Micropreconcentrators: Recent Progress in Designs and Applications
Abstract
:1. Introduction
- (1)
- Adsorption of gas or vapour molecules at room temperature;
- (2)
- Desorption of the molecules at a higher temperature and their injection into the sampling unit of a coupled detection method;
- (3)
- Cooling the preconcentrator down to room temperature before the next sampling and analysis.
2. Literature Review
2.1. Preconcentrators Utilising Adsorption and Desorption
2.1.1. Preconcentrators for VOC Contaminants
2.1.2. Preconcentration of VOCs for Exhaled Breath Diagnostics
2.1.3. Preconcentrators for Other Species
2.2. Preconcentrators Utilising Microextraction and Other Phenomena
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dave, V.R.; Clark, D.D.; Roybal, M.; Cola, M.J.; Piltch, M.S.; Madigan, R.B.; Castro, A. Multi-Sensor Quality Inference and Control for Additive Manufacturing Processes. US Patent 10,786,948, 29 September 2020. [Google Scholar]
- Victor, S.A.; Daly, P.F.; Horn, I.G. Detecting and Correcting Cross-Leakage in Heat Exchangers in a Petrochemical Plant or Refinery. US Patent 10,670,353, 2 June 2020. [Google Scholar]
- Rodriguez, R.S.; O’Keefe, T.L.; Froehlich, C.; Lewis, R.E.; Sheldon, T.R.; Haynes, C.L. Sensing Food Contaminants: Advances in Analytical Methods and Techniques. Anal. Chem. 2020, 93, 23–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wu, X.; Tao, W.; Li, Z. Ultrasensitive detection of Cr (VI)(Cr2O72-/CrO42-) ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots. Anal. Chim. Acta 2020, 1131, 68–79. [Google Scholar] [CrossRef]
- Han, B.; Wang, J.; Yang, W.; Chen, X.; Wang, H.; Chen, J.; Zhang, C.; Sun, J.; Wei, X. Hydrothermal synthesis of flower-like In2O3 as a chemiresistive isoprene sensor for breath analysis. Sens. Actuators B Chem. 2020, 309, 127788. [Google Scholar] [CrossRef]
- Chu, N.; Liang, Q.; Hao, W.; Jiang, Y.; Liang, P.; Zeng, R.J. Microbial electrochemical sensor for water biotoxicity monitoring. Chem. Eng. J. 2021, 404, 127053. [Google Scholar] [CrossRef]
- Currie, L.A. Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal. Chem. 1968, 40, 586–593. [Google Scholar] [CrossRef]
- Moon, H.G.; Jung, Y.; Shin, B.; Song, Y.G.; Kim, J.H.; Lee, T.; Lee, S.; Jun, S.C.; Kaner, R.B.; Kang, C.Y.; et al. On-Chip Chemiresistive Sensor Array for On-Road NOx Monitoring with Quantification. Adv. Sci. 2020, 7, 2002014. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Jeong, D.H.; Lee, H.Y.; Park, J.H.; Lee, S.K. Design and validation of fiber optic localized surface plasmon resonance sensor for thyroglobulin immunoassay with high sensitivity and rapid detection. Sci. Rep. 2021, 11, 15985. [Google Scholar] [CrossRef]
- Li, X.; An, Z.; Lu, Y.; Shan, J.; Xing, H.; Liu, G.; Shi, Z.; He, Y.; Chen, Q.; Han, R.P.; et al. Room Temperature VOCs Sensing with Termination-Modified Ti3C2Tx MXene for Wearable Exhaled Breath Monitoring. Adv. Mater. Technol. 2021. [Google Scholar] [CrossRef]
- Hollenstein, M.; Hipolito, C.; Lam, C.; Dietrich, D.; Perrin, D.M. A highly selective DNAzyme sensor for mercuric ions. Angew. Chem. 2008, 120, 4418–4422. [Google Scholar] [CrossRef]
- Newyork, O.; Frankfurt, P. Separation and Preconcentration of Trace Substances. I-Preconcentration for Inorganic Trace Analysis. Pure Appl. Chem. 2009, 51, 1195–1211. [Google Scholar]
- Kuo, C.; Chen, P.; Chen, H.; Lu, C.; Tian, W. Development of micromachined preconcentrators and gas chromatographic separation columns by an electroless gold plating technology. J. Micromech. Microeng. 2017, 27, 035012. [Google Scholar] [CrossRef]
- Lahlou, H.; Vilanova, X.; Correig, X. Gas phase micro-preconcentrators for benzene monitoring: A review. Sens. Actuators B Chem. 2013, 176, 198–210. [Google Scholar] [CrossRef]
