Halide Perovskites Films for Ionizing Radiation Detection: An Overview of Novel Solid-State Devices
Abstract
:1. Introduction
2. Halide Perovskites
3. Techniques for Perovskite Films Preparation
3.1. Solution-Based Processes
3.1.1. Spin Coating
3.1.2. Printing Techniques
- Drop casting is a deposition technique in which a drop of solution is poured onto the desired substrate. The solvent is left to evaporate, the solute precipitates, and the formation of a microcrystalline film is obtained. It is a simple and effective method, and for this reason, it has been widely exploited to realize perovskite films to be integrated into ionizing radiation detectors. A recent example is the work realized by Bruzzi et al. [25] reporting a dosimeter for clinical radiotherapy consisting of a layer of microcrystalline inorganic perovskite of CsPbBr3 a few micrometers thick.
- Spray coating consists in the expulsion from a nozzle of small drops that form an aerosol by the use of an inert carrier gas [36]. The aerosol droplets hit the substrate and form homogeneous films when they dry. The thickness of the film thus created is controlled by varying the deposition parameters such as concentration, density, and pressure. The first research groups who were successful in obtaining X-ray detectors based on perovskite thick films were Yakunin et al. [24], who coated a glass substrate with MaPbI3-based film with a thickness in the range of 10–100 .Electro-spray deposition is one of the variants of spray coating. In this technique, small aerosol droplets are formed by Coulomb repulsion and are driven by the electrical gradient between the nozzle and the substrate. With this process, inorganic perovskite of Cs2TeI6 [37] was deposited in the form of a 25 -thick film used in an X-ray detector. The spraying parameters, i.e., the distance and the electric field between the nozzle and the substrate, and the substrate temperature have been optimized to properly control film thickness and morphology for its use as a high-energy radiation detector.
- Doctor blade involves the use of a blade as a deposition tool. It is the most widespread technique for large-scale production, because it has been adapted to roll-to-roll printing processes. The first large-area printable low-dose perovskite X-ray imaging device was demonstrated by Kim et al. [38], who in 2017 deposited through blade coating a polycrystalline 830 -thick MAPbI3 film.
- Inkjet printing is a technique where a drop of solution is ejected from a chamber reservoir through piezoelectric thermal actuators, and sent directly onto the substrate. Since the volume of material involved is small, this deposition technique is particularly suitable for the preparation of thin films. In addition, as the process occurs at a temperature below 100 C, it is also suitable for deposition on thin plastic substrates for flexible electronics. In the literature, X-ray detectors having as active medium both hybrid [11] and inorganic [12] perovskites printed by inkjet on a flexible substrate are present. Through the inkjet printing technique, Liu et al. [12] obtained the first 20 -thick quantum dots of CsPbBr3 perovskite deposited on a large-area PET substrate.
3.2. Solution-Free Processes
3.2.1. Pressing and Melt Methods
- Pressing and hot pressing methods are typical powder molding techniques that allow compact wafers of controlled shape and thickness to be obtained. They are manufacturing processes that involve high isostatic pressure and/or high temperature to reduce the porosity of the material and increase its density. Thick film/wafer-based ionizing radiation detectors have been effectively fabricated by means of these techniques. Shrestha et al. [39] reported in 2017 on high performance direct X-ray detectors based on sintered MAPbI3 perovskite wafers. By subjecting hybrid lead triiodide microcrystals to a pressure of 0.3 GPa for 5 min in a hydraulic press, they obtained a series of compact MAPbI3 wafers of thicknesses in the range from 0.2 to 1 mm, diameter of 1/2 inch with a low roughness (root mean square of 75 nm).More recently, however, Hu at al. fabricated a MAPbI3 wafer by the heat assisted high-pressure press method [40] employed for X-ray detection.Lead-free Cs2AgBiBr6 perovskite wafers with diameters up to 5 cm have been fabricated by Yang et al. using the isostatic-pressing method. They subsequently annealed the obtained material to promote the grains growth to the micrometric range [41].The hot pressing method was first proposed by Pan et al. [42] to fabricate inorganic perovskite CsPbBr3 films. The used method consists of placing the CsPbBr3 powder onto a fluorine-doped tin oxide (FTO) glass and heating at 873 K for 5 min. A melt perovskite layer is formed, which uniformly covers the glass substrate. Then, a pre-heated quartz is used to press the molten layer. After the slow decreasing of the temperature, the quartz plate is removed. By means of such a technique, a compact 240 thick quasi mono-crystalline film has been obtained with a single (101) orientation and few grain boundaries.
