Inverse-Designed Ultra-Compact Passive Phase Shifters for High-Performance Beam Steering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Integrated Beam-Steering Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tyler, N.A.; Fowler, D.; Malhouitre, S.; Garcia, S.; Grosse, P.; Rabaud, W.; Szelag, B. SiN integrated optical phased arrays for two-dimensional beam steering at a single near-infrared wavelength. Opt. Express 2019, 27, 5851–5858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ling, Y.C.; Zhang, K.; Gentry, C.; Sadighi, D.; Whaley, G.; Colosimo, J.; Suni, P.; Ben Yoo, S.J. Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering. Opt. Express 2019, 27, 1929–1940. [Google Scholar] [CrossRef]
- Kwong, D.; Hosseini, A.; Covey, J.; Zhang, Y.; Xu, X.; Subbaraman, H.; Chen, R.T. On-chip silicon optical phased array for two-dimensional beam steering. Opt. Lett. 2014, 39, 941–944. [Google Scholar] [CrossRef]
- Hu, M.; Pang, Y.; Gao, L. Advances in Silicon-Based Integrated Lidar. Sensors 2023, 23, 5920. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Liu, H.; Zhao, G.; Wei, M.; Jiang, R.; Du, K. Intensive and Efficient Design of a Two-dimensional 8 × 8 Silicon-Based Optical Phased Array Transceiver. Sensors 2023, 23, 9396. [Google Scholar] [CrossRef]
- Hulme, J.C.; Doylend, J.K.; Heck, M.J.; Peters, J.D.; Davenport, M.L.; Bovington, J.T.; Coldren, L.A.; Bowers, J.E. Fully integrated hybrid silicon two dimensional beam scanner. Opt. Express 2015, 23, 5861–5874. [Google Scholar] [CrossRef]
- Witzens, J. High-Speed Silicon Photonics Modulators. Proc. IEEE 2018, 106, 2158–2182. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Chu, T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 2017, 7, 42306. [Google Scholar] [CrossRef] [PubMed]
- Van Acoleyen, K.; Rogier, H.; Baets, R. Two-dimensional optical phased array antenna on silicon-on-insulator. Opt. Express 2010, 18, 13655–13660. [Google Scholar] [CrossRef]
- Song, J.; Zhang, L.; Li, Y.; Wang, Y.; Tao, M.; Hou, Y.; Chen, B.; Li, Y.X.; Qin, L.; Gao, F.; et al. Large-Scale Integrated Multi-Lines Optical Phased Array Chip. IEEE Photonics J. 2020, 12, 6601208. [Google Scholar] [CrossRef]
- Dostart, N.; Zhang, B.; Khilo, A.; Brand, M.; Qubaisi, K.; Onural, D.; Feldkhun, D.; Wagner, K.; Popovic, M. Serpentine optical phased arrays for scalable integrated photonic lidar beam steering. Optica 2020, 7, 726–733. [Google Scholar] [CrossRef]
- Van Acoleyen, K.; Bogaerts, W.; Baets, R. Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator. IEEE Photonics Technol. Lett. 2011, 23, 1270–1272. [Google Scholar] [CrossRef]
- Chang, W.; Ren, X.; Ao, Y.; Lu, L.; Cheng, M.; Deng, L.; Liu, D.; Zhang, M. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt. Express 2018, 26, 24135–24144. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.C.; Yan, X.; Wei, W.; Zhang, X.; Zhang, M.; Zheng, J.; Li, B.; Luo, Y.; Lin, Q.; Ren, X. High-speed ultra-compact all-optical NOT and AND logic gates designed by a multi-objective particle swarm optimized method. Opt. Laser Technol. 2019, 116, 322–327. [Google Scholar] [CrossRef]
