Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (372)

Search Parameters:
Keywords = valvular heart disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 623 KiB  
Article
A TAVI Programme Without an On-Site Cardiac Surgery Department: A Single-Center Retrospective Study
by Rami Barashi, Mustafa Gabarin, Ziad Arow, Ranin Hilu, Ilya Losin, Ivan Novikov, Karam Abd El Hai, Yoav Arnson, Yoram Neuman, Koby Pesis, Ziyad Jebara, David Pereg, Edward Koifman, Abid Assali and Hana Vaknin-Assa
J. Clin. Med. 2025, 14(15), 5449; https://doi.org/10.3390/jcm14155449 - 2 Aug 2025
Viewed by 177
Abstract
Background: Aortic stenosis (AS) is the most common valvular heart disease, associated with poor outcomes if left untreated. Current guidelines recommend that transcatheter aortic valve implantation (TAVI) procedures be performed in hospitals with an on-site cardiac surgery unit due to potential complications [...] Read more.
Background: Aortic stenosis (AS) is the most common valvular heart disease, associated with poor outcomes if left untreated. Current guidelines recommend that transcatheter aortic valve implantation (TAVI) procedures be performed in hospitals with an on-site cardiac surgery unit due to potential complications requiring surgical intervention. Objective: Based on our experience, we evaluated the feasibility and outcomes of implementing a TAVI program in a cardiology department without an on-site cardiac surgery unit, in collaboration with a remote hospital for surgical backup. Methods: The TAVI program involved pre- and post-procedural evaluations conducted at Meir Medical Center (Kfar Saba, Israel) with a remote surgical team available. The study population included 149 consecutive patients with severe aortic stenosis treated at the Meir valve clinic between November 2019 and December 2023. Procedures were performed by the center’s interventional cardiology team. Results: The mean age of the 149 patients was 80 ± 6 years, and 75 (50%) were female. The average STS score was 4.3, and the EuroSCORE II was 3.1. Among the patients, 68 (45%) were classified as New York Heart Association (NYHA) class III-IV. The valve types used included ACURATE neo2 (57 patients, 38%), Edwards SAPIEN 3 (43 patients, 28%), Evolut-PRO (41 patients, 27%), and Navitor (7 patients, 4%). There were no cases of moderate to severe paravalvular leak and no elevated post-implantation gradients, and there was no need for urgent cardiac surgery. One case of valve embolization was successfully managed percutaneously during the procedure. In-hospital follow-up revealed no deaths and only one major vascular complication. At one-year follow-up, six patients had died, with only one death attributed to cardiac causes. Conclusions: Our findings support the safe and effective performance of transfemoral TAVI in cardiology departments without on-site cardiac surgery, in collaboration with a remote surgical team. Further prospective, multicenter studies are warranted to confirm these results and guide broader clinical implementation of this practice. Full article
Show Figures