- Melt process was used by Matt et al. [43], who demonstrated direct X-ray detection by a thick film of crystalline CsPbBr3. Such a method involves the distribution of micro-crystalline CsPbBr3 onto FTO-covered grass substrate. The heating of the material up to 575 is reached. Then, the slow-cooling at room temperature gives rise to a 250 -thick film.
3.2.2. Physical Vapour Deposition
- Close space sublimation is a type of deposition where the substrate and the source material are held close to each other in a vacuum chamber, which is pumped out. The source and the substrate are then heated. In detail, the source is heated to a fraction of its melting temperature and the substrate to a slightly lower temperature, causing the source to sublimate and allowing the vapors to travel the short distance from the substrate, where the condensation occurs producing a thin film. An entire cycle of such a process takes only a few minutes, making this technique very viable for large-scale production.Fernandez-Izquierdo et al. developed the confined space sublimation method for the deposition of stoichiometric thick films of CsPbBr3 [44].
- Radio-frequency magnetron sputtering is a vapour deposition where a target is bombarded with ions that cause its surface to be atomized. The target is constituted by perovskite salts or perovskite precursor salts finely grounded and pressed. On impact, the ions eject atoms/molecules from the surface, process known as sputtering. The ions causing the sputtering originate from a plasma generated near the target. Usually, the plasma is generated by applying a strong electric field near the target and, in the case of magnetron instruments, this plasma is confined and accelerated towards the target by a magnetic field. The sputtered material forms a vapour, which can be re-condensed on a substrate to form the film. The process allows the realization in controlled atmosphere of homogeneous polycrystalline films over a large area, with a nanometric control of thickness and the surface roughness [45,46,47], which makes the technique useful for large-scale applications, as required by the industry. The technique can be used for deposition on substrates of different materials, such as glass, metals, and even plastics for flexible devices. In addition, the growth can be performed at room temperature, limiting the strain between the substrate and the film. Another relevant advantage of the sputtering technique is the possibility of growing in vacuum directly in the chamber consecutive layers of different materials, that are necessary for the realization of prototype multilayer devices. Radio frequency (RF) magnetron sputtering was successfully employed by Bruzzi et al. for the first time to deposit a CsPbCl3 inorganic perovskite film as the active medium of a radiotherapy dosimeter [26]. In 2023, through the same technique, the first flexible CsPbCl3-based detector was demonstrated by the same group for real-time monitoring in proton therapy [9].A further variation of sputtering commonly referred to as reactive sputtering carries out this process with a background pressure of a reactive gas, such as oxygen or nitrogen to tune the composition of the resulting film.
4. Ionizing Radiation Detection
4.1. Radiation–Matter Interaction
- Scattering: Neutrons may collide with nuclei and undergo either elastic or inelastic scattering. In the former case, a neutron transfers a fraction of its kinetic energy to the target nucleus without exciting the nucleus, whereas inelastic scattering occurs when the neutron transfers some of its kinetic energy to the target nucleus, by which the target becomes excited and the excitation energy is emitted as a -rays.
- Absorption: When a target nucleus absorbs a neutron, a wide range of nuclear reactions occur, including nuclear fission (this is more favorable at thermal energies): Radiative capture occurs when a neutron is absorbed by the target nucleus which then becomes excited and reaches stability by emission of electromagnetic energy in a form of -rays. Transmutation occurs when the target nucleus absorbs a neutron that results in an ejection of a charged particle such as a proton or an alpha particle. Nuclear fission reaction occurs when a fissile nucleus (this phenomenon concerns above all very heavy elements such as uranium or plutonium) splits into smaller nuclei (fission fragments). As the fission fragments are ejected, an average of 2.5 neutrons are emitted. In this way, a neutron can collide with another fissile nucleus which then splits into smaller nuclei and a reaction chain can take place, as in a nuclear power plant. Thermal neutrons are much more effective for the fission. In each scattering event, the neutrons lose some of their energy and eventually the fast neutrons slow down to being thermal neutrons.
