A Comprehensive Framework for the Development of a Compact, Cost-Effective, and Robust Hyperspectral Camera Using COTS Components and a VPH Grism
Abstract
:1. Introduction
2. Related Work
3. Development Process
4. Spectrograph Design
4.1. Working Principle
4.2. Specifications and Component Selection
4.3. Optical Simulations
4.4. Tolerance Analysis
5. Assembly
6. Evaluation of the Spectrograph’s Performance
6.1. Spectral Coverage and Spectral Resolution
6.2. Smile and Keystone
7. Acquisition of the Hyperspectral Image
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govender, M.; Chetty, K.; Bulcock, H. A Review of Hyperspectral Remote Sensing and Its Application in Vegetation and Water Resource Studies. Water SA 2009, 33, 145–151. [Google Scholar] [CrossRef]
- Jay, S.; Bendoula, R.; Hadoux, X.; Féret, J.-B.; Gorretta, N. A Physically-Based Model for Retrieving Foliar Biochemistry and Leaf Orientation Using Close-Range Imaging Spectroscopy. Remote Sens. Environ. 2016, 177, 220–236. [Google Scholar] [CrossRef]
- Bedini, E. The Use of Hyperspectral Remote Sensing for Mineral Exploration: A Review. J. Hyperspectral Remote Sens. 2017, 7, 189–211. [Google Scholar] [CrossRef]
- Stuart, M.B.; McGonigle, A.J.S.; Willmott, J.R. Hyperspectral Imaging in Environmental Monitoring: A Review of Recent Developments and Technological Advances in Compact Field Deployable Systems. Sensors 2019, 19, 3071. [Google Scholar] [CrossRef]
- Pengphorm, P.; Thongrom, S.; Daengngam, C.; Duangpan, S.; Hussain, T.; Boonrat, P. Optimal-Band Analysis for Chlorophyll Quantification in Rice Leaves Using a Custom Hyperspectral Imaging System. Plants 2024, 13, 259. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and Hyperspectral Remote Sensing for Identification and Mapping of Wetland Vegetation: A Review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Boonrat, P.; Patel, M.; Pengphorm, P.; Detarun, P.; Daengngam, C. Hyperspectral Imaging for the Dynamic Mapping of Total Phenolic and Flavonoid Contents in Microgreens. AgriEngineering 2025, 7, 107. [Google Scholar] [CrossRef]
- Carrasco, O.; Gomez, R.B.; Chainani, A.; Roper, W.E. Hyperspectral Imaging Applied to Medical Diagnoses and Food Safety. In Geo-Spatial and Temporal Image and Data Exploitation III; Faust, N.L., Roper, W.E., Eds.; SPIE: Orlando, FL, USA, 2003; p. 215. [Google Scholar]
- Promny, D.; Aich, J.; Püski, T.; Marti Edo, A.; Reichert, B.; Billner, M. Evaluation of Hyperspectral Imaging as a Modern Aid in Clinical Assessment of Burn Wounds of the Upper Extremity. Burns 2022, 48, 615–622. [Google Scholar] [CrossRef]
- Feng, Y.-Z.; Sun, D.-W. Application of Hyperspectral Imaging in Food Safety Inspection and Control: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef]
- Nikzadfar, M.; Rashvand, M.; Zhang, H.; Shenfield, A.; Genovese, F.; Altieri, G.; Matera, A.; Tornese, I.; Laveglia, S.; Paterna, G.; et al. Hyperspectral Imaging Aiding Artificial Intelligence: A Reliable Approach for Food Qualification and Safety. Appl. Sci. 2024, 14, 9821. [Google Scholar] [CrossRef]
- Briottet, X.; Boucher, Y.; Dimmeler, A.; Malaplate, A.; Cini, A.; Diani, M.; Bekman, H.; Schwering, P.; Skauli, T.; Kasen, I.; et al. Military Applications of Hyperspectral Imagery. In Targets and Backgrounds XII: Characterization and Representation; Watkins, W.R., Clement, D., Eds.; SPIE: Orlando, FL, USA, 2006; p. 62390B. [Google Scholar]
- Gross, W.; Queck, F.; Schreiner, S.; Vögtli, M.; Kuester, J.; Mispelhorn, J.; Kneubühler, M.; Middelmann, W. A Multi-Temporal Hyperspectral Camouflage Detection and Transparency Experiment. In Target and Background Signatures VIII; Stein, K., Schleijpen, R., Eds.; SPIE: Berlin, Germany, 2022; p. 3. [Google Scholar]
