A Novel Method for ECG-Free Heart Sound Segmentation in Patients with Severe Aortic Valve Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Algorithm Description
2.1.1. Overview of the Proposed Method
2.1.2. Pre-Processing
2.1.3. Initial Segmentation Using HSMM
2.1.4. Proposed Method to Improve Detections of First Heart Sound Positions
2.1.5. Proposed Method to Improve Detections of Second Heart Sound Positions
2.2. Datasets
2.2.1. PhysioNet/Computing in Cardiology (PhysioNet/CinC) Challenge 2016 Dataset
2.2.2. ARTIK Dataset
2.3. Re-Implementation of Other State-of-the-Art Methods
2.4. Performance Metrics
3. Results
3.1. PhysioNet/CinC Challenge 2016 Dataset
3.2. ARTIK Dataset
3.2.1. Description of the ARTIK Dataset
3.2.2. Performances of the Algorithms on the ARTIK Dataset
4. Discussion
4.1. Performance for S1 and S2 Detections on the PhysioNet/CinC Challenge 2016 Dataset
4.2. Performance for S1 and S2 Detections on the ARTIK Dataset
4.3. Comparison to Other Methods in the Literature
4.4. Limitations and Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Aortic valve regurgitation |
AS | Aortic valve stenosis |
ASE | Average Shannon energy |
AVD | Aortic valve disease |
CT | Computed tomography |
ECG | Electrocardiogram |
FHS | Fundamental Heart Sounds |
FN | False negatives |
FP | False positives |
HSMM | Hidden Semi-Markov Model |
TN | True negatives |
TP | True positives |
MRI | Magnetic resonance imaging |
NASE | Normalized average Shannon energy |
PCG | Phonocardiogram, phonocardiography |
PPV | Positive predictive value |
Se | Sensitivity |
References
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799. [Google Scholar] [CrossRef] [PubMed]
- Généreux, P.; Schwartz, A.; Oldemeyer, J.B.; Pibarot, P.; Cohen, D.J.; Blanke, P.; Lindman, B.R.; Babaliaros, V.; Fearon, W.F.; Daniels, D.V.; et al. Transcatheter Aortic-Valve Replacement for Asymptomatic Severe Aortic Stenosis. N. Engl. J. Med. 2024, 392, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Iung, B. A worldwide perspective on the temporal burden and impact of calcific aortic valve disease. Eur. Heart J. Qual. Care Clin. Outcomes 2023, 9, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.S.; Yang, J.Y.; Goldhaber, J.I.; Phan, B.A.P.; Cheitlin, M.D. Cardiac auscultation skills among medical trainees. Am. Heart J. 2025, 286, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Thoenes, M.; Bramlage, P.; Zamorano, P.; Messika-Zeitoun, D.; Wendt, D.; Kasel, M.; Kurucova, J.; Steeds, R.P. Patient screening for early detection of aortic stenosis (AS)—Review of current practice and future perspectives. J. Thorac. Dis. 2018, 10, 5584–5594. [Google Scholar] [CrossRef]
- Karelas, D.; Tatsis, E.; Oikonomidis, D.; Papadopoulos, C.H. Diagnostic Challenges in the Management of Aortic Valve Stenosis and the Role of Imaging: A Narrative Review. J. Clin. Med. 2025, 14, 1231. [Google Scholar] [CrossRef]
- Zhang, W.L.; Huang, Q.J.; Yu, J.W.; Zhu, Z.B.; Zhang, R.Y. Feasibility of remote screening for high risk valve disease using a new wearable cardiac monitoring patch with synchronized phonocardiogram and electrocardiogram in communities. Eur. Heart J. 2023, 44 (Suppl. 2), ehad655.2977. [Google Scholar] [CrossRef]
- Zeng, W.; Lin, Z.; Yuan, C.; Wang, Q.; Liu, F.; Wang, Y. Detection of heart valve disorders from PCG signals using TQWT, FA-MVEMD, Shannon energy envelope and deterministic learning. Artif. Intell. Rev. 2021, 54, 6063–6100. [Google Scholar] [CrossRef]
- Moukadem, A.; Dieterlen, A.; Hueber, N.; Brandt, C. A robust heart sounds segmentation module based on S-transform. Biomed. Signal Process. Control 2013, 8, 273–281. [Google Scholar] [CrossRef]
- Liu, C.; Springer, D.; Li, Q.; Moody, B.; Juan, R.A.; Chorro, F.J.; Castells, F.; Roig, J.M.; Silva, I.; Johnson, A.E.W.; et al. An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 2016, 37, 2181. [Google Scholar] [CrossRef]
- Dornbush, S.; Turnquest, A.E. Physiology, Heart Sounds. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK541010/ (accessed on 5 November 2024).