Figure 1

10 pages, 223 KiB  
Article
Cardiogenic Shock Due to Progressive Heart Failure—Clinical Characteristics and Outcomes Compared to Other Aetiologies
by Dominik Krupka, Michał Fułek, Julia Drewniowska, Kamila Florek, Mateusz Milewski, Michał Nnoli, Katarzyna Grunwald, Adam Chełmoński, Karolina Karska, Kacper Cicirko, Katarzyna Mazur, Jakub Ptak, Mikołaj Błaziak, Robert Zymliński, Waldemar Goździk, Barbara Barteczko-Grajek, Maciej Bochenek, Roman Przybylski, Michał Zakliczyński, Mateusz Sokolski and Wiktor Kuliczkowskiadd Show full author list remove Hide full author list
Biomedicines 2025, 13(8), 1856; https://doi.org/10.3390/biomedicines13081856 - 30 Jul 2025
Viewed by 229
Abstract
Background: The prevalence of cardiogenic shock (CS) resulting from the progression of heart failure (PHF) is increasing and remains associated with high mortality. This study aimed to compare the clinical characteristics and outcomes of patients who developed CS due to PHF versus those [...] Read more.
Background: The prevalence of cardiogenic shock (CS) resulting from the progression of heart failure (PHF) is increasing and remains associated with high mortality. This study aimed to compare the clinical characteristics and outcomes of patients who developed CS due to PHF versus those whose CS was caused by other aetiologies (non-PHF). Methods: We retrospectively analysed 280 patients admitted to a Polish tertiary care centre between January 2021 and April 2024. The cohort was divided into two groups: PHF (n = 84, 30%) and non-PHF (n = 196, 70%). Results: Compared to the non-PHF group, PHF patients more frequently had chronic kidney disease (30% vs. 15%, p < 0.01), and significant valvular disease (30% vs. 13%, p < 0.01). PHF patients exhibited significantly lower white blood cell counts (9.4 [6.9–16.4] vs. 13.3 [10.4–17.6], p < 0.01) and troponin T levels (188 [61–1392] vs. 10,921 [809–45,792], p < 0.01). In-hospital mortality was significantly lower among PHF patients (52% vs. 65%, p = 0.04). Although the overall use of mechanical circulatory support (MCS) did not differ between groups, significant differences in the types of MCS applied were observed (p < 0.01). Additionally, PHF patients underwent fewer coronary revascularisation procedures (15% vs. 70%, p < 0.01). Conclusions: Patients with PHF-related CS exhibit distinct clinical profiles and may experience lower in-hospital mortality when appropriately diagnosed and treated with a personalised approach. Further prospective, multicentre studies are warranted to optimize the management of this growing subgroup of CS patients. Full article
(This article belongs to the Special Issue Advanced Research on Heart Failure and Heart Transplantation)
18 pages, 333 KiB  
Review
Molecular Mechanisms of Cardiac Adaptation After Device Deployment
by Letizia Rosa Romano, Paola Plutino, Giovanni Lopes, Rossella Quarta, Pierangelo Calvelli, Ciro Indolfi, Alberto Polimeni and Antonio Curcio
J. Cardiovasc. Dev. Dis. 2025, 12(8), 291; https://doi.org/10.3390/jcdd12080291 - 30 Jul 2025
Viewed by 147
Abstract
Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through [...] Read more.
Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through action onto pathophysiological processes such as mechanical unloading, electrical resynchronization, or hemodynamic optimization, respectively. While their clinical benefits are well established, their long-term molecular and structural effects on the myocardium remain under investigation. Cardiac devices dynamically interact with myocardial and vascular biology, inducing molecular and extracellular matrix adaptations that vary by pathology. CRT enhances calcium cycling and reduces fibrosis, but chronic pacing may lead to pacing-induced cardiomyopathy. LVADs and Impella relieve ventricular workload yet alter sarcomeric integrity and mitochondrial function. Transcatheter valve therapies influence ventricular remodeling, conduction, and coronary flow. Understanding these remodeling processes is crucial for optimizing patient selection, device programming, and therapeutic strategies. This narrative review integrates the current knowledge on the molecular and structural effects of cardiac devices, highlighting their impact across different disease settings. Full article
(This article belongs to the Section Electrophysiology and Cardiovascular Physiology)
Show Figures

Graphical abstract

22 pages, 1317 KiB  
Review
Obesity: Clinical Impact, Pathophysiology, Complications, and Modern Innovations in Therapeutic Strategies
by Mohammad Iftekhar Ullah and Sadeka Tamanna
Medicines 2025, 12(3), 19; https://doi.org/10.3390/medicines12030019 - 28 Jul 2025
Viewed by 750
Abstract
Obesity is a growing global health concern with widespread impacts on physical, psychological, and social well-being. Clinically, it is a major driver of type 2 diabetes (T2D), cardiovascular disease (CVD), non-alcoholic fatty liver disease (NAFLD), and cancer, reducing life expectancy by 5–20 years [...] Read more.
Obesity is a growing global health concern with widespread impacts on physical, psychological, and social well-being. Clinically, it is a major driver of type 2 diabetes (T2D), cardiovascular disease (CVD), non-alcoholic fatty liver disease (NAFLD), and cancer, reducing life expectancy by 5–20 years and imposing a staggering economic burden of USD 2 trillion annually (2.8% of global GDP). Despite its significant health and socioeconomic impact, earlier obesity medications, such as fenfluramine, sibutramine, and orlistat, fell short of expectations due to limited effectiveness, serious side effects including valvular heart disease and gastrointestinal issues, and high rates of treatment discontinuation. The advent of glucagon-like peptide-1 (GLP-1) receptor agonists (e.g., semaglutide, tirzepatide) has revolutionized obesity management. These agents demonstrate unprecedented efficacy, achieving 15–25% mean weight loss in clinical trials, alongside reducing major adverse cardiovascular events by 20% and T2D incidence by 72%. Emerging therapies, including oral GLP-1 agonists and triple-receptor agonists (e.g., retatrutide), promise enhanced tolerability and muscle preservation, potentially bridging the efficacy gap with bariatric surgery. However, challenges persist. High costs, supply shortages, and unequal access pose significant barriers to the widespread implementation of obesity treatment, particularly in low-resource settings. Gastrointestinal side effects and long-term safety concerns require close monitoring, while weight regain after medication discontinuation emphasizes the need for ongoing adherence and lifestyle support. This review highlights the transformative potential of incretin-based therapies while advocating for policy reforms to address cost barriers, equitable access, and preventive strategies. Future research must prioritize long-term cardiovascular outcome trials and mitigate emerging risks, such as sarcopenia and joint degeneration. A multidisciplinary approach combining pharmacotherapy, behavioral interventions, and systemic policy changes is critical to curbing the obesity epidemic and its downstream consequences. Full article
Show Figures

