Phase-Shifted Fiber Bragg Grating by Selective Pitch Slicing
Abstract
1. Introduction
2. Numerical Model
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, Y.J. Recent progress in applications of in-fibre Bragg grating sensors. Opt. Lasers Eng. 1999, 31, 297–324. [Google Scholar] [CrossRef]
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647–649. [Google Scholar] [CrossRef]
- Morey, W.W.; Meltz, G.; Glenn, W.H. Fiber Optic Bragg Grating Sensors. In Proceedings of the SPIE 1169, Fiber Optic and Laser Sensors VII, Boston, MA, USA, 5–7 September 1989. [Google Scholar] [CrossRef]
- Hill, K.; Malo, B.; Vineberg, K.; Bilodeau, F.; Johnson, D.; Skinner, I. Efficient mode conversion in telecommunication fibre using externally written gratings. Electron. Lett. 1990, 26, 1270–1272. [Google Scholar] [CrossRef]
- Rao, Y.-J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355. [Google Scholar] [CrossRef]
- Dockney, M.L.; James, S.W.; Tatam, R.P. Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer. Meas. Sci. Technol. 1996, 7, 445. [Google Scholar] [CrossRef]
- Hill, K.O.; Malo, B.; Bilodeau, F.; Johnson, D.C.; Albert, J. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 1993, 62, 1035–1037. [Google Scholar] [CrossRef]
- Williams, R.J.; Voigtländer, C.; Marshall, G.D.; Tünnermann, A.; Nolte, S.; Steel, M.J.; Withford, M.J. Point-by-point inscription of apodized fiber Bragg gratings. Opt. Lett. 2011, 36, 2988–2990. [Google Scholar] [CrossRef]
- Gagné, M.; Loranger, S.; Lapointe, J.; Kashyap, R. Fabrication of high quality, ultra-long fiber Bragg gratings: Up to 2 million periods in phase. Opt. Express 2014, 22, 387–398. [Google Scholar] [CrossRef]
- Mihailov, S.J.; Grobnic, D.; Smelser, C.W.; Lu, P.; Walker, R.B.; Ding, H. Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask. Opt. Mater. Express 2011, 1, 754–765. [Google Scholar] [CrossRef]
- Nan, Y.-G.; Chapalo, I.; Chah, K.; Hu, X.; Megret, P. Through Over-Clad Inscription of FBG in CYTOP Optical Fiber Using Phase Mask Technique and 400 nm Femtosecond Pulsed Laser. J. Light. Technol. 2022, 40, 3031–3037. [Google Scholar] [CrossRef]
- Yang, S.; Hu, D.; Wang, A. Point-by-point fabrication and characterization of sapphire fiber Bragg gratings. Opt. Lett. 2017, 42, 4219–4222. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zhu, L.; Zhang, W.; Liu, F.; Dong, M. Point-by-Point Femtosecond-Laser Inscription of 2-μm-Wavelength-Band FBG Through Fiber Coating. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Wang, R.; Qiao, X. Multiple Cladding Fiber Bragg Gratings Inscribed by Femtosecond Laser Point-by-Point Technology. J. Lightwave Technol. 2021, 39, 7539–7544. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y.; Peng, Y.; Lv, R.-Q.; Zhao, Q. Review of femtosecond laser direct writing fiber-optic structures based on refractive index modification and their applications. Opt. Laser Technol. 2022, 146, 107473. [Google Scholar] [CrossRef]
- Mohammed, N.A.; Ali, T.A.; Aly, M.H. Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles. AIP Adv. 2013, 3, 122125. [Google Scholar] [CrossRef]
- Maiti, S.; Singh, V. Performance Analysis of Apodized Fiber Bragg Gratings for Sensing Applications. Silicon 2022, 14, 581–587. [Google Scholar] [CrossRef]
- Mandal, H.N.; Sidhishwari, S. Design of an Apodized Fiber Bragg Grating Sensor for Sensitivity Analysis of Physical Parameters using Support Vector Machine. Braz. J. Phys. 2024, 54, 58. [Google Scholar] [CrossRef]
- Presti, D.L.; Massaroni, C.; Leitao, C.S.J.; Domingues, M.D.F.; Sypabekova, M.; Barrera, D.; Floris, I.; Massari, L.; Oddo, C.M.; Sales, S.; et al. Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access 2020, 8, 156863–156888. [Google Scholar] [CrossRef]
- Okabe, Y.; Tsuji, R.; Takeda, N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 59–65. [Google Scholar] [CrossRef]
- Vorathin, E.; Hafizi, Z.M.; Aizzuddin, A.M.; Zaini, M.K.A.; Lim, K.S. Temperature-independent chirped FBG pressure transducer with high sensitivity. Opt. Lasers Eng. 2019, 117, 49–56. [Google Scholar] [CrossRef]
- Albert, J.; Shao, L.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, H.; Liu, B.; Miao, Y. Tilted fiber Bragg gratings: Principle and sensing applications. Photonic Sens. 2011, 1, 6–30. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, H.; Liu, B.; Miao, Y. Design and Implementation of Tilted FBG for Concurrent Temperature and Humidity Measurement using Machine Learning. Opt. Fiber Technol. 2024, 82, 103630. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Guan, B.-O.; Albert, J. [INVITED] Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 2016, 78, 19–33. [Google Scholar] [CrossRef]
