Anomaly Detection Method for Rocket Engines Based on Convex Optimized Information Fusion
Abstract
:1. Introduction
2. Preliminary
2.1. Research Population
2.2. Existing Problems
3. Method
3.1. Convex Optimization Problem Construction
3.2. Algorithm Design
3.2.1. Data Preprocessing
3.2.2. Fusion Parameter Solving
3.2.3. Anomaly Detection
- If , raise the lower limit, i.e., ;
- If , lower the upper limit, i.e., ;
- If , jump out of the loop and find the desired control limit h; otherwise, reset the control limit h, i.e., .
4. Experiment
4.1. Experiment Design
4.2. Experiment Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Zhang, Y.; Zhao, Z.; Chen, X.; Hu, J. Dynamic Model-Assisted transferable network for Liquid Rocket Engine Fault Diagnosis using limited fault samples. Reliab. Eng. Syst. Saf. 2023, 243, 109837. [Google Scholar] [CrossRef]
- Huang, P.; Yu, H.; Wang, T. A Study Using Optimized LSSVR for Real-Time Fault Detection of Liquid Rocket Engine. Processe 2022, 10, 1643. [Google Scholar] [CrossRef]
- Park, S.Y.; Ahn, J. Deep neural network approach for fault detection and diagnosis during startup transient of liquid-propellant rocket engine. Acta Astronaut. 2020, 177, 714–730. [Google Scholar] [CrossRef]
- Lv, H.; Chen, J.; Wang, J.; Yuan, J.; Liu, Z. A supervised framework for recognition of liquid rocket engine health state under steady-state process without fault samples. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Oreilly, D. System for Anomaly and Failure Detection (SAFD) System Development (No. NAS 1.26: 193907); NASA: Washington, DC, USA, 1993. [Google Scholar]
- Biggs, R. A probabilistic risk assessment for the space shuttle main engine with a turbomachinery vibration monitor cutoff system. In Proceedings of the 26th Joint Propulsion Conference, Orlando, FL, USA, 16–18 July 1990. [Google Scholar]
- Wheeler, K.; Dhawan, A.; Meyer, C. SSME sensor modeling using radial basis function neural networks. In Proceedings of the 30th Joint Propulsion Conference and Exhibit, Indianapolis, IN, USA, 27–29 June 1994. [Google Scholar]
- Yu, H.; Wang, T. A method for real-time fault detection of liquid rocket engine based on adaptive genetic algorithm optimizing back propagation neural network. Sensors 2021, 21, 5026. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, S.; Hirabayashi, M.; Sato, D.; Kawatsu, K.; Sato, M.; Kimura, T.; Hashimoto, T.; Abe, M. Data-driven fault detection in a reusable rocket engine using bivariate time-series analysis. Acta Astronaut. 2021, 179, 685–694. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Chen, J.; Liu, Z.; Feng, Y. Retentive multimodal scale-variable anomaly detection framework with limited data groups for liquid rocket engine. Measurement 2022, 205, 112171. [Google Scholar] [CrossRef]
- Yan, H.; Liu, Z.; Chen, J.; Feng, Y.; Wang, J. Memory-augmented skip-connected autoencoder for unsupervised anomaly detection of rocket engines with multi-source fusion. ISA Trans. 2023, 133, 53–65. [Google Scholar] [CrossRef]
- Azamfar, M.; Singh, J.; Bravo-Imaz, I.; Lee, J. Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis. Mech. Syst. Signal Process. 2020, 144, 106861. [Google Scholar] [CrossRef]
- Jiang, W.; Xie, C.; Zhuang, M.; Shou, Y.; Tang, Y. Sensor data fusion with z-numbers and its application in fault diagnosis. Sensors 2016, 16, 1509. [Google Scholar] [CrossRef]
- Liu, K.; Gebraeel, N.Z.; Shi, J. A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis. IEEE Trans. Autom. Sci. Eng. 2013, 10, 652–664. [Google Scholar] [CrossRef]
- Buchaiah, S.; Shakya, P. Bearing fault diagnosis and prognosis using data fusion based feature extraction and feature selection. Measurement 2022, 188, 110506. [Google Scholar] [CrossRef]
- Jing, L.; Wang, T.; Zhao, M.; Wang, P. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox. Sensors 2017, 17, 414. [Google Scholar] [CrossRef] [PubMed]
- Radman, M.; Moradi, M.; Chaibakhsh, A.; Kordestani, M.; Saif, M. Multi-feature fusion approach for epileptic seizure detection from EEG signals. IEEE Sens. J. 2020, 21, 3533–3543. [Google Scholar] [CrossRef]
- Xu, W.; Jing, L.; Tan, J.; Dou, L. A multimodel decision fusion method based on DCNN-IDST for fault diagnosis of rolling bearing. Shock Vib. 2020, 2020, 8856818. [Google Scholar] [CrossRef]
- Chao, Q.; Gao, H.; Tao, J.; Wang, Y.; Zhou, J.; Liu, C. Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals. Sci. China Technol. Sci. 2022, 65, 470–480. [Google Scholar] [CrossRef]