- Sigernes, F.; Syrjäsuo, M.; Storvold, R.; Fortuna, J.; Grøtte, M.E.; Johansen, T.A. Do It Yourself Hyperspectral Imager for Handheld to Airborne Operations. Opt. Express 2018, 26, 6021. [Google Scholar] [CrossRef]
- Henriksen, M.B.; Prentice, E.F.; Van Hazendonk, C.M.; Sigernes, F.; Johansen, T.A. Do-It-Yourself VIS/NIR Pushbroom Hyperspectral Imager with C-Mount Optics. Opt. Contin. 2022, 1, 427. [Google Scholar] [CrossRef]
- Mao, Y.; Betters, C.H.; Evans, B.; Artlett, C.P.; Leon-Saval, S.G.; Garske, S.; Cairns, I.H.; Cocks, T.; Winter, R.; Dell, T. OpenHSI: A Complete Open-Source Hyperspectral Imaging Solution for Everyone. Remote Sens. 2022, 14, 2244. [Google Scholar] [CrossRef]
- Lim, H.-H.; Cheon, E.; Lee, D.-H.; Jeon, J.-S.; Lee, S.-R. Classification of Granite Soils and Prediction of Soil Water Content Using Hyperspectral Visible and Near-Infrared Imaging. Sensors 2020, 20, 1611. [Google Scholar] [CrossRef]
- Xue, Q.; Yang, B.; Wang, F.; Tian, Z.; Bai, H.; Li, Q.; Cao, D. Compact, UAV-Mounted Hyperspectral Imaging System with Automatic Geometric Distortion Rectification. Opt. Express 2021, 29, 6092. [Google Scholar] [CrossRef]
- Hill, G.J.; Wolf, M.J.; Tufts, J.R.; Smith, E.C. Volume Phase Holographic (VPH) Grisms for Infrared and Optical Spectrographs. In Specialized Optical Developments in Astronomy; Atad-Ettedgui, E., D’Odorico, S., Eds.; SPIE: Waikoloa, HI, USA, 2003; p. 1. [Google Scholar]
- Massenot, S. Volume Diffraction Gratings for Optical Telecommunications Applications: Design Study for a Spectral Equalizer. Opt. Eng. 2004, 43, 2658. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, L.; Cen, Y.; Wang, J.; Tong, Q. Light Weight Airborne Imaging Spectrometer Remote Sensing System for Mineral Exploration in China. In Spectral Imaging Sensor Technologies: Innovation Driving Advanced Application Capabilities; Bannon, D.P., Ed.; SPIE: Baltimore, MD, USA, 2014; p. 910406. [Google Scholar]
- Zhu, H.; Luo, J.; He, S. Detecting Multiple Mixed Bacteria Using Dual-Mode Hyperspectral Imaging and Deep Neural Networks. Appl. Sci. 2024, 14, 1525. [Google Scholar] [CrossRef]
- Jiao, C.; Xu, Z.; Bian, Q.; Forsberg, E.; Tan, Q.; Peng, X.; He, S. Machine Learning Classification of Origins and Varieties of Tetrastigma Hemsleyanum Using a Dual-Mode Microscopic Hyperspectral Imager. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 261, 120054. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, T.; Zhang, L.; Zhang, P. Development of a Portable Field Imaging Spectrometer: Application for the Identification of Sun-Dried and Sulfur-Fumigated Chinese Herbals. Appl. Spectrosc. 2016, 70, 879–887. [Google Scholar] [CrossRef]
- Dirk, C.W.; Delgado, M.F.; Olguin, M.; Druzik, J. A Prism–Grating–Prism Spectral Imaging Approach. Stud. Conserv. 2009, 54, 77–89. [Google Scholar] [CrossRef]
- Krtalić, A.; Miljković, V.; Gajski, D.; Racetin, I. Spatial Distortion Assessments of a Low-Cost Laboratory and Field Hyperspectral Imaging System. Sensors 2019, 19, 4267. [Google Scholar] [CrossRef]
- Cucci, C.; Casini, A.; Stefani, L.; Cattaneo, B.; Picollo, M. A Novel Transmittance Vis–NIR Hyper-Spectral Imaging Scanner for Analysis of Photographic Negatives: A Potential Tool for Photography Conservation. Sensors 2023, 23, 3562. [Google Scholar] [CrossRef]
- Shaked, Y.; Yefet, S.; Pe’er, A. Dispersion Compensation Using a Prism-Pair. arXiv 2016, arXiv:1411.0232. [Google Scholar]
- Lerner, J.M. Imaging Spectrometer Fundamentals for Researchers in the Biosciences—A Tutorial. Cytom. Part A J. Int. Soc. Anal. Cytol. 2006, 69A, 712–734. [Google Scholar] [CrossRef]
