitoring NIR band using satellite imagery during the tillering stage of rice cultiva-
tion could assist farmers to identify areas with higher or lower water depths. Moreover,
the generating of NIR anomaly maps at this stage could enable early detection of possible
yield deviations, allowing for timely decisions on interventions to minimize productivity
losses. This information derived to satellite could be used to dynamically adjust irrigation
flow rates, optimize water input/output balance and inform land levelling adjustments
for the following season to improve the uniformity of water distribution across fields. In
this context, the results of this study provide practical support for farmers to implement
more precise water management strategies using easily accessible remote sensing data with
field-level applicability.

5. Conclusions

The present study explores the applicability of remote sensing techniques for evalu-
ating water depth variability in final rice yield. Based on the remote sensing results, the
relationship between reflectance values from Sentinel-2 bands and crop water depth could
be analyzed. The visible bands showed positive correlations with water depth, while the
NIR reflectance values showed negative correlations. The NIR band (B08) showed the
highest correlation values between water depth and reflectance during the tillering stage
in both study years. Furthermore, the analysis of anomalies in the NIR values of each
pixel relative to the plot average allowed for the early detection of yield deviations in
a quantitative manner. These results support the implementation of more precise water
management strategies by farmers, using accessible satellite remote sensing data with direct
field applicability. Such observations provide accurate characterization of the magnitude of
productivity losses associated with spectral deviations within a plot, which is essential for
the development of early warning systems and intervention strategies based on remote
sensing. Despite the limitations of the study, there are local factors such as field levelling,
irrigation systems and crop variety, which may also influence the water distribution and
its spectral response and may affect the extrapolation of the models beyond the study
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area. Nevertheless, the methodology is considered reproducible in other contexts. Future
work should focus on validating this approach across different rice-growing regions and
integrating higher-resolution imagery or using image fusion techniques to improve spatial
resolution, incorporate more remote sensing data to work with more time and incorporate
machine learning models for operational early-warning systems.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/s25154860/s1, Table S1: Analysis of the linear correlation between
water depth and vegetation indices. The correlation coefficient (r) and the coefficient of determination
(R2) are used to evaluate the linear regression in year 2022 (a) and 2023 (b).
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