Figure 1

12 pages, 9892 KiB  
Article
Alternative Transaxillary Access for Transcatheter Aortic Valve Implantation
by Konrad Wisniewski, Gerrit Kaleschke, Fernando De-Torres-Alba, Sven Martens and Heinz Deschka
J. Clin. Med. 2025, 14(14), 5127; https://doi.org/10.3390/jcm14145127 - 18 Jul 2025
Viewed by 334
Abstract
Background/Objectives: Currently, the transfemoral approach is recognized as the primary method for accessing transcatheter aortic valve implantation (TAVI). However, alternative techniques are needed when the transfemoral access is not suitable. We proposed that a modified transaxillary approach through the distal left axillary artery [...] Read more.
Background/Objectives: Currently, the transfemoral approach is recognized as the primary method for accessing transcatheter aortic valve implantation (TAVI). However, alternative techniques are needed when the transfemoral access is not suitable. We proposed that a modified transaxillary approach through the distal left axillary artery is both viable and safe for conducting TAVI, potentially offering benefits for patients. Methods: From December 2018 to February 2024, a total of 24 patients (7 women, average age 77.9 ± 8 years) received TAVI using transaxillary access via the left axillary artery. The participants suffered from symptomatic severe aortic stenosis and were deemed TAVI candidates with iliofemoral anatomy unsuitable for a transfemoral route. The patient group displayed a high perioperative risk profile, with significant peripheral artery disease or severe obstructive infrarenal aortic conditions. The implantation of the aortic prosthesis was carried out through the left distal axillary artery. A balloon-expandable valve was used in every instance. Results: In the examined cohort, the 30-day mortality rate was 4.2%. A new pacemaker was necessary for four patients (16.7%). One case exhibited a new moderate neurological dysfunction. Additionally, one patient required surgical revision of the access point due to ischemia. Conclusions: Our findings indicate that transaxillary TAVI via the distal left axillary artery has yielded encouraging outcomes. This approach is practicable and safe, does not prolong the procedure, minimizes surgical trauma, ensures excellent access regardless of chest anatomy, and is sparing for the brachial plexus. As a single-center pilot study, our findings require confirmation in larger, prospective cohorts with extended follow-up to fully validate the safety and long-term efficacy of this technique. Full article
Show Figures

Figure 1

26 pages, 7406 KiB  
Review
Cardiac Imaging in the Diagnosis and Management of Heart Failure
by Mayuresh Chaudhari and Mahi Lakshmi Ashwath
J. Clin. Med. 2025, 14(14), 5002; https://doi.org/10.3390/jcm14145002 - 15 Jul 2025
Viewed by 706
Abstract
Heart failure (HF) is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or ejection of blood. The etiology of heart failure is multifactorial, encompassing ischemic heart disease, hypertension, valvular disorders, cardiomyopathies, and metabolic and infiltrative diseases. [...] Read more.
Heart failure (HF) is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or ejection of blood. The etiology of heart failure is multifactorial, encompassing ischemic heart disease, hypertension, valvular disorders, cardiomyopathies, and metabolic and infiltrative diseases. Despite advances in pharmacologic and device-based therapies, heart failure continues to carry a substantial burden of morbidity, mortality, and healthcare utilization. With the advancement and increased accessibility of cardiac imaging modalities, the diagnostic accuracy for identifying the underlying etiologies of nonischemic cardiomyopathy has significantly improved, allowing for more precise classification and tailored management strategies. This review aims to provide a comprehensive analysis of the current understanding of heart failure, encompassing epidemiology, etiological factors, with a specific focus on diagnostic imaging modalities including the role of echocardiography and strain imaging, cardiac magnetic resonance imaging (CMR), cardiac computed tomography (CT), and nuclear positron emission tomography (PET) imaging and recent advances in the diagnosis and management of heart failure. Full article
(This article belongs to the Special Issue Cardiac Imaging in the Diagnosis and Management of Heart Failure)
Show Figures