- Meem, M.; Banerji, S.; Pies, C.; Oberbiermann, T.; Majumder, A.; Sensale-Rodriguez, B.; Menon, R. Large-area, high-numerical-aperture multi-level diffractive lens via inverse design. Optica 2020, 7, 252–253. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, M.; Zhou, F.; Chang, W.; Tang, J.; Li, D.; Ren, X.; Pan, Z.; Cheng, M.; Liu, D. Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect. Opt. Express 2017, 25, 18355–18364. [Google Scholar] [CrossRef]
- Komljenovic, T.; Helkey, R.; Coldren, L.; Bowers, J.E. Sparse aperiodic arrays for optical beam forming and LIDAR. Opt. Express 2017, 25, 2511–2528. [Google Scholar] [CrossRef]
- Fatemi, R.; Khachaturian, A.; Hajimiri, A. A Nonuniform Sparse 2-D Large-FOV Optical Phased Array with a Low-Power PWM Drive. IEEE J. Solid-State Circuits 2019, 54, 1200–1215. [Google Scholar] [CrossRef]
- Vercruysse, D.; Sapra, N.V.; Yang, K.Y.; Vuckovic, J. Inverse-Designed Photonic Crystal Circuits for Optical Beam Steering. ACS Photonics 2021, 8, 3085–3093. [Google Scholar] [CrossRef]
- Lin, Y.-Z.; Chow, C.-W.; Yeh, C.-H. Miniaturized Optical Power Splitter with Arbitrary Output Modes Using Inverse Design and Active Phase Shifters. In Proceedings of the 2024 IEEE Silicon Photonics Conference (SiPhotonics), Tokyo Bay, Japan, 15–18 April 2024. [Google Scholar]
- Liao, J.; Tian, Y.; Kang, Z.; Zhang, X. Inverse Design of Ultra-Compact and Low-Loss Optical Phase Shifters. Photonics 2023, 10, 1030. [Google Scholar] [CrossRef]
- An, S.; Zheng, B.; Tang, H.; Li, H.; Zhou, L.; Dong, Y.; Haerinia, M.; Zhang, H. Ultrawideband Schiffman Phase Shifter Designed with Deep Neural Networks. IEEE Trans. Microw. Theory Tech. 2022, 70, 4694–4705. [Google Scholar] [CrossRef]
- Lin, Q.Z.; Liu, S.B.; Zhu, Q.L.; Tang, C.Y.; Song, R.Z.; Chen, J.Y.; Coello, C.; Wong, K.C.; Zhang, J. Particle Swarm Optimization with a Balanceable Fitness Estimation for Many-Objective Optimization Problems. IEEE Trans. Evolut. Comput. 2018, 22, 32–46. [Google Scholar] [CrossRef]
- Palakonda, V.; Mallipeddi, R.; Suganthan, P.N. An ensemble approach with external archive for multi- and many-objective optimization with adaptive mating mechanism and two-level environmental selection. Inf. Sci. 2021, 555, 164–197. [Google Scholar] [CrossRef]
- Moore, J.; Chapman, R.; Dozier, G. Multiobjective particle swarm optimization. In Proceedings of the 38th Annual on Southeast Regional Conference, Clemson, SC, USA, 7–8 April 2000; pp. 56–57. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.J.; Browne, W.N. Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Trans. Cybern. 2013, 43, 1656–1671. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, J.; Jiang, C.; Zhou, M. Composite Particle Swarm Optimizer with Historical Memory for Function Optimization. IEEE Trans. Cybern. 2015, 45, 2350–2363. [Google Scholar] [CrossRef]
- Hu, W.; Tan, Y. Prototype Generation Using Multiobjective Particle Swarm Optimization for Nearest Neighbor Classification. IEEE Trans. Cybern. 2016, 46, 2719–2731. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. A New Two-Stage Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans. Cybern. 2019, 23, 748–761. [Google Scholar] [CrossRef]
- Han, H.; Lu, W.; Zhang, L.; Qiao, J. Adaptive Gradient Multiobjective Particle Swarm Optimization. IEEE Trans. Cybern. 2018, 48, 3067–3079. [Google Scholar] [CrossRef]