4.2. Radiation Detection
4.3. Radiation Detectors: Brief Overview
4.4. Perovskite Detectors For X-rays
4.5. Perovskite Detectors for Neutrons
4.6. Perovskite Detectors for Protons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HP | Halide perovskite |
PET | Polyethylene terephthalate |
FTO | Fluorine-doped tin oxide |
RF | Radio frequency |
CSS | Close space sublimation |
IDEs | Interdigitated electrodes |
References
- Hoheisel, M. Review of medical imaging with emphasis on X-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 563, 215–224. [Google Scholar] [CrossRef]
- Hanke, R.; Fuchs, T.; Uhlmann, N. X-ray based methods for non-destructive testing and material characterization. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 591, 14–18. [Google Scholar] [CrossRef]
- Wells, K.; Bradley, D. A review of X-ray explosives detection techniques for checked baggage. Appl. Radiat. Isot. 2012, 70, 1729–1746. [Google Scholar] [CrossRef] [PubMed]
- Eberth, J.; Simpson, J. From Ge(Li) detectors to gamma-ray tracking arrays–50 years of gamma spectroscopy with germanium detectors. Prog. Part. Nucl. Phys. 2008, 60, 283–337. [Google Scholar] [CrossRef]
- D’Avanzo, P. Short gamma-ray bursts: A review. J. High Energy Astrophys. 2015, 7, 73–80. [Google Scholar] [CrossRef]
- Delpierre, P.; Berar, J.; Blanquart, L.; Caillot, B.; Clemens, J.; Mouget, C. X-ray pixel detector for crystallography. IEEE Trans. Nucl. Sci. 2001, 48, 987–991. [Google Scholar] [CrossRef]
- Randaccio, L.; Geremia, S.; Nardin, G.; Wuerges, J. X-ray structural chemistry of cobalamins. Coord. Chem. Rev. 2006, 250, 1332–1350. [Google Scholar] [CrossRef]
- Marcelli, A.; Cricenti, A.; Kwiatek, W.M.; Petibois, C. Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnol. Adv. 2012, 30, 1390–1404. [Google Scholar] [CrossRef]
- Bruzzi, M.; Calisi, N.; Enea, N.; Verroi, E.; Vinattieri, A. Flexible CsPbCl3 inorganic perovskite thin-film detectors for real-time monitoring in protontherapy. Front. Phys. 2023, 11, 51. [Google Scholar] [CrossRef]
- Maity, A.; Ghosh, B. Perovskite halide based flexible gas sensor for detection of environmental pollutant at room temperature. AIP Conf. Proc. 2019, 2115, 030476. [Google Scholar] [CrossRef]
- Mescher, H.; Schackmar, F.; Eggers, H.; Abzieher, T.; Zuber, M.; Hamann, E.; Baumbach, T.; Richards, B.S.; Hernandez-Sosa, G.; Paetzold, U.W.; et al. Flexible inkjet-printed triple cation perovskite X-ray detectors. ACS Appl. Mater. Interfaces 2020, 12, 15774–15784. [Google Scholar] [CrossRef]
- Liu, J.; Shabbir, B.; Wang, C.; Wan, T.; Ou, Q.; Yu, P.; Tadich, A.; Jiao, X.; Chu, D.; Qi, D.; et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 2019, 31, 1901644. [Google Scholar] [CrossRef]
- Liu, F.; Wu, R.; Zeng, Y.; Wei, J.; Li, H.; Manna, L.; Mohite, A.D. Halide perovskites and perovskite related materials for particle radiation detection. Nanoscale 2022, 14, 6743–6760. [Google Scholar] [CrossRef]
- Basiricò, L.; Ciavatti, A.; Fraboni, B. Solution-Grown Organic and Perovskite X-Ray Detectors: A New Paradigm for the Direct Detection of Ionizing Radiation. Adv. Mater. Technol. 2021, 6, 2000475. [Google Scholar] [CrossRef]
- Hu, H.; Niu, G.; Zheng, Z.; Xu, L.; Liu, L.; Tang, J. Perovskite semiconductors for ionizing radiation detection. EcoMat 2022, 4, e12258. [Google Scholar] [CrossRef]
- Kirmani, A.R.; Durant, B.K.; Grandidier, J.; Haegel, N.M.; Kelzenberg, M.D.; Lao, Y.M.; McGehee, M.D.; McMillon-Brown, L.; Ostrowski, D.P.; Peshek, T.J.; et al. Countdown to perovskite space launch: Guidelines to performing relevant radiation-hardness experiments. Joule 2022, 6, 1015–1031. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, J.; Xu, G.; Yang, X.; Cai, R.; Gong, Q.; Zhu, R.; Huang, W. Perovskite Solar Cells for Space Applications: Progress and Challenges. Adv. Mater. 2021, 33, 2006545. [Google Scholar] [CrossRef]