- Seager, S.; Turner, E.L.; Schafer, J.; Ford, E.B. Vegetation’s Red Edge: A Possible Spectroscopic Biosignature of Extraterrestrial Plants. Astrobiology 2005, 5, 372–390. [Google Scholar] [CrossRef]
- Dawson, T.P.; Curran, P.J. Technical Note A New Technique for Interpolating the Reflectance Red Edge Position. Int. J. Remote Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The Red Edge of Plant Leaf Reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Hong, S.M.; Cho, K.H.; Park, S.; Kang, T.; Kim, M.S.; Nam, G.; Pyo, J. Estimation of Cyanobacteria Pigments in the Main Rivers of South Korea Using Spatial Attention Convolutional Neural Network with Hyperspectral Imagery. GIScience Remote Sens. 2022, 59, 547–567. [Google Scholar] [CrossRef]
- Rolt, S. Optical Engineering Science, 1st ed.; Wiley: Hoboken, NJ, USA, 2020; ISBN 978-1-119-30280-3. [Google Scholar]
- Silny, J.F. Resolution Modeling of Dispersive Imaging Spectrometers. Opt. Eng. 2017, 56, 081813. [Google Scholar] [CrossRef]
- Mouroulis, P.; Green, R.O. Review of High Fidelity Imaging Spectrometer Design for Remote Sensing. Opt. Eng. 2018, 57, 040901. [Google Scholar] [CrossRef]
- Thongrom, S.; Pengphorm, P.; Kalasuwan, P.; Dommelen, P.V.; Daengngam, C. Hybrid Optical-Digital Design for Cost-Effective Standoff Raman Detection System Utilizing a Night-Vision Intensified Spectrometer. Opt. Express 2025, 33, 11757. [Google Scholar] [CrossRef]
- Arcón, G.; Álvarez, J.; Sogamoso, L.; Sarmiento, R. Analysis of Deviations in Wavelength Measurements with a Diffraction Grating Monochromator with Respect to a Certified Reference Spectral Lamp. J. Phys. Conf. Ser. 2019, 1219, 012012. [Google Scholar] [CrossRef]
- Hutsebaut, D.; Vandenabeele, P.; Moens, L. Evaluation of an Accurate Calibration and Spectral Standardization Procedure for Raman Spectroscopy. Analyst 2005, 130, 1204. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, Y.; Zhou, J.; Chen, X.; Wei, X.; Shen, W. Distortion Measurement of Push-Broom Imaging Spectrometer. In 2009 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments; Wang, Y., Sheng, Y., Tatsuno, K., Eds.; SPIE: Shanghai, China, 2009; p. 750621. [Google Scholar]
- Mouroulis, P. Pushbroom Imaging Spectrometer with High Spectroscopic Data Fidelity: Experimental Demonstration. Opt. Eng. 2000, 39, 808. [Google Scholar] [CrossRef]
- Mekki-Berrada, F.; Xie, J.; Khan, S.A. High-throughput and High-speed Absorbance Measurements in Microfluidic Droplets Using Hyperspectral Imaging. Chem. Methods 2022, 2, e202100086. [Google Scholar] [CrossRef]
- Solomon, S.; Portmann, R.W.; Sanders, R.W.; Daniel, J.S. Absorption of Solar Radiation by Water Vapor, Oxygen, and Related Collision Pairs in the Earth’s Atmosphere. J. Geophys. Res. 1998, 103, 3847–3858. [Google Scholar] [CrossRef]
- Kuhlmann, G.; Hueni, A.; Damm, A.; Brunner, D. An Algorithm for In-Flight Spectral Calibration of Imaging Spectrometers. Remote Sens. 2016, 8, 1017. [Google Scholar] [CrossRef]
- Loures, L.; Chamizo, A.; Ferreira, P.; Loures, A.; Castanho, R.; Panagopoulos, T. Assessing the Effectiveness of Precision Agriculture Management Systems in Mediterranean Small Farms. Sustainability 2020, 12, 3765. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Akram, W.; Ahmad, A.; Habib-ur-Rahman, M.; Ghaffar, A.; Amin, A.; Awais, M.; Farid, H.U.; Farooq, A.; et al. Study of Land Cover/Land Use Changes Using RS and GIS: A Case Study of Multan District, Pakistan. Environ. Monit. Assess. 2020, 192, 2. [Google Scholar] [CrossRef]
- Ye, C.; Cui, P.; Pirasteh, S.; Li, J.; Li, Y. Experimental Approach for Identifying Building Surface Materials Based on Hyperspectral Remote Sensing Imagery. J. Zhejiang Univ. Sci. A 2017, 18, 984–990. [Google Scholar] [CrossRef]