- Naseri, H.; Homaeinezhad, M.R. Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric. Ann. Biomed. Eng. 2013, 41, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Springer, D.B.; Tarassenko, L.; Clifford, G.D. Logistic Regression-HSMM-Based Heart Sound Segmentation. IEEE Trans. Biomed. Eng. 2016, 63, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Singh, S.K.; Mitra, D. An efficient heart sound segmentation approach using kurtosis and zero frequency filter features. Biomed. Signal Process. Control 2020, 57, 101762. [Google Scholar] [CrossRef]
- Jain, P.K.; Tiwari, A.K. A Robust Algorithm for Segmentation of Phonocardiography Signal Using Tunable Quality Wavelet Transform. J. Med. Biol. Eng. 2018, 38, 396–410. [Google Scholar] [CrossRef]
- Xu, X.; Geng, X.; Gao, Z.; Yang, H.; Dai, Z.; Zhang, H. Optimal Heart Sound Segmentation Algorithm Based on K-Mean Clustering and Wavelet Transform. Appl. Sci. 2023, 13, 1170. [Google Scholar] [CrossRef]
- Arjoune, Y.; Nguyen, T.N.; Doroshow, R.W.; Shekhar, R. A Noise-Robust Heart Sound Segmentation Algorithm Based on Shannon Energy. IEEE Access 2024, 12, 7747–7761. [Google Scholar] [CrossRef]
- Hamza, M.F.A.B.; Sjarif, N.N.A. A Comprehensive Overview of Heart Sound Analysis Using Machine Learning Methods. IEEE Access 2024, 12, 117203–117217. [Google Scholar] [CrossRef]
- Sabbah, H.N.; Khaja, F.; Anbe, D.T.; Folger, G.M.; Stein, P.D. Determinants of the amplitude of the aortic component of the second heart sound in aortic stenosis. Am. J. Cardiol. 1978, 41, 830–835. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Sedghamiz, H. BioSigKit: A Matlab Toolbox and Interface for Analysis of BioSignals. J. Open Source Softw. 2018, 3, 671. [Google Scholar] [CrossRef]
- Keyzer, E.; Hossein, A.; Rabineau, J.; Morissens, M.; Almorad, A.; van de Borne, P. Non-invasive cardiac kinetic energy distribution: A new marker of heart failure with impaired ejection fraction (KINO-HF). Front. Cardiovasc. Med. 2023, 10, 1096859. [Google Scholar] [CrossRef] [PubMed]
- Herkert, C.; De Lathauwer, I.; van Leunen, M.; Spee, R.F.; Balali, P.; Migeotte, P.-F.; Hossein, A.; Lu, Y.; Kemps, H.M.C. The kinocardiograph for assessment of fluid status in patients with acute decompensated heart failure. ESC Heart Fail. 2023, 10, 3446–3453. [Google Scholar] [CrossRef] [PubMed]
- Viola, P.; Jones, M.J. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, Z.; Miyamoto, A.; Wei, Y. The moment segmentation analysis of heart sound pattern. Comput. Methods Programs Biomed. 2010, 98, 140–150. [Google Scholar] [CrossRef]
- Pretorius, E.; Cronje, M.L.; Strydom, O. Development of a pediatric cardiac computer aided auscultation decision support system. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 6078–6082. [Google Scholar] [CrossRef]
- Wang, P.; Kim, Y.; Ling, L.; Soh, C. First heart sound detection for phonocardiogram segmentation. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 5519–5522. [Google Scholar] [CrossRef]
- Liang, H.; Lukkarinen, S.; Hartimo, I. Heart sound segmentation algorithm based on heart sound envelogram. In Proceedings of the Computers in Cardiology 1997, Lund, Sweden, 7–10 September 1997; pp. 105–108. [Google Scholar] [CrossRef]