- Liu, X.K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R.H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21. [Google Scholar] [CrossRef]
- Tsai, H.; Nie, W.; Blancon, J.C.; Stoumpos, C.C.; Soe, C.M.M.; Yoo, J.; Crochet, J.; Tretiak, S.; Even, J.; Sadhanala, A.; et al. Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden–Popper Layered Perovskites. Adv. Mater. 2018, 30, 1704217. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, F.; Huang, P.; Wu, R.; Gu, W.; Wei, J.; Liu, F.; Li, H. Light-emitting diodes based on two-dimensional nanoplatelets. Energy Mater. Adv. 2022, 2022, 9857943. [Google Scholar] [CrossRef]
- Yu, J.C.; Park, J.H.; Lee, S.Y.; Song, M.H. Effect of perovskite film morphology on device performance of perovskite light-emitting diodes. Nanoscale 2019, 11, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, C.; Liu, X.; Yao, J.; Zhao, Y.S. Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev. 2020, 49, 951–982. [Google Scholar] [CrossRef] [PubMed]
- Gabelloni, F.; Biccari, F.; Falsini, N.; Calisi, N.; Caporali, S.; Vinattieri, A. Long-living nonlinear behavior in CsPbBr3 carrier recombination dynamics. Nanophotonics 2019, 8, 1447–1455. [Google Scholar] [CrossRef]
- Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G.J.; Azimi, H.; Brabec, C.J.; Stangl, J.; Kovalenko, M.V.; et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 2015, 9, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Bruzzi, M.; Talamonti, C.; Calisi, N.; Caporali, S.; Vinattieri, A. First proof-of-principle of inorganic perovskites clinical radiotherapy dosimeters. APL Mater. 2019, 7, 051101. [Google Scholar] [CrossRef]
- Bruzzi, M.; Calisi, N.; Latino, M.; Falsini, N.; Vinattieri, A.; Talamonti, C. Magnetron Sputtered CsPbCl3 Perovskite Detectors as Real-Time Dosimeters for Clinical Radiotherapy. Z. Für Med. Phys. 2022, 32, 392–402. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Sebastian, M.; Peters, J.A.; Stoumpos, C.C.; Im, J.; Kostina, S.S.; Liu, Z.; Kanatzidis, M.G.; Freeman, A.J.; Wessels, B.W. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys. Rev. B 2015, 92, 235210. [Google Scholar] [CrossRef]
- Kato, M.; Fujiseki, T.; Miyadera, T.; Sugita, T.; Fujimoto, S.; Tamakoshi, M.; Chikamatsu, M.; Fujiwara, H. Universal rules for visible-light absorption in hybrid perovskite materials. J. Appl. Phys. 2017, 121, 115501. [Google Scholar] [CrossRef]
- Li, X.; Cao, F.; Yu, D.; Chen, J.; Sun, Z.; Shen, Y.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y.; et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Tao, M.; Lan, Y.; Li, M.; Tian, Y.; Song, Y. Interfacial modification towards highly efficient and stable perovskite solar cells. Nanoscale 2020, 12, 18563–18575. [Google Scholar] [CrossRef]
- Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z.K.; Xue, J.; Yang, Y. A review of perovskites solar cell stability. Adv. Funct. Mater. 2019, 29, 1808843. [Google Scholar] [CrossRef]
- Calisi, N.; Caporali, S.; Milanesi, A.; Innocenti, M.; Salvietti, E.; Bardi, U. Composition-dependent degradation of hybrid and inorganic lead perovskites in ambient conditions. Top. Catal. 2018, 61, 1201–1208. [Google Scholar] [CrossRef]
- Basiricò, L.; Senanayak, S.P.; Ciavatti, A.; Abdi-Jalebi, M.; Fraboni, B.; Sirringhaus, H. Detection of X-Rays by Solution-Processed Cesium-Containing Mixed Triple Cation Perovskite Thin Films. Adv. Funct. Mater. 2019, 29, 1902346. [Google Scholar] [CrossRef]
- Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S.C. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 2014, 7, 2145–2159. [Google Scholar] [CrossRef]