HSI Model | Type | Effective Specral Range (nm) | Spectral Resolution (nm) | Number of Spectral Bands |
---|---|---|---|---|
Proposed HSI Camera | Research | 420–830 | 2 | 205 |
Imspector V8E [25] | Commercial (Specim) | 350–850 | 5 | 100 |
Imspector V9 [26] | Commercial (Specim) | 430–900 | 4.4 | 106 |
Imspector N10E [27] | Commercial (Specim) | 400–900 | 2.8 | 178 |
Parameters | Values |
---|---|
Spectral coverage | VNIR |
Spectral resolution | <5 nm |
Number of spectral bands () | >100 |
F-number | ≤3 |
Slit dimensions | 50 μm × 10 mm |
Focal lengths of the collimator () | 50 mm |
Focal lengths of the focuser () | 50 mm |
Pixels number (bin 2 × 2) | 2744 × 1836 |
Pixel width () (bin 2 × 2) | 4.8 μm |
Item | Part | Description | Qty |
---|---|---|---|
1 | Edmund Optics #36-532 | 50 mm f/2.8, HPr Series Fixed Focal Length Lens | 2 |
2 | Thorlabs S50LK | Ø1″ Mounted Slit, 50 ± 3 µm Wide, 10 mm Long | 1 |
3 | Edmund Optics #67-422 | 25 × 50 mm EFL Steinheil Triplet Achromatic Lens | 1 |
4 | Wasatch Photonics | VPH Grism with 567 line/mm at 633 nm (400–1000 nm), BK7-grism, prism angle 19.6° | 1 |
5 | HuaTeng HT-SUA2000M-T | 20.0 MP 1″ monochrome CMOS Sony IMX183 sensor | 1 |
Tolerance | Slit | Collimator | Grism | Focuser | |
---|---|---|---|---|---|
Assembly | Lens tip/tilt (degree) | ±0.230° | ±0.460° | ±0.460° | |
Lens decenter (μm) | ±50 | ±10 | ±100 | ||
Distance between optical components (μm) | ±50 | ±50 | ±100 | ±25 | |
Stability | Lens tip/tilt (degree) | ±0.092° | ±0.092° | ±0.092° | |
Lens decenter (μm) | ±20 | ±20 | ±20 | ||
Distance between optical components (μm) | ±20 | ±20 | ±20 | ±20 |
Contributor | Enlargement (μm) | ||
---|---|---|---|
Typical Case (68.2%) | Realistic Case (95.4%) | Worse Case (99.7%) | |
ΔRassembly | 0.4 | 1.3 | 1.8 |
ΔRstabillity | 0.3 | 1.1 | 1.4 |
0.5 | 1.7 | 2.3 |
FWHM | |||||||
---|---|---|---|---|---|---|---|
Measurement (nm) | Simulation (nm) | ||||||
Field Position (mm) | −5 | 0 | 5 | −5 | 0 | 5 | |
Wavelength (nm) | 435 | 1.47 | 1.49 | 1.45 | 1.60 | 1.57 | 1.60 |
546 | 1.54 | 1.54 | 1.50 | 1.70 | 1.56 | 1.70 | |
696 | 1.51 | 1.49 | 1.50 | 1.63 | 1.57 | 1.63 | |
767 | 1.49 | 1.49 | 1.49 | 1.67 | 1.56 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongrom, S.; Pengphorm, P.; Wongarrayapanich, S.; Prasit, A.; Kanjanasakul, C.; Rujopakarn, W.; Poshyachinda, S.; Daengngam, C.; Unsuree, N. A Comprehensive Framework for the Development of a Compact, Cost-Effective, and Robust Hyperspectral Camera Using COTS Components and a VPH Grism. Sensors 2025, 25, 3631. https://doi.org/10.3390/s25123631
Thongrom S, Pengphorm P, Wongarrayapanich S, Prasit A, Kanjanasakul C, Rujopakarn W, Poshyachinda S, Daengngam C, Unsuree N. A Comprehensive Framework for the Development of a Compact, Cost-Effective, and Robust Hyperspectral Camera Using COTS Components and a VPH Grism. Sensors. 2025; 25(12):3631. https://doi.org/10.3390/s25123631
Chicago/Turabian StyleThongrom, Sukrit, Panuwat Pengphorm, Surachet Wongarrayapanich, Apirat Prasit, Chanisa Kanjanasakul, Wiphu Rujopakarn, Saran Poshyachinda, Chalongrat Daengngam, and Nawapong Unsuree. 2025. "A Comprehensive Framework for the Development of a Compact, Cost-Effective, and Robust Hyperspectral Camera Using COTS Components and a VPH Grism" Sensors 25, no. 12: 3631. https://doi.org/10.3390/s25123631
APA StyleThongrom, S., Pengphorm, P., Wongarrayapanich, S., Prasit, A., Kanjanasakul, C., Rujopakarn, W., Poshyachinda, S., Daengngam, C., & Unsuree, N. (2025). A Comprehensive Framework for the Development of a Compact, Cost-Effective, and Robust Hyperspectral Camera Using COTS Components and a VPH Grism. Sensors, 25(12), 3631. https://doi.org/10.3390/s25123631