- Varghees, V.N.; Ramachandran, K.I. A novel heart sound activity detection framework for automated heart sound analysis. Biomed. Signal Process. Control 2014, 13, 174–188. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev. Esp. Cardiol. (Engl. Ed.) 2022, 75, 524. [Google Scholar] [CrossRef]
- Lombard, J.T.; Selzer, A. Valvular aortic stenosis. A clinical and hemodynamic profile of patients. Ann. Intern. Med. 1987, 106, 292–298. [Google Scholar] [CrossRef]
- Papadaniil, C.D.; Hadjileontiadis, L.J. Efficient Heart Sound Segmentation and Extraction Using Ensemble Empirical Mode Decomposition and Kurtosis Features. IEEE J. Biomed. Health Inform. 2014, 18, 1138–1152. [Google Scholar] [CrossRef]
- Oliveira, J.; Renna, F.; Costa, P.D.; Nogueira, M.; Oliveira, C.; Ferreira, C.; Jorge, A.; Mattos, S.; Hatem, T.; Tavares, T.; et al. The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification. IEEE J. Biomed. Health Inform. 2022, 26, 2524–2535. [Google Scholar] [CrossRef]
- Renna, F.; Oliveira, J.; Coimbra, M. Deep Convolutional Neural Networks for Heart Sound Segmentation. IEEE J. Biomed. Health Inform. 2019, 23, 2435–2445. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.; Xu, X.; Jeon, G.; Camacho, D. Artificial intelligence for heart sound classification: A review. Expert Syst. 2024, 41, e13535. [Google Scholar] [CrossRef]
- Costa, M.D.; Davis, R.B.; Goldberger, A.L. Heart Rate Fragmentation: A New Approach to the Analysis of Cardiac Interbeat Interval Dynamics. Front. Physiol. 2017, 8, 255. [Google Scholar] [CrossRef] [PubMed]
Group | TP | FP | FN | Se | PPV | F1-Score |
---|---|---|---|---|---|---|
Healthy group | 6879 | 257 | 275 | 96.16% | 96.40% | 96.28% |
VHD group | 4059 | 160 | 256 | 94.06% | 96.21% | 95.13% |
Group | TP | FP | FN | Se | PPV | F1-Score |
---|---|---|---|---|---|---|
Healthy group | 6715 | 334 | 363 | 94.87% | 95.26% | 95.07% |
VHD group | 3867 | 303 | 368 | 91.31% | 92.73% | 92.02% |
Characteristics | Control Group | AS Group | AR Group |
---|---|---|---|
Number of subjects | 9 | 26 | 9 |
Men (%) | 44 | 69 | 44 |
Age (years) | 28 [23, 30] | 75 [69, 79] | 64 [53, 60] |
Body height (cm) | 170 [166, 179] | 165 [161, 169] | 168 [163, 176] |
Body weight (kg) | 65 [60, 80] | 78 [69, 89] | 70 [53, 77] |
BMI (kg/m2) | 22 [21, 25] | 28 [25, 31] | 23 [21, 24] |
AV Vmax (m/s) | - | 4.2 [4.0, 4.6] | 1.8 [1.6, 2.2] |
AV Mean Gradient (mmHg) | - | 43 [39, 50] | 6 [5, 14] |
AV Area (cm2) | - | 0.8 [0.6, 0.9] | 2.5 [2.1, 2.7] |
AR Vena Contracta (mm) | - | - | 5 [3, 5] |
AR Regurgitant Volume (mL) | - | - | 46 [40, 70] a |
Number of associated mild MR | - | 16 | 4 |
Number of associated moderate MR | - | 3 | 0 |
Number of subjects with mild reduced EF (41–49%) | - | 2 | 0 |
Number of subjects with reduced EF (≤40%) | - | 2 | 0 |
Group | Algorithm | TP | FP | FN | Se | PPV | F1-Score |
---|---|---|---|---|---|---|---|
Healthy group | HSMM with kurtosis [14] | 2305 | 52 | 46 | 98.04% | 97.79% | 97.92% |
Shannon [17] | 2106 | 520 | 245 | 89.10% | 79.60% | 84.21% | |