- Xu, Y.; Jiao, B.; Song, T.B.; Stoumpos, C.C.; He, Y.; Hadar, I.; Lin, W.; Jie, W.; Kanatzidis, M.G. Zero-Dimensional Cs2TeI6 Perovskite: Solution-Processed Thick Films with High X-ray Sensitivity. ACS Photonics 2019, 6, 196–203. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, K.H.; Son, D.Y.; Jeong, D.N.; Seo, J.Y.; Choi, Y.S.; Han, I.T.; Lee, S.Y.; Park, N.G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 2017, 550, 87–91. [Google Scholar] [CrossRef]
- Shrestha, S.; Fischer, R.; Matt, G.J.; Feldner, P.; Michel, T.; Osvet, A.; Levchuk, I.; Merle, B.; Golkar, S.; Chen, H.; et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 2017, 11, 436–440. [Google Scholar] [CrossRef]
- Hu, M.; Jia, S.; Liu, Y.; Cui, J.; Zhang, Y.; Su, H.; Cao, S.; Mo, L.; Chu, D.; Zhao, G.; et al. Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Mater. Interfaces 2020, 12, 16592–16600. [Google Scholar] [CrossRef]
- Yang, B.; Pan, W.; Wu, H.; Niu, G.; Yuan, J.H.; Xue, K.H.; Yin, L.; Du, X.; Miao, X.S.; Yang, X.; et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989. [Google Scholar] [CrossRef]
- Pan, W.; Yang, B.; Niu, G.; Xue, K.H.; Du, X.; Yin, L.; Zhang, M.; Wu, H.; Miao, X.S.; Tang, J. Hot-Pressed CsPbBr3 Quasi-Monocrystalline Film for Sensitive Direct X-ray Detection. Adv. Mater. 2019, 31, 1904405. [Google Scholar] [CrossRef] [PubMed]
- Matt, G.J.; Levchuk, I.; Knüttel, J.; Dallmann, J.; Osvet, A.; Sytnyk, M.; Tang, X.; Elia, J.; Hock, R.; Heiss, W.; et al. Sensitive Direct Converting X-Ray Detectors Utilizing Crystalline CsPbBr3 Perovskite Films Fabricated via Scalable Melt Processing. Adv. Mater. Interfaces 2020, 7, 1901575. [Google Scholar] [CrossRef]
- Fernandez-Izquierdo, L.; Reyes-Banda, M.G.; Mathew, X.; Chavez-Urbiola, I.R.; El Bouanani, L.; Chang, J.; Avila-Avendano, C.; Mathews, N.R.; Pintor-Monroy, M.I.; Quevedo-Lopez, M. Cesium Lead Bromide CsPbBr3 Thin-Film-Based Solid-State Neutron Detector Developed by a Solution-Free Sublimation Process. Adv. Mater. Technol. 2020, 5, 2000534. [Google Scholar] [CrossRef]
- Borri, C.; Calisi, N.; Galvanetto, E.; Falsini, N.; Biccari, F.; Vinattieri, A.; Cucinotta, G.; Caporali, S. First proof-of-principle of inorganic lead halide perovskites deposition by magnetron-sputtering. Nanomaterials 2019, 10, 60. [Google Scholar] [CrossRef]
- Falsini, N.; Calisi, N.; Roini, G.; Ristori, A.; Biccari, F.; Scardi, P.; Barri, C.; Bollani, M.; Caporali, S.; Vinattieri, A. Large-area nanocrystalline caesium lead chloride thin films: A focus on the exciton recombination dynamics. Nanomaterials 2021, 11, 434. [Google Scholar] [CrossRef]
- Falsini, N.; Ristori, A.; Biccari, F.; Calisi, N.; Roini, G.; Scardi, P.; Caporali, S.; Vinattieri, A. A new route for caesium lead halide perovskite deposition. J. Eur. Opt. Soc.-Rapid Publ. 2021, 17, 8. [Google Scholar] [CrossRef]
- Gilmore, G. Practical Gamma-Ray Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Owens, A.; Peacock, A. Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 531, 18–37. [Google Scholar] [CrossRef]
- van Eijk, C.W. Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 460, 1–14. [Google Scholar] [CrossRef]
- Sears, V.F. Thermal-Neutron Scattering Lengths and Cross Sections for Condensed-Matter Research; Technical Report; Atomic Energy of Canada Ltd.: Chalk River, ON, Canada, 1984. [Google Scholar]
- Del Sordo, S.; Abbene, L.; Caroli, E.; Mancini, A.M.; Zappettini, A.; Ubertini, P. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors 2009, 9, 3491–3526. [Google Scholar] [CrossRef]
- He, Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 463, 250–267. [Google Scholar] [CrossRef]