Figure 1

18 pages, 795 KiB  
Review
Aortic Stenosis: Diagnosis, Molecular Mechanisms and Therapeutic Strategies—A Comprehensive Review
by Cosmin Marian Banceu, Daiana Cristutiu, Simona Gurzu, Marius Mihai Harpa, Diana Banceu and Horatiu Suciu
J. Clin. Med. 2025, 14(14), 4949; https://doi.org/10.3390/jcm14144949 - 12 Jul 2025
Viewed by 494
Abstract
Aortic stenosis (AS) is a progressive valvular heart disease marked by a restriction of blood flow through the aortic valve, resulting in considerable morbidity and mortality if not addressed. AS has historically been managed through surgical aortic valve replacement (SAVR), but there is [...] Read more.
Aortic stenosis (AS) is a progressive valvular heart disease marked by a restriction of blood flow through the aortic valve, resulting in considerable morbidity and mortality if not addressed. AS has historically been managed through surgical aortic valve replacement (SAVR), but there is a growing trend towards the use of transcatheter aortic valve replacement (TAVR). TAVR has transformed the management of symptomatic severe AS and is currently authorized for patients with varying levels of surgical risk. The rising application of TAVR in patients under 65 years presents a challenge for heart valve teams (HVTs) managing younger individuals whose life expectancy may surpass the durability of the valve. Patients over 65 years are typically treated with bioprosthetic tissue valves; however, there remains significant uncertainty regarding the selection between TAVR and SAVR. Full article
Show Figures

Figure 1

14 pages, 1805 KiB  
Review
Innovations in TAVR: The Latest in Device Technology
by Omar Sheikh, Errol Moras, Lorraine Mascarenhas, Sahar Samimi, Waleed T. Kayani and Syed Zaid
J. Clin. Med. 2025, 14(14), 4906; https://doi.org/10.3390/jcm14144906 - 10 Jul 2025
Viewed by 379
Abstract
Aortic stenosis is the most prevalent valvular disease globally. Transcatheter aortic valve replacement (TAVR) has become a well-established treatment for aortic stenosis, offering outcomes comparable to surgical aortic valve replacement (SAVR). Its use has expanded to include younger, lower-risk patients and those with [...] Read more.
Aortic stenosis is the most prevalent valvular disease globally. Transcatheter aortic valve replacement (TAVR) has become a well-established treatment for aortic stenosis, offering outcomes comparable to surgical aortic valve replacement (SAVR). Its use has expanded to include younger, lower-risk patients and those with more complex anatomies. Recent advancements in TAVR include the increased adoption of transfemoral access, prosthesis designs optimized for challenging anatomies, enhanced delivery systems with repositioning capabilities, and outer skirts to minimize paravalvular leaks. Despite these innovations, several challenges remain. This review highlights recent updates in transcatheter heart valve (THV) systems, leaflet modification devices, and the current limitations of TAVR. Full article
(This article belongs to the Special Issue Recent Developments in Transcatheter Aortic Valve Implantation)
Show Figures

Figure 1

21 pages, 21264 KiB  
Review
Screening and Procedural Guidance for Mitral Transcatheter Edge-to-Edge Repair (M-TEER)
by Andromahi Zygouri, Prayuth Rasmeehirun, Guillaume L’Official, Konstantinos Papadopoulos, Ignatios Ikonomidis and Erwan Donal
J. Clin. Med. 2025, 14(14), 4902; https://doi.org/10.3390/jcm14144902 - 10 Jul 2025
Viewed by 1141
Abstract
Mitral regurgitation (MR) is a common valvular heart disease associated with significant morbidity and mortality. For patients at high or prohibitive surgical risk, mitral transcatheter edge-to-edge repair (M-TEER) offers a less invasive alternative to surgery. This review outlines key aspects of patient selection [...] Read more.
Mitral regurgitation (MR) is a common valvular heart disease associated with significant morbidity and mortality. For patients at high or prohibitive surgical risk, mitral transcatheter edge-to-edge repair (M-TEER) offers a less invasive alternative to surgery. This review outlines key aspects of patient selection and procedural planning for M-TEER, with a focus on clinical and echocardiographic criteria essential for success. Comprehensive imaging—especially 2D and 3D transesophageal echocardiography—is critical to assess leaflet anatomy, coaptation geometry, and mitral valve area. Selection criteria differ between primary and secondary MR and are guided by trials such as COAPT and MITRA-FR. Optimal outcomes rely on careful screening, anatomical suitability, and multidisciplinary evaluation. With growing experience and advancing technology, M-TEER has become a transformative option for treating severe MR in non-surgical candidates. Full article
(This article belongs to the Special Issue Advances in Structural Heart Diseases)
Show Figures