- Grbovic, M.; Li, W.; Xu, P.; Usadi, A.K.; Song, L.; Vucetic, S. Decentralized fault detection and diagnosis via sparse PCA based decomposition and maximum entropy decision fusion. J. Process Control 2012, 22, 738–750. [Google Scholar] [CrossRef]
- Tran, M.Q.; Liu, M.K.; Elsisi, M. Effective multi-sensor data fusion for chatter detection in milling process. ISA Trans. 2022, 125, 514–527. [Google Scholar] [CrossRef]
- Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep learning in multimodal remote sensing data fusion: A comprehensive review. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102926. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, D.; Terpenny, J. Robust incipient fault detection of complex systems using data fusion. IEEE Trans. Instrum. Meas. 2020, 69, 9526–9534. [Google Scholar] [CrossRef]
- Pérez-Roca, S.; Marzat, J.; Piet-Lahanier, H.; Langlois, N.; Farago, F.; Galeotta, M.; Le Gonidec, S. A survey of automatic control methods for liquid-propellant rocket engines. Prog. Aerosp. Sci. 2019, 107, 63–84. [Google Scholar] [CrossRef]
- Wang, J.; Cui, N.; Wei, C. Optimal rocket landing guidance using convex optimization and model predictive control. J. Guid. Control Dyn. 2019, 42, 1078–1092. [Google Scholar] [CrossRef]
- Sugimachi, T.; Yonemoto, K.; Fujikawa, T. Attitude Control Law Design of Experimental Winged Rocket Using Engine Gimbal Control. In Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018), Singapore, 8 June 2019; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Liu, X.; Lu, P.; Pan, B. Survey of convex optimization for aerospace applications. Astrodynamics 2017, 1, 23–40. [Google Scholar] [CrossRef]
- Benedikter, B.; Zavoli, A.; Colasurdo, G.; Pizzurro, S.; Cavallini, E. Convex approach to three-dimensional launch vehicle ascent trajectory optimization. J. Guid. Control Dyn. 2021, 44, 1116–1131. [Google Scholar] [CrossRef]
- Deaconu, G.; Louembet, C.; Théron, A. Designing continuously constrained spacecraft relative trajectories for proximity operations. J. Guid. Control Dyn. 2015, 38, 1208–1217. [Google Scholar] [CrossRef]
- Harris, M.W.; Açıkmeşe, B. Maximum divert for planetary landing using convex optimization. J. Optim. Theory Appl. 2014, 162, 975–995. [Google Scholar] [CrossRef]
- Dong, X.; Fan, Q.; Li, D. Detrending moving-average cross-correlation based principal component analysis of air pollutant time series. Chaos Solitons Fractals 2023, 172, 113558. [Google Scholar] [CrossRef]
- Berlo, B.V.; Verhoeven, R.; Meratnia, N. Use of Domain Labels during Pre-Training for Domain-Independent WiFi-CSI Gesture Recognition. Sensors 2023, 23, 9233. [Google Scholar] [CrossRef]
- Gorissen, B.L. Interior point methods can exploit structure of convex piecewise linear functions with application in radiation therapy. SIAM J. Optim. 2022, 32, 256–275. [Google Scholar] [CrossRef]
- Engmann, G.M.; Han, D. The optimized CUSUM and EWMA multi-charts for jointly detecting a range of mean and variance change. J. Appl. Stat. 2022, 49, 1540–1558. [Google Scholar] [CrossRef]
- Mohd, G.; Mohamad, H.; Wan, R. Vibration analysis for machine monitoring and diagnosis: A systematic review. Shock Vib. 2021, 2021, 9469318. [Google Scholar]
- Rezatofighi, H.; Nathan, T.; Jun Young, G.; Amir, S.; Ian, R.; Silvio, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
Para | ||||
Value | 0.1652 | 0.3044 | 0.0856 | 0.1723 |
Para | ||||
Value | 0.1245 | 0.0647 | 0.0018 | 0.0815 |
Algorithm | Accuracy | MIOU | Detection Time |
---|---|---|---|
PSO-LSSVM | 92.9% | 86.7% | 1.88 s |
CNN-LSTM | 94.3% | 89.0% | 2.03 s |
Single-parameter CUSUM | 85.2% | 74.2% | 1.48 s |
proposed | 98.7% | 97.4% | 1.12 s |
Proposed (with 5% noise) | 98.6% | 97.1% | 1.15 s |
Proposed (with 15% noise) | 95.5% | 91.3% | 1.14 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Cheng, Y.; Jiang, B.; Lu, F.; Wang, N. Anomaly Detection Method for Rocket Engines Based on Convex Optimized Information Fusion. Sensors 2024, 24, 415. https://doi.org/10.3390/s24020415
Sun H, Cheng Y, Jiang B, Lu F, Wang N. Anomaly Detection Method for Rocket Engines Based on Convex Optimized Information Fusion. Sensors. 2024; 24(2):415. https://doi.org/10.3390/s24020415
Chicago/Turabian StyleSun, Hao, Yuehua Cheng, Bin Jiang, Feng Lu, and Na Wang. 2024. "Anomaly Detection Method for Rocket Engines Based on Convex Optimized Information Fusion" Sensors 24, no. 2: 415. https://doi.org/10.3390/s24020415
APA StyleSun, H., Cheng, Y., Jiang, B., Lu, F., & Wang, N. (2024). Anomaly Detection Method for Rocket Engines Based on Convex Optimized Information Fusion. Sensors, 24(2), 415. https://doi.org/10.3390/s24020415