RST-YOLOv8: An Improved Chip Surface Defect Detection Model Based on YOLOv8
Abstract
:1. Introduction
2. Overview of YOLOv8
3. Methodology
3.1. RST-YOLOv8
3.2. RepViTBlock
3.3. C2f_RVB
3.4. SimAM Attention Mechanism
3.5. TADDH
4. Experiments
4.1. Datasets
4.2. Experimental Setup
4.3. Experimental Results and Analysis
4.3.1. Analysis and Comparison of Different Attention Mechanisms
4.3.2. Ablation Experiments
4.3.3. Comparison of Experimental Results of the PCB Datasets
4.3.4. Comparison of Experimental Results of the Chip Surface Defect Dataset
4.3.5. Convergence Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Gao, S.; Guo, J.; Wang, C.; Xiong, L.; Zou, Y. Deep Learning-Based Integrated Circuit Surface Defect Detection: Addressing Information Density Imbalance for Industrial Application. Int. J. Comput. Intell. Syst. 2024, 17, 29. [Google Scholar] [CrossRef]
- Wei, L.; Solihin, M.I.; Astuti, W.; Hong, L.W.; Kit, A.C. Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review. Oper. Res. Forum. 2024, 5, 58. [Google Scholar] [CrossRef]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Farhadi, A.; Redmon, J. Yolov3: An incremental improvement. In Proceedings of the Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1804, pp. 1–6. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Li, C.; Li, L.; Geng, Y.; Jiang, H.; Cheng, M.; Zhang, B.; Ke, Z.; Xu, X.; Chu, X. Yolov6 v3. 0: A full-scale reloading. arXiv 2023, arXiv:2301.05586. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. Yolov10: Real-time end-to-end object detection. Adv. Neural Inf. Process. Syst. 2024, 37, 107984–108011. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Li, Y.; Huang, H.; Xie, Q.; Yao, L.; Chen, Q. Research on a surface defect detection algorithm based on MobileNet-SSD. Appl. Sci. 2018, 8, 1678. [Google Scholar] [CrossRef]
- Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Qian, X.; Wang, X.; Yang, S.; Lei, J. LFF-YOLO: A YOLO algorithm with lightweight feature fusion network for multi-scale defect detection. IEEE Access 2022, 10, 130339–130349. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Zhen, W. Real-time inspection model for key components of transmission lines based on improved YOLOv4. Sci. Technol. Eng. 2021, 21, 10393–10400. [Google Scholar]
- Liu, Z.; Ye, K. YOLO-IMF: An improved YOLOv8 algorithm for surface defect detection in industrial manufacturing field. In Proceedings of the International Conference on Metaverse, Honolulu, HI, USA, 23–26 September 2023; pp. 15–28. [Google Scholar]
- Yongjie, Z.; Xiaoyu, Z.; Luyao, W.; Yaru, W.; Xiaoke, S.; Haoshuo, Z. IDD-YOLOv7: A lightweight method for multiple defect detection of insulators in transmission lines. J. Graph. 2024, 45, 90. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 13713–13722. [Google Scholar]
- Diao, J.; Zou, L.; Zhang, G. Wafer defect detection based on improved YOLOv8. In Proceedings of the Third International Conference on Electronic Information Engineering and Data Processing (EIEDP 2024), Kuala Lumpur, Malaysia, 15–17 March 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13184, pp. 1786–1792. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Siris, A.; Jiao, J.; Tam, G.K.; Xie, X.; Lau, R.W. Scene Context-Aware Salient Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 4136–4146. [Google Scholar]
- Feng, Q.; Xu, X.; Wang, Z. Deep learning-based small object detection: A survey. Math. Biosci. Eng. 2023, 20, 6551–6590. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Solihin, M.I.; Nugroho, H.A. RCA: YOLOv8-based surface defects detection on the inner wall of cylindrical high-precision parts. Arab. J. Sci. Eng. 2024, 49, 12771–12789. [Google Scholar] [CrossRef]
- Liu, J.; Cui, G.; Xiao, C. A real-time and efficient surface defect detection method based on YOLOv4. J. Real-Time Image Process. 2023, 20, 77. [Google Scholar] [CrossRef]
- Ling, Q.; Isa, N.A.M.; Asaari, M.S.M. Precise detection for dense PCB components based on modified YOLOv8. IEEE Access 2023, 11, 116545–116560. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. arXiv 2017, arXiv:arXiv:1612.03144. [Google Scholar]
- Ge, Z. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Wang, A.; Chen, H.; Lin, Z.; Han, J.; Ding, G. Repvit: Revisiting mobile cnn from vit perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–18 June 2024; pp. 15909–15920. [Google Scholar]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. Tood: Task-aligned one-stage object detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; IEEE Computer Society: Los Alamitos, CA, USA, 2021; pp. 3490–3499. [Google Scholar]
- Intelligent Robotics Open Lab. PKU-Market-PCB: A Printed Circuit Board Defect Dataset. 2021. Available online: https://robotics.pkusz.edu.cn/resources/dataset (accessed on 1 May 2025).