Figure 1

17 pages, 1247 KiB  
Article
Ischemic Mitral Valve Regurgitation in Patients Undergoing Coronary Artery Bypass Grafting—Early and Late-Term Outcomes of Surgical Treatment
by Paweł Walerowicz, Mirosław Brykczyński, Aleksandra Szylińska and Jerzy Pacholewicz
J. Clin. Med. 2025, 14(14), 4855; https://doi.org/10.3390/jcm14144855 - 9 Jul 2025
Viewed by 710
Abstract
Background: Coronary heart disease (CHD) remains the most prevalent pathology within the circulatory system. Among its chronic complications, ischemic mitral valve regurgitation (IMR) is observed in approximately 15% of patients with sustained myocardial ischemia. The presence of this complex valvular defect significantly increases [...] Read more.
Background: Coronary heart disease (CHD) remains the most prevalent pathology within the circulatory system. Among its chronic complications, ischemic mitral valve regurgitation (IMR) is observed in approximately 15% of patients with sustained myocardial ischemia. The presence of this complex valvular defect significantly increases both overall mortality and the incidence of adverse cardiovascular events. Notably, the presence of moderate to severe mitral regurgitation in patients undergoing surgical revascularization has been shown to double the risk of death. Despite the well-established etiology of IMR, data regarding the efficacy of surgical interventions and the determinants of postoperative outcomes remain inconclusive. Methods: The objective of the present study was to evaluate both early and long-term outcomes of surgical treatment of mitral regurgitation in patients undergoing coronary artery bypass grafting (CABG) due to ischemic heart disease. Particular attention was given to the influence of the severity of regurgitation, left ventricular ejection fraction (LVEF), and the dimensions of the left atrium (LA) and left ventricle (LV) on the postoperative prognosis. An additional aim was to identify preoperative risk factors associated with increased postoperative mortality and morbidity. A retrospective analysis was conducted on 421 patients diagnosed with ischemic mitral regurgitation who underwent concomitant mitral valve surgery and CABG. Exclusion criteria included emergent and urgent procedures as well as non-ischemic etiologies of mitral valve dysfunction. Results: The study cohort comprised 34.9% women and 65.1% men, with the mean age of 65.7 years (±7.57). A substantial proportion (76.7%) of patients were aged over 60 years. More than half (51.5%) presented with severe heart failure symptoms, classified as NYHA class III or IV, while over 70% were categorized as CCS class II or III. Among the surgical procedures performed, 344 patients underwent mitral valve repair, and 77 patients required mitral valve replacement. Additionally, 119 individuals underwent concomitant tricuspid valve repair. Short-term survival was significantly affected by the presence of hypertension, prior cerebrovascular events, and chronic kidney disease. In contrast, hypertension and chronic obstructive pulmonary disease were identified as significant predictors of adverse late-term outcomes. Conclusions: Interestingly, neither the preoperative severity of mitral regurgitation nor the echocardiographic measurements of LA and LV dimensions were found to significantly influence surgical outcomes. The perioperative risk, as assessed by the EuroSCORE II (average score: 10.0%), corresponded closely with observed mortality rates following mitral valve repair (9.9%) and replacement (10.4%). Notably, the need for concomitant tricuspid valve surgery was associated with an elevated mortality rate (12.4%). Furthermore, the preoperative echocardiographic evaluation of LA regurgitation severity, as well as LA and LV dimensions, did not exhibit a statistically significant impact on either early or long-term surgical outcomes. However, a reduced LVEF was correlated with increased long-term mortality. The presence of advanced clinical symptoms and the necessity for tricuspid valve repair were independently associated with a poorer late-term prognosis. Importantly, the annual mortality rate observed in the late-term follow-up of patients who underwent surgical treatment of ischemic mitral regurgitation was lower than rates reported in the literature for patients managed conservatively. The EuroSCORE II scale proved to be a reliable and precise tool in predicting surgical risk and outcomes in this patient population. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