TQWT [15] | 1587 | 260 | 764 | 67.50% | 85.92% | 75.61% | |
K-means [16] | 2058 | 88 | 293 | 87.54% | 95.90% | 91.53% | |
Proposed method | 2306 | 51 | 45 | 98.09% | 97.84% | 97.96% | |
AR group | HSMM with kurtosis [14] | 4172 | 288 | 250 | 94.35% | 93.54% | 93.94% |
Shannon [17] | 2522 | 1366 | 1901 | 57.10% | 64.90% | 60.80% | |
TQWT [15] | 2466 | 849 | 1957 | 55.75% | 74.39% | 63.74% | |
K-means [16] | 3261 | 641 | 1162 | 73.73% | 83.57% | 78.34% | |
Proposed method | 4235 | 226 | 188 | 95.29% | 94.94% | 95.29% | |
AS group | HSMM with kurtosis [14] | 9215 | 1916 | 2052 | 81.79% | 82.79% | 82.28% |
Shannon [17] | 5415 | 3119 | 5852 | 48.06% | 63.45% | 54.69% | |
TQWT [15] | 4056 | 2748 | 7211 | 36.00% | 59.61% | 44.89% | |
K-means [16] | 5671 | 3266 | 5596 | 50.33% | 63.46% | 56.14% | |
Proposed method | 9292 | 1839 | 1975 | 82.47% | 83.48% | 82.97% |
Group | Algorithm | TP | FP | FN | Se | PPV | F1-Score |
---|---|---|---|---|---|---|---|
Healthy group | HSMM with kurtosis [14] | 2240 | 114 | 77 | 96.68% | 95.16% | 95.91% |
Shannon [17] | 3626 | 546 | 275 | 88.30% | 79.19% | 83.49% | |
TQWT [15] | 1423 | 852 | 894 | 61.42% | 62.55% | 61.98% | |
K-means [16] | 2062 | 309 | 255 | 88.99% | 86.97% | 87.97% | |
Proposed method | 2240 | 114 | 77 | 96.68% | 95.16% | 95.91% | |
AR group | HSMM with kurtosis [14] | 3712 | 516 | 415 | 89.94% | 87.80% | 88.86% |
Shannon [17] | 3626 | 1140 | 501 | 87.86% | 76.08% | 81.55% | |
TQWT [15] | 2672 | 1060 | 1455 | 64.74% | 71.60% | 68.00% | |
K-means [16] | 2861 | 671 | 1266 | 69.32% | 81.00% | 74.71% | |
Proposed method | 3815 | 413 | 312 | 92.44% | 90.23% | 91.32% | |
AS group | HSMM with kurtosis [14] | 4517 | 6502 | 6503 | 40.99% | 40.99% | 40.99% |
Shannon [17] | 7705 | 8881 | 3315 | 69.92% | 46.45% | 55.82% | |
TQWT [15] | 3612 | 4945 | 7408 | 32.78% | 42.21% | 36.90% | |
K-means [16] | 5166 | 4136 | 5854 | 46.88% | 55.54% | 50.84% | |
Proposed method | 7744 | 3252 | 3276 | 70.27% | 70.43% | 70.35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdessater, E.; Balali, P.; Pawlowski, J.; Rabineau, J.; Tordeur, C.; Faoro, V.; van de Borne, P.; Hossein, A. A Novel Method for ECG-Free Heart Sound Segmentation in Patients with Severe Aortic Valve Disease. Sensors 2025, 25, 3360. https://doi.org/10.3390/s25113360
Abdessater E, Balali P, Pawlowski J, Rabineau J, Tordeur C, Faoro V, van de Borne P, Hossein A. A Novel Method for ECG-Free Heart Sound Segmentation in Patients with Severe Aortic Valve Disease. Sensors. 2025; 25(11):3360. https://doi.org/10.3390/s25113360
Chicago/Turabian StyleAbdessater, Elza, Paniz Balali, Jimmy Pawlowski, Jérémy Rabineau, Cyril Tordeur, Vitalie Faoro, Philippe van de Borne, and Amin Hossein. 2025. "A Novel Method for ECG-Free Heart Sound Segmentation in Patients with Severe Aortic Valve Disease" Sensors 25, no. 11: 3360. https://doi.org/10.3390/s25113360
APA StyleAbdessater, E., Balali, P., Pawlowski, J., Rabineau, J., Tordeur, C., Faoro, V., van de Borne, P., & Hossein, A. (2025). A Novel Method for ECG-Free Heart Sound Segmentation in Patients with Severe Aortic Valve Disease. Sensors, 25(11), 3360. https://doi.org/10.3390/s25113360