- Klein, C.A. Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors. J. Appl. Phys. 1968, 39, 2029–2038. [Google Scholar] [CrossRef]
- Devanathan, R.; Corrales, L.; Gao, F.; Weber, W. Signal variance in gamma-ray detectors—A review. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2006, 565, 637–649. [Google Scholar] [CrossRef]
- Bruzzi, M. Novel Silicon Devices for Radiation Therapy Monitoring. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 809, 105–112. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Hecht, K. Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen. Z. Für Phys. 1932, 77, 235–245. [Google Scholar] [CrossRef]
- Ramaswami, K.; Johanson, R.; Kasap, S. Charge collection efficiency in photoconductive detectors under small to large signals. J. Appl. Phys. 2019, 125. [Google Scholar] [CrossRef]
- Zanichelli, M.; Santi, A.; Pavesi, M.; Zappettini, A. Charge collection in semi-insulator radiation detectors in the presence of a linear decreasing electric field. J. Phys. D Appl. Phys. 2013, 46, 365103. [Google Scholar] [CrossRef]
- Vittone, E.; Pastuovic, Z.; Breese, M.; Garcia Lopez, J.; Jaksic, M.; Raisanen, J.; Siegele, R.; Simon, A.; Vizkelethy, G. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 372, 128–142. [Google Scholar] [CrossRef]
- Auden, E.; Vizkelethy, G.; Serkland, D.; Bossert, D.; Doyle, B. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 399, 12–19. [Google Scholar] [CrossRef]
- Gunn, J. A general expression for electrostatic induction and its application to semiconductor devices. Solid-State Electron. 1964, 7, 739–742. [Google Scholar] [CrossRef]
- Hiramoto, M.; Imahigashi, T.; Yokoyama, M. Photocurrent multiplication in organic pigment films. Appl. Phys. Lett. 1994, 64, 187–189. [Google Scholar] [CrossRef]
- Ciavatti, A.; Sorrentino, R.; Basiricò, L.; Passarella, B.; Caironi, M.; Petrozza, A.; Fraboni, B. High-Sensitivity Flexible X-Ray Detectors based on Printed Perovskite Inks. Adv. Funct. Mater. 2021, 31, 2009072. [Google Scholar] [CrossRef]
- Demchyshyn, S.; Verdi, M.; Basiricò, L.; Ciavatti, A.; Hailegnaw, B.; Cavalcoli, D.; Scharber, M.C.; Sariciftci, N.S.; Kaltenbrunner, M.; Fraboni, B. Designing Ultraflexible Perovskite X-ray Detectors through Interface Engineering. Adv. Sci. 2020, 7, 2002586. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Jia, S.; Bu, N.; Li, N.; Liu, Y.; Liu, M.; Yang, Z.; Liu, S.F. Grain and stoichiometry engineering for ultra-sensitive perovskite X-ray detectors. J. Mater. Chem. A 2021, 9, 25603–25610. [Google Scholar] [CrossRef]
- Guo, J.; Xu, Y.; Yang, W.; Zhang, B.; Dong, J.; Jie, W.; Kanatzidis, M.G. Morphology of X-ray detector Cs2TeI6 perovskite thick films grown by electrospray method. J. Mater. Chem. C 2019, 7, 8712–8719. [Google Scholar] [CrossRef]
- Datta, A.; Zhong, Z.; Motakef, S. A new generation of direct X-ray detectors for medical and synchrotron imaging applications. Sci. Rep. 2020, 10, 20097. [Google Scholar] [CrossRef]
- Jia, S.; Xiao, Y.; Hu, M.; He, X.; Bu, N.; Li, N.; Liu, Y.; Zhang, Y.; Cui, J.; Ren, X.; et al. Ion-Accumulation-Induced Charge Tunneling for High Gain Factor in P–I–N-Structured Perovskite CH3NH3PbI3 X-Ray Detector. Adv. Mater. Technol. 2022, 7, 2100908. [Google Scholar] [CrossRef]
- Deumel, S.; van Breemen, A.; Gelinck, G.; Peeters, B.; Maas, J.; Verbeek, R.; Shanmugam, S.; Akkerman, H.; Meulenkamp, E.; Huerdler, J.E.; et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 2021, 4, 681–688. [Google Scholar] [CrossRef]
- Xia, M.; Song, Z.; Wu, H.; Du, X.; He, X.; Pang, J.; Luo, H.; Jin, L.; Li, G.; Niu, G.; et al. Compact and Large-Area Perovskite Films Achieved via Soft-Pressing and Multi-Functional Polymerizable Binder for Flat-Panel X-ray Imager. Adv. Funct. Mater. 2022, 32, 2110729. [Google Scholar] [CrossRef]