36 pages, 11404 KiB  
Article
Synchronous Acquisition and Processing of Electro- and Phono-Cardiogram Signals for Accurate Systolic Times’ Measurement in Heart Disease Diagnosis and Monitoring
by Roberto De Fazio, Ilaria Cascella, Şule Esma Yalçınkaya, Massimo De Vittorio, Luigi Patrono, Ramiro Velazquez and Paolo Visconti
Sensors 2025, 25(13), 4220; https://doi.org/10.3390/s25134220 - 6 Jul 2025
Viewed by 486
Abstract
Cardiovascular diseases remain one of the leading causes of mortality worldwide, highlighting the importance of effective monitoring and early diagnosis. While electrocardiography (ECG) is the standard technique for evaluating the heart’s electrical activity and detecting rhythm and conduction abnormalities, it alone is insufficient [...] Read more.
Cardiovascular diseases remain one of the leading causes of mortality worldwide, highlighting the importance of effective monitoring and early diagnosis. While electrocardiography (ECG) is the standard technique for evaluating the heart’s electrical activity and detecting rhythm and conduction abnormalities, it alone is insufficient for identifying certain conditions, such as valvular disorders. Phonocardiography (PCG) allows the recording and analysis of heart sounds and improves the diagnostic accuracy when combined with ECG. In this study, ECG and PCG signals were simultaneously acquired from a resting adult subject using a compact system comprising an analog front-end (model AD8232, manufactured by Analog Devices, Wilmington, MA, USA) for ECG acquisition and a digital stethoscope built around a condenser electret microphone (model HM-9250, manufactured by HMYL, Anqing, China). Both the ECG electrodes and the microphone were positioned on the chest to ensure the spatial alignment of the signals. An adaptive segmentation algorithm was developed to segment PCG and ECG signals based on their morphological and temporal features. This algorithm identifies the onset and peaks of S1 and S2 heart sounds in the PCG and the Q, R, and S waves in the ECG, enabling the extraction of the systolic time intervals such as EMAT, PEP, LVET, and LVST parameters proven useful in the diagnosis and monitoring of cardiovascular diseases. Based on the segmented signals, the measured averages (EMAT = 74.35 ms, PEP = 89.00 ms, LVET = 244.39 ms, LVST = 258.60 ms) were consistent with the reference standards, demonstrating the reliability of the developed method. The proposed algorithm was validated on synchronized ECG and PCG signals from multiple subjects in an open-source dataset (BSSLAB Localized ECG Data). The systolic intervals extracted using the proposed method closely matched the literature values, confirming the robustness across different recording conditions; in detail, the mean Q–S1 interval was 40.45 ms (≈45 ms reference value, mean difference: −4.85 ms, LoA: −3.42 ms and −6.09 ms) and the R–S1 interval was 14.09 ms (≈15 ms reference value, mean difference: −1.2 ms, LoA: −0.55 ms and −1.85 ms). In conclusion, the results demonstrate the potential of the joint ECG and PCG analysis to improve the long-term monitoring of cardiovascular diseases. Full article
Show Figures

Figure 1

16 pages, 20176 KiB  
Review
Magnetic Resonance Imaging in the Evaluation of the Stress System in Acute and Chronic Cardiac Disease
by George Markousis-Mavrogenis, Flora Bacopoulou, George Chrousos and Sophie I. Mavrogeni
Diagnostics 2025, 15(13), 1712; https://doi.org/10.3390/diagnostics15131712 - 4 Jul 2025
Viewed by 382
Abstract
Various cardiac pathologies such as ischemic/non-ischemic heart disease, valvular heart disease and genetic heart disease may impair cardiac function and lead to heart failure (HF). Each individual condition but also the common endpoint of HF may involve the brain and the immune system [...] Read more.
Various cardiac pathologies such as ischemic/non-ischemic heart disease, valvular heart disease and genetic heart disease may impair cardiac function and lead to heart failure (HF). Each individual condition but also the common endpoint of HF may involve the brain and the immune system next to the heart. The interaction of these systems plays an important role, particularly in the pathogenesis and prognosis of HF, and stress plays a pivotal role in this interaction. The stress system (SS) of the body can be activated by any stress factor exceeding a predefined threshold and all body structures including brain, heart and immune system can be affected. The SS is also responsible for body homeostasis. Both acute and chronic stress may lead to the development of acute and chronic heart disease. Magnetic Resonance Imaging (MRI) is the ideal noninvasive tool without radiation that can provide valuable information about the effect of the SS in various systems/organs using targeted protocols. A holistic approach provided by MRI has the potential to improve our knowledge regarding stress mechanisms on the axis of heart–brain–immune system in HF that may impact effective, individualized treatment. In this review paper, we describe how MRI can be used as a noninvasive tool to assess the effect of stress on the brain–immune system-heart-axis, discussing current possibilities, limitations and future directions. Full article
(This article belongs to the Special Issue Recent Advances in Diagnosis and Management of Heart Failure)
Show Figures