- Liang, W.; Huang, Y.; Xu, Y.; Lee, R.K.; Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 2005, 86, 151122. [Google Scholar] [CrossRef]
- Sun, X.; Zeng, L.; Hu, Y.; Duan, J. Fabrication and Sensing Application of Phase Shifted Bragg Grating Sensors. Materials 2022, 15, 3720. [Google Scholar] [CrossRef]
- Li, T.; Guo, J.; Tan, Y.; Zhou, Z. Recent Advances and Tendency in Fiber Bragg Grating-Based Vibration Sensor: A Review. IEEE Sens. J. 2020, 20, 12074–12087. [Google Scholar] [CrossRef]
- Tsai, T.-Y.; Lee, Z.-C.; Tsao, H.-X.; Lin, S.-T. Minimization of Fresnel reflection by anti-reflection fiber Bragg grating inscribed at the fiber ends. Opt. Express 2019, 27, 11510–11515. [Google Scholar] [CrossRef]
- Azmi, A.I.; Sen, D.; Sheng, W.; Canning, J.; Peng, G.-D. Performance Enhancement of Vibration Sensing Employing Multiple Phase-Shifted Fiber Bragg Grating. J. Light. Technol. 2011, 29, 3453–3460. [Google Scholar] [CrossRef]
- Wei, L.; Yu, L.; Wang, J.; Jiang, D.; Liu, Q.; Liu, Z. An FBG-Sensing Two-Dimensional Vibration Sensor Based on Multi-Axis Flexure Hinge. IEEE Sens. J. 2019, 19, 3698–3710. [Google Scholar] [CrossRef]
- Rosenthal, A.; Razansky, D.; Ntziachristos, V. Wideband optical sensing using pulse interferometry. Opt. Express 2012, 20, 19016–19029. [Google Scholar] [CrossRef] [PubMed]
- Sahota, J.; Gupta, N.; Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 2020, 59, 1. [Google Scholar] [CrossRef]
- Wu, Q.; Okabe, Y. Ultrasonic sensor employing two cascaded phase-shifted fiber Bragg gratings suitable for multiplexing. Opt. Lett. 2012, 37, 3336–3338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, Y.; Luo, X.; Liu, G.; Han, M. Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry–Perot interferometer and smart feedback control. Opt. Lett. 2017, 42, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Srivastava, D.; Tiwari, U.K.; Choudhary, B.C. Dynamic strain response of a π-phase-shifted FBG sensor with phase-sensitive detection. OSA Contin. 2018, 1, 1172–1184. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, T.; Zhang, J.; Chiang, K.S. Micro-Fiber-Based FBG Sensor for Simultaneous Measurement of Vibration and Temperature. IEEE Photonics Technol. Lett. 2013, 25, 1751–1753. [Google Scholar] [CrossRef]
- Wu, Q.; Okabe, Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Opt. Express 2012, 20, 28353–28362. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y.; Tong, X.; Wu, H. Simultaneous measurement of vibration and temperature based on FBG and DBR fiber laser beat frequency digital sensing system. Opt. Fiber Technol. 2023, 75, 103155. [Google Scholar] [CrossRef]
- Wang, R.; Wu, Q.; Xiong, K.; Ji, J.; Zhang, H.; Zhai, H. Phase-Shifted Fiber Bragg Grating Sensing Network and its Ultrasonic Sensing Application. IEEE Sens. J. 2019, 19, 9790–9797. [Google Scholar] [CrossRef]
- Archambault, J.-L.; Reekie, L.; Russell, P. High reflectivity and narrow bandwidth fibre gratings written by a single excimer pulse. Electron. Lett. 1993, 29, 28–29. [Google Scholar] [CrossRef]
Structure | Modulation Design |
---|---|
Uniform FBG
| |
Apodized FBG
| |
Chirped FBG
| |
Tilted FBG
| |
FBG Array
| |
Phase-Shift FBG
| |
Slice FBG (In this work)
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robalinho, P.; Piaia, V.; Soares, L.; Novais, S.; Ribeiro, A.L.; Silva, S.; Frazão, O. Phase-Shifted Fiber Bragg Grating by Selective Pitch Slicing. Sensors 2024, 24, 6898. https://doi.org/10.3390/s24216898
Robalinho P, Piaia V, Soares L, Novais S, Ribeiro AL, Silva S, Frazão O. Phase-Shifted Fiber Bragg Grating by Selective Pitch Slicing. Sensors. 2024; 24(21):6898. https://doi.org/10.3390/s24216898
Chicago/Turabian StyleRobalinho, Paulo, Vinícius Piaia, Liliana Soares, Susana Novais, António Lobo Ribeiro, Susana Silva, and Orlando Frazão. 2024. "Phase-Shifted Fiber Bragg Grating by Selective Pitch Slicing" Sensors 24, no. 21: 6898. https://doi.org/10.3390/s24216898
APA StyleRobalinho, P., Piaia, V., Soares, L., Novais, S., Ribeiro, A. L., Silva, S., & Frazão, O. (2024). Phase-Shifted Fiber Bragg Grating by Selective Pitch Slicing. Sensors, 24(21), 6898. https://doi.org/10.3390/s24216898