- Wang, Z.J.; He, G.F.; Du, W.H.; Zhou, J.; Han, X.F.; Wang, J.T.; He, H.H.; Guo, X.M.; Wang, J.Y.; Kou, Y.F. Application of Parameter Optimized Variational Mode Decomposition Method in Fault Diagnosis of Gearbox. IEEE Access 2019, 7, 44871–44882. [Google Scholar] [CrossRef]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.D.; Johnson, S.G.M. A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 1965, 55, 1205–1208. [Google Scholar] [CrossRef]
- Lu, Q.; Wei, W.; Yan, X.; Shen, B.; Luo, Y.; Zhang, X.; Ren, X. Particle swarm optimized ultra-compact polarization beam splitter on silicon-on-insulator. Photonics Nanostructures-Fundam. Appl. 2018, 32, 19–23. [Google Scholar] [CrossRef]
- Misugi, Y.; Okayama, H.; Kita, T. Demonstration of 2D beam steering using large-scale passive optical phased array enabled by multimode waveguides with reduced phase error. Appl. Phys. Express 2022, 15, 102002. [Google Scholar] [CrossRef]
- Misugi, Y.; Okayama, H.; Kita, T. Compact and low power-consumption solid-state two-dimensional beam scanner integrating a passive optical phased array and hybrid wavelength-tunable laser diode. J. Light. Technol. 2023, 41, 3505–3512. [Google Scholar] [CrossRef]
- Takada, K.; Keiji, O. Frequency-domain measurement of phase error distribution in narrow-channel arrayed waveguide grating. Electron. Lett. 2000, 36, 160–161. [Google Scholar] [CrossRef]
- Ma, P.; Luo, G.; Wang, P.; Ma, J.; Wang, R.; Yang, Z.; Zhou, X.; Zhang, Y.; Pan, J. Unidirectional SiN antenna based on dual-layer gratings for LiDAR with optical phased array. Opt. Commun. 2021, 501, 127361. [Google Scholar] [CrossRef]
- Wang, P.F.; Luo, G.Z.; Yu, H.Y.; Li, Y.J.; Wang, M.Q.; Zhou, X.L.; Chen, W.X.; Zhang, Y.J.; Pan, J.Q. Improving the performance of optical antenna for optical phased arrays through high-contrast grating structure on SOI substrate. Opt. Express 2019, 27, 2703–2712. [Google Scholar] [CrossRef]
- Luo, G.; Wang, P.; Ma, J.; Wang, R.; Yang, Z.; Xu, Y.; Yu, H.; Zhou, X.; Zhang, Y.; Pan, J. Demonstration of 128-Channel Optical Phased Array with Large Scanning Range. IEEE Photonics J. 2021, 13, 6800710. [Google Scholar] [CrossRef]
- Bogaerts, W.; Dwivedi, S.; Jansen, R.; Rottenberg, X.; Dahlem, M.S. A 2D Pixelated Optical Beam Scanner Controlled by the Laser Wavelength. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 6100512. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, T.; Chu, M.; Jin, K.; Sha, H.; Yan, X.; Yuan, X.; Zhang, Y.; Zhang, J.; Zhang, X. Inverse-Designed Ultra-Compact Passive Phase Shifters for High-Performance Beam Steering. Sensors 2024, 24, 7055. https://doi.org/10.3390/s24217055
Fu T, Chu M, Jin K, Sha H, Yan X, Yuan X, Zhang Y, Zhang J, Zhang X. Inverse-Designed Ultra-Compact Passive Phase Shifters for High-Performance Beam Steering. Sensors. 2024; 24(21):7055. https://doi.org/10.3390/s24217055
Chicago/Turabian StyleFu, Tianyang, Mengfan Chu, Ke Jin, Honghan Sha, Xin Yan, Xueguang Yuan, Yang’an Zhang, Jinnan Zhang, and Xia Zhang. 2024. "Inverse-Designed Ultra-Compact Passive Phase Shifters for High-Performance Beam Steering" Sensors 24, no. 21: 7055. https://doi.org/10.3390/s24217055
APA StyleFu, T., Chu, M., Jin, K., Sha, H., Yan, X., Yuan, X., Zhang, Y., Zhang, J., & Zhang, X. (2024). Inverse-Designed Ultra-Compact Passive Phase Shifters for High-Performance Beam Steering. Sensors, 24(21), 7055. https://doi.org/10.3390/s24217055