- Jang, J.; Ji, S.; Grandhi, G.K.; Cho, H.B.; Im, W.B.; Park, J.U. Multimodal Digital X-ray Scanners with Synchronous Mapping of Tactile Pressure Distributions using Perovskites. Adv. Mater. 2021, 33, 2008539. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, L.; Deng, Y.; Xiao, X.; Ni, Z.; Xu, S.; Huang, J. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photonics 2020, 14, 612–617. [Google Scholar] [CrossRef]
- Tie, S.; Zhao, W.; Xin, D.; Zhang, M.; Long, J.; Chen, Q.; Zheng, X.; Zhu, J.; Zhang, W.H. Robust Fabrication of Hybrid Lead-Free Perovskite Pellets for Stable X-ray Detectors with Low Detection Limit. Adv. Mater. 2020, 32, 2001981. [Google Scholar] [CrossRef]
- Gou, Z.; Huanglong, S.; Ke, W.; Sun, H.; Tian, H.; Gao, X.; Zhu, X.; Yang, D.; Wangyang, P. Self-Powered X-Ray Detector Based on All-Inorganic Perovskite Thick Film with High Sensitivity Under Low Dose Rate. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2019, 13, 1900094. [Google Scholar] [CrossRef]
- Haruta, Y.; Ikenoue, T.; Miyake, M.; Hirato, T. Fabrication of CsPbBr3 Thick Films by Using a Mist Deposition Method for Highly Sensitive X-ray Detection. MRS Adv. 2020, 5, 395–401. [Google Scholar] [CrossRef]
- Haruta, Y.; Wada, S.; Ikenoue, T.; Miyake, M.; Hirato, T. Columnar grain growth of lead-free double perovskite using mist deposition method for sensitive X-ray detectors. Cryst. Growth Des. 2021, 21, 4030–4037. [Google Scholar] [CrossRef]
- Daum, M.; Deumel, S.; Sytnyk, M.; Afify, H.A.; Hock, R.; Eigen, A.; Zhao, B.; Halik, M.; These, A.; Matt, G.J.; et al. Self-Healing Cs3Bi2Br3I6 Perovskite Wafers for X-Ray Detection. Adv. Funct. Mater. 2021, 31, 2102713. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, L.; Ni, Z.; Xu, S.; Zhao, J.; Xiao, X.; Huang, J. Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci. Adv. 2021, 7, eabg6716. [Google Scholar] [CrossRef]
- He, X.; Xia, M.; Wu, H.; Du, X.; Song, Z.; Zhao, S.; Chen, X.; Niu, G.; Tang, J. Quasi-2D Perovskite Thick Film for X-Ray Detection with Low Detection Limit. Adv. Funct. Mater. 2022, 32, 2109458. [Google Scholar] [CrossRef]
- Tsai, H.; Liu, F.; Shrestha, S.; Fernando, K.; Tretiak, S.; Scott, B.; Vo, D.T.; Strzalka, J.; Nie, W. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 2020, 6, eaay0815. [Google Scholar] [CrossRef]
- Caraveo-Frescas, J.A.; Reyes-Banda, M.G.; Fernandez-Izquierdo, L.; Quevedo-Lopez, M.A. 3D Microstructured Inorganic Perovskite Materials for Thermal Neutron Detection. Adv. Mater. Technol. 2022, 7, 2100956. [Google Scholar] [CrossRef]
- Wright, G.; Cui, Y.; Roy, U.; Barnett, C.; Reed, K.; Burger, A.; Lu, F.; Li, L.; James, R. The effects of chemical etching on the charge collection efficiency of 111 oriented Cd/sub 0.9/Zn/sub 0.1/Te nuclear radiation detectors. IEEE Trans. Nucl. Sci. 2002, 49, 2521–2525. [Google Scholar] [CrossRef]
- Basiricò, L.; Fratelli, I.; Verdi, M.; Ciavatti, A.; Barba, L.; Cesarini, O.; Bais, G.; Polentarutti, M.; Chiari, M.; Fraboni, B. Mixed 3D–2D Perovskite Flexible Films for the Direct Detection of 5 MeV Protons. Adv. Sci. 2023, 10, 2204815. [Google Scholar] [CrossRef] [PubMed]
Material | Device Structure | Growth Method | Thickness (m) | V or E | (cmV) | Sensitivity (C Gy (cm) | Gain | X-ray Source | Year [Ref.] |
---|---|---|---|---|---|---|---|---|---|
MAPbI3 | photoconductor | hydraulic press | 1000 | 70 | 2017 [39] | ||||
MAPbI3 | photoconductor | doctor blade | 830 | 200 V | 100 | 2017 [38] | |||
MAPbI3 | photoconductor | hot pressing | 800 | 10 V | 1800 | 40 | 2020 [40] | ||
MAPbI3 | photoconductor | doctor blade | 200 | 70 | 2020 [69] | ||||
MAPbI3 | p-i-n photodiode | hot pressing | 570 | 5 V | 86 | 411 | 40 | 2022 [70] | |