Figure 1

14 pages, 286 KiB  
Review
The Diagnostic Value of Copy Number Variants in Genetic Cardiomyopathies and Channelopathies
by Valerio Caputo, Virginia Veronica Visconti, Enrica Marchionni, Valentina Ferradini, Clara Balsano, Pasquale De Vico, Leonardo Calò, Ruggiero Mango, Giuseppe Novelli and Federica Sangiuolo
J. Cardiovasc. Dev. Dis. 2025, 12(7), 258; https://doi.org/10.3390/jcdd12070258 - 4 Jul 2025
Viewed by 576
Abstract
Sudden cardiac death represents an unexpected death for which a strong underlying genetic background has been described. The primary causes are identified in cardiomyopathies and channelopathies, which are heart diseases of the muscle and electrical system, respectively, without coronary artery disease, hypertension, valvular [...] Read more.
Sudden cardiac death represents an unexpected death for which a strong underlying genetic background has been described. The primary causes are identified in cardiomyopathies and channelopathies, which are heart diseases of the muscle and electrical system, respectively, without coronary artery disease, hypertension, valvular disease, and congenital heart malformations. Genetic variants, especially single nucleotide variants and short insertions/deletions impacting essential myocardial functions, have shown that cardiomyopathies display high heritability. However, genetic heterogeneity, incomplete penetrance, and variable expression may complicate the interpretation of genetic findings, thus delaying the management of seriously at-risk patients. Moreover, recent studies show that the diagnostic yield related to genetic cardiomyopathies ranges from 28 to 40%, raising the need for further research. In this regard, investigating the occurrence of structural variants, especially copy number variants, may be crucial. Based on these considerations, this review aims to provide an overview of copy number variants identified in cardiomyopathies and discuss them, considering diagnostic yield. This review will ultimately address the necessity of incorporating copy number variants into routine genetic testing for cardiomyopathies and channelopathies, a process increasingly enabled by advances in next-generation sequencing technologies. Full article
(This article belongs to the Section Genetics)
Show Figures