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Huang, H.; Chen, Z.; Zou, Y.; Lu, M.; Chen, C.; Song, Y.; Zhang, H.; Yan, F. Channel prior convolutional attention for medical image segmentation. Comput. Biol. Med. 2024, 178, 108784. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Pan, X.; Song, S.; Li, L.E.; Huang, G. Vision transformer with deformable attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4794–4803. [Google Scholar]
Category | Number |
---|---|
Tre_Etching | 153 |
Pit | 108 |
Over_Corrosion | 912 |
CT_Etching | 144 |
Terminal_Error | 307 |
Name | Specific Information |
---|---|
Operating system | Windows11 |
CPU | Intel(R) Core(TM) i7-14700KF |
@5.60 GHz | |
GPU | NVIDIA GeForce RTX 4090 |
RAM | 32 GB |
CUDA | 12.7 |
PyTorch | 1.12.0 |
Python | 3.9.19 |
Models | Data1 | Data2 | ||||||
---|---|---|---|---|---|---|---|---|
P/% | R/% | mAP@0.5/% | Para/M | P/% | R/% | mAP@0.5/% | Para/M | |
YOLOv8n | 91.8 | 76.1 | 82.5 | 3.01 | 70.0 | 89.3 | 89.2 | 3.01 |
+SE | 91.3 | 79.5 | 85.9 | 3.02 | 79.7 | 84.5 | 87.5 | 3.02 |
+CPCA | 91.0 | 78.1 | 85.8 | 3.13 | 85.5 | 85.1 | 90.6 | 3.13 |
+DAttention | 94.9 | 79.4 | 86.2 | 3.27 | 87.5 | 86.5 | 90.5 | 3.27 |
+SimAM | 93.9 | 75.4 | 87.1 | 3.01 | 89.9 | 75.4 | 91.8 | 3.01 |
Methods | Data1 | Data2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
YOLOv8 | C2f_RVB | SimAM | TADDH | P/% | R/% | mAP@0.5/% | Para/M | P/% | R/% | mAP@0.5/% | Para/M |
✓ | 91.8 | 76.1 | 82.5 | 3.01 | 70.0 | 89.3 | 89.2 | 3.01 | |||
✓ | ✓ | 90.1 | 75.6 | 83.7 | 2.28 | 88.7 | 84.1 | 91.5 | 2.28 | ||
✓ | ✓ | 93.9 | 75.4 | 87.1 | 3.01 | 89.9 | 75.4 | 91.8 | 3.01 | ||
✓ | ✓ | 91.0 | 84.8 | 88.9 | 2.24 | 77.1 | 92.3 | 92.9 | 2.24 | ||
✓ | ✓ | ✓ | 89.2 | 83.8 | 88.1 | 2.28 | 82.8 | 88.9 | 92.9 | 2.28 | |
✓ | ✓ | ✓ | 89.9 | 86.4 | 90.3 | 1.64 | 92.5 | 81.8 | 93.1 | 1.64 | |
✓ | ✓ | ✓ | 93.9 | 83.0 | 88.4 | 2.24 | 83.4 | 92.8 | 93.9 | 2.24 | |
✓ | ✓ | ✓ | ✓ | 94.4 | 86.1 | 92.8 | 1.68 | 83.7 | 94.3 | 94.6 | 1.68 |
Models | P/% | R/% | mAP@0.5/% | mAP@0.5:0.95/% | Para/M | GFLOPs |
---|---|---|---|---|---|---|
Faster-RCNN | 80.5 | 89.0 | 74.6 | 43.2 | 41.3 | 205.1 |
SSD | 73.8 | 72.1 | 77.7 | 36.8 | 26.3 | 85.7 |
YOLOv5 | 79.8 | 76.1 | 81.3 | 56.4 | 7.0 | 15.8 |
YOLOv8 | 91.8 | 76.1 | 82.5 | 63.1 | 3.0 | 8.2 |
YOLOv10 | 84.2 | 76.8 | 84.2 | 64.9 | 2.3 | 6.5 |
YOLOv11 | 93.8 | 78.5 | 87.2 | 70.3 | 2.6 | 6.4 |
Literature [28] | 89.7 | 83.5 | 87.7 | 75.3 | 2.6 | - |
RST-YOLOv8 | 94.4 | 86.1 | 92.8 | 78.5 | 1.7 | 6.6 |
Models | P/% | R/% | mAP@0.5/% | mAP@0.5:0.95/% | Para/M | GFLOPs |
---|---|---|---|---|---|---|
Faster-RCNN | 52.5 | 82.1 | 77.7 | 47.8 | 41.3 | 205.1 |
SSD | 92.5 | 50.8 | 83.6 | 53.2 | 26.3 | 85.7 |
YOLOv5 | 92.1 | 83.9 | 86.8 | 61.4 | 7.0 | 15.8 |
YOLOv8 | 70.0 | 89.3 | 89.2 | 65.3 | 3.0 | 8.2 |
YOLOv10 | 78.0 | 88.7 | 91.6 | 70.6 | 2.3 | 6.5 |
YOLOv11 | 82.5 | 82.5 | 88.2 | 62.9 | 2.6 | 6.4 |
RST-YOLOv8 | 83.7 | 94.3 | 94.6 | 74.5 | 1.7 | 6.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Deng, Y.; Luo, X. RST-YOLOv8: An Improved Chip Surface Defect Detection Model Based on YOLOv8. Sensors 2025, 25, 3859. https://doi.org/10.3390/s25133859
Tang W, Deng Y, Luo X. RST-YOLOv8: An Improved Chip Surface Defect Detection Model Based on YOLOv8. Sensors. 2025; 25(13):3859. https://doi.org/10.3390/s25133859
Chicago/Turabian StyleTang, Wenjie, Yangjun Deng, and Xu Luo. 2025. "RST-YOLOv8: An Improved Chip Surface Defect Detection Model Based on YOLOv8" Sensors 25, no. 13: 3859. https://doi.org/10.3390/s25133859
APA StyleTang, W., Deng, Y., & Luo, X. (2025). RST-YOLOv8: An Improved Chip Surface Defect Detection Model Based on YOLOv8. Sensors, 25(13), 3859. https://doi.org/10.3390/s25133859