MAPbI3 | photoconductor | hot pressing | 1300 | 6126 | 40 | 2021 [67] | |||
MAPbI3 | photoconductor | hydraulic press | 880 | 50–120 | 2021 [71] | ||||
MAPbI3 * | photoconductor | printing technique | 10 | <4 V | 494 | 150 | 2021 [65] | ||
MAPbI3 + TMTA | Dual-Schottky barrier | doctor blade | 400 | 500 | 50 | 2022 [72] | |||
GA0.1MA0.9PbI3 * | diode | doctor blade | 25 | 50 | 2021 [73] | ||||
MAPb(I0.9Cl0.1)3 * | photoconductor | solution fill | 1050 | 60 | 2020 [74] | ||||
MA3Bi2I9-PPs ** | photoconductor | isostatic press | 1000 | 2100 | 563 | 45 | 2020 [75] |
Material | Device Structure | Growth Method | Thickness (m) | V or E | (cmV) | Sensitivity (C Gy (cm) | Gain | X-ray Source | Year [Ref.] |
---|---|---|---|---|---|---|---|---|---|
Inorganic HP | |||||||||
CsPbBr3 | Schottky FTO/perov./Au | hot press | 240 | 5 | 50 | 2019 [42] | |||
CsPbBr3 | Schottky Au/perov./ITO | dissolution recrystall. | 18 | 35 | 2019 [76] | ||||
CsPbBr3 | planar Au/perov./Au photocond. | drop casting | 20 | 5 V | *** | 6 | 2019 [25] | ||
Cs2TeI6 ** | Au/perov./FTO photocond. | electrostatic spray coating | 25 | 250 | 19.2 | 40 | 2019 [37] | ||
CsPbBr3 | Ga/perov./FTO Schottky | melt process | 250 | 70 | 2020 [43] | ||||
CsPbBr3 | Au/perov./ITO photocond. | mist deposition | 110 | 5 V | 70 | 2020 [77] | |||
Cs2AgBiBr6 ** | W/perov./Pt photocond. | mist deposition | 92 | 109 | 487 | 70 | 2021 [78] | ||
Cs2AgBiBr6 ** | Au/perov./Au | isostatic press | 1000 | 250 | 50 | 2019 [41] | |||
Cs3Bi2Br3I6 ** | Cr/perov./Pt | hydraulic press | 700 | 200 V | 0.4 | 70 | 2021 [79] | ||
Multiple-cation HP | |||||||||
Cs0.15FA0.85PbI3/ Cs0.15FA0.85 Pb(I0.15Br0.85)3 | heterojunction | solution fill | 500 | 25 V | 60 | 2021 [80] | |||
PEA2MA8Pb9I28 | photoconductor | doctor blade | 300 | 600 | 60.43 | 30 | 2022 [81] | ||
Cs0.1(FA0.83MA0.17)0.9 Pb(Br0.17I0.83)3 * | photoconductor | inkjet printing | 3.7 | 0.1 V | 59.9 | 70 | 2020 [11] |
Material | Device Structure | Growth Method | Thickness (nm) | V (V) | (cmV) | Sensitivity (C Gy (cm) | Active Area | X-ray Source | Year [Ref.] |
---|---|---|---|---|---|---|---|---|---|
CsPbCl3 | Cu/Perov./Cu | Magn. sputter | 1000 | 10 | ** | 1.2 × 1.8 | 6 | 2022 [26] | |
CsPbBr3 * | Photocond. Au/Perov./Au | inkjet printing | 20 | 17.7 | 2019 [12] | ||||
(BA)2(MA)2Pb3I10 | p-i-n photod. ITO/PTAA /Perov./C60/Au | AVC | 470 | 0.5 | 13 | 2020 [82] | |||
Cs0.05FA0.79MA0.16 Pb(I0.8Br0.2)3 | p-i-n photod. | spin coating | 450 | 0.4 | 97 | 2 × 3 | 35 | 2019 [35] | |
MAPbI3 | Planar photocond. | spin coating | 260–600 | 16–20 | 75 | 2015 [24] | |||
Cs0.05(FA0.83MA0.17)0.95 PbI3-xBrx * | p-i-n photod. *** | spin coating | 500 | 1 | 9.3 | 2020 [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falsini, N.; Ubaldini, A.; Cicconi, F.; Rizzo, A.; Vinattieri, A.; Bruzzi, M. Halide Perovskites Films for Ionizing Radiation Detection: An Overview of Novel Solid-State Devices. Sensors 2023, 23, 4930. https://doi.org/10.3390/s23104930
Falsini N, Ubaldini A, Cicconi F, Rizzo A, Vinattieri A, Bruzzi M. Halide Perovskites Films for Ionizing Radiation Detection: An Overview of Novel Solid-State Devices. Sensors. 2023; 23(10):4930. https://doi.org/10.3390/s23104930
Chicago/Turabian StyleFalsini, Naomi, Alberto Ubaldini, Flavio Cicconi, Antonietta Rizzo, Anna Vinattieri, and Mara Bruzzi. 2023. "Halide Perovskites Films for Ionizing Radiation Detection: An Overview of Novel Solid-State Devices" Sensors 23, no. 10: 4930. https://doi.org/10.3390/s23104930
APA StyleFalsini, N., Ubaldini, A., Cicconi, F., Rizzo, A., Vinattieri, A., & Bruzzi, M. (2023). Halide Perovskites Films for Ionizing Radiation Detection: An Overview of Novel Solid-State Devices. Sensors, 23(10), 4930. https://doi.org/10.3390/s23104930