Graphical abstract

18 pages, 4979 KiB  
Systematic Review
Discordant High-Gradient Aortic Stenosis: A Systematic Review
by Nadera N. Bismee, Mohammed Tiseer Abbas, Hesham Sheashaa, Fatmaelzahraa E. Abdelfattah, Juan M. Farina, Kamal Awad, Isabel G. Scalia, Milagros Pereyra Pietri, Nima Baba Ali, Sogol Attaripour Esfahani, Omar H. Ibrahim, Steven J. Lester, Said Alsidawi, Chadi Ayoub and Reza Arsanjani
J. Cardiovasc. Dev. Dis. 2025, 12(7), 255; https://doi.org/10.3390/jcdd12070255 - 3 Jul 2025
Viewed by 607
Abstract
Aortic stenosis (AS), the most common valvular heart disease, is traditionally graded based on several echocardiographic quantitative parameters, such as aortic valve area (AVA), mean pressure gradient (MPG), and peak jet velocity (Vmax). This systematic review evaluates the clinical significance and prognostic implications [...] Read more.
Aortic stenosis (AS), the most common valvular heart disease, is traditionally graded based on several echocardiographic quantitative parameters, such as aortic valve area (AVA), mean pressure gradient (MPG), and peak jet velocity (Vmax). This systematic review evaluates the clinical significance and prognostic implications of discordant high-gradient AS (DHG-AS), a distinct hemodynamic phenotype characterized by elevated MPG despite a preserved AVA (>1.0 cm2). Although often overlooked, DHG-AS presents unique diagnostic and therapeutic challenges, as high gradients remain a strong predictor of adverse outcomes despite moderately reduced AVA. Sixty-three studies were included following rigorous selection and quality assessment of the key studies. Prognostic outcomes across five key studies were discrepant: some showed better survival in DHG-AS compared to concordant high-gradient AS (CHG-AS), while others reported similar or worse outcomes. For instance, a retrospective observational study including 3209 patients with AS found higher mortality in CHG-AS (unadjusted HR: 1.4; 95% CI: 1.1 to 1.7), whereas another retrospective multicenter study including 2724 patients with AS observed worse outcomes in DHG-AS (adjusted HR: 1.59; 95% CI: 1.04 to 2.56). These discrepancies may stem from delays in intervention or heterogeneity in study populations. Despite the diagnostic ambiguity, the presence of high gradients warrants careful evaluation, aggressive risk stratification, and timely management. Current guidelines recommend a multimodal approach combining echocardiography, computed tomography (CT) calcium scoring, transesophageal echocardiography (TEE) planimetry, and, when needed, catheterization. Anatomic AVA assessment by TEE, CT, and cardiac magnetic resonance imaging (CMR) can improve diagnostic accuracy by directly visualizing valve morphology and planimetry-based AVA, helping to clarify the true severity in discordant cases. However, these modalities are limited by factors such as image quality (especially with TEE), radiation exposure and contrast use (in CT), and availability or contraindications (in CMR). Management remains largely based on CHG-AS protocols, with intervention primarily guided by transvalvular gradient and symptom burden. The variability among the different guidelines in defining severity and therapeutic thresholds highlights the need for tailored approaches in DHG-AS. DHG-AS is clinically relevant and associated with substantial prognostic uncertainty. Timely recognition and individualized treatment could improve outcomes in this complex subgroup. Full article
(This article belongs to the Special Issue Cardiovascular Imaging in Heart Failure and in Valvular Heart Disease)
Show Figures

Figure 1

16 pages, 533 KiB  
Review
Right Ventricular Dynamics in Tricuspid Regurgitation: Insights into Reverse Remodeling and Outcome Prediction Post Transcatheter Valve Intervention
by Philipp M. Doldi, Manuela Thienel and Kevin Willy
Int. J. Mol. Sci. 2025, 26(13), 6322; https://doi.org/10.3390/ijms26136322 - 30 Jun 2025
Viewed by 533
Abstract
Tricuspid regurgitation (TR) represents a significant, often silently progressing, valvular heart disease with historically suboptimal management due to perceived high surgical risks. Transcatheter tricuspid valve interventions (TTVI) offer a promising, less invasive therapeutic avenue. Central to the success of TTVI is Right Ventricular [...] Read more.
Tricuspid regurgitation (TR) represents a significant, often silently progressing, valvular heart disease with historically suboptimal management due to perceived high surgical risks. Transcatheter tricuspid valve interventions (TTVI) offer a promising, less invasive therapeutic avenue. Central to the success of TTVI is Right Ventricular Reverse Remodelling (RVRR), defined as an improvement in RV structure and function, which strongly correlates with enhanced patient survival. The right ventricle (RV) undergoes complex multi-scale biomechanical maladaptations, progressing from adaptive concentric to maladaptive eccentric hypertrophy, coupled with increased stiffness and fibrosis. Molecular drivers of this pathology include early failure of antioxidant defenses, metabolic shifts towards glycolysis, and dysregulation of microRNAs. Accurate RV function assessment necessitates advanced imaging modalities like 3D echocardiography, Cardiac Magnetic Resonance Imaging (CMR), and Computed Tomography (CT), along with strain analysis. Following TTVI, RVRR typically manifests as a biphasic reduction in RV volume overload, improved myocardial strain, and enhanced RV-pulmonary arterial coupling. Emerging molecular biomarkers alongside advanced imaging-derived biomechanical markers like CT-based 3D-TAPSE and RV longitudinal strain, are proving valuable. Artificial intelligence (AI) and machine learning (ML) are transforming prognostication by integrating diverse clinical, laboratory, and multi-modal imaging data, enabling unprecedented precision in risk stratification and optimizing TTVI strategies. Full article
(This article belongs to the Special Issue Biomechanics of Cardiovascular Remodeling)
Show Figures

Figure 1

Back to TopTop