- Zhan, C.; Akbar, M.; Hower, R.; Nuñovero, N.; Potkay, J.A.; Zellers, E.T. A micro passive preconcentrator for micro gas chromatography. Analyst 2020, 145, 7582–7594. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cuevas, A.; Lara-Ibeas, I.; Leprince, A.; Wolf, M.; Le Calvé, S. Easy-to-manufacture micro gas preconcentrator integrated in a portable GC for enhanced trace detection of BTEX. Sens. Actuators B Chem. 2020, 324, 128690. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Lim, S.H. Micro gas preconcentrator using metal organic framework embedded metal foam for detection of low-concentration volatile organic compounds. J. Hazard. Mater. 2020, 392, 122145. [Google Scholar] [CrossRef] [PubMed]
- Winter, W.; Day, C.; Prestage, J.; Hutter, T. Temporally resolved thermal desorption of volatile organics from nanoporous silica preconcentrator. Analyst 2021, 146, 109–117. [Google Scholar] [CrossRef]
- Zhu, H.; She, J.; Zhou, M.; Fan, X. Rapid and sensitive detection of formaldehyde using portable 2-dimensional gas chromatography equipped with photoionization detectors. Sens. Actuators B Chem. 2019, 283, 182–187. [Google Scholar] [CrossRef]
- McCartney, M.M.; Zrodnikov, Y.; Fung, A.G.; LeVasseur, M.K.; Pedersen, J.M.; Zamuruyev, K.O.; Aksenov, A.A.; Kenyon, N.J.; Davis, C.E. An easy to manufacture micro gas preconcentrator for chemical sensing applications. ACS Sens. 2017, 2, 1167–1174. [Google Scholar] [CrossRef]
- Fung, A.G.; Rajapakse, M.Y.; McCartney, M.M.; Falcon, A.K.; Fabia, F.M.; Kenyon, N.J.; Davis, C.E. Wearable environmental monitor to quantify personal ambient volatile organic compound exposures. ACS Sens. 2019, 4, 1358–1364. [Google Scholar] [CrossRef]
- Kuo, H.Y.; Cheng, W.R.; Wu, T.H.; Sheen, H.J.; Wang, C.C.; Lu, C.J. A MEMS μ-Preconcentrator Employing a Carbon Molecular Sieve Membrane for Highly Volatile Organic Compound Sampling. Chemosensors 2021, 9, 104. [Google Scholar] [CrossRef]
- Almazán, F.; Urbiztondo, M.; Serra-Crespo, P.; Seoane, B.; Gascon, J.; Santamaría, J.; Pina, M. Cu-BTC Functional Microdevices as Smart Tools for Capture and Preconcentration of Nerve Agents. ACS Appl. Mater. Interfaces 2020, 12, 42622–42633. [Google Scholar] [CrossRef]
- Siritham, C.; Thammakhet-Buranachai, C.; Thavarungkul, P.; Kanatharana, P. A preconcentrator-separator two-in-one online system for polycyclic aromatic hydrocarbons analysis. Talanta 2017, 167, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Bauder, T.; Do, T.; Suen, H.; Boss, C.; Kwon, P.; Yeom, J. A binder jet printed, stainless steel preconcentrator as an in-line injector of volatile organic compounds. Sensors 2019, 19, 2748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, B.; Belousov, A.; Malone, C.P.; Homer, M.L.; Gonzalez, M.; Simcic, J.; Kidd, R.D.; Madzunkov, S.; Darrach, M.R. MEMS Preconcentrator and Gas Chromatograph Chips for the Spacecraft Atmosphere Monitor. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–24 June 2021; pp. 58–61. [Google Scholar]
- Van de Kant, K.D.; van der Sande, L.J.; Jöbsis, Q.; van Schayck, O.C.; Dompeling, E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir. Res. 2012, 13, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Müller, J. Über die Ausscheidungsstätten des Acetons und die Bestimmung desselben in der Athemluft und den Hautausdünstungen des Menschen. Archiv. Exp. Pathol. Pharmakol. 1898, 40, 351–362. [Google Scholar] [CrossRef]
- Alkhouri, N.; Singh, T.; Alsabbagh, E.; Guirguis, J.; Chami, T.; Hanouneh, I.; Grove, D.; Lopez, R.; Dweik, R. Isoprene in the exhaled breath is a novel biomarker for advanced fibrosis in patients with chronic liver disease: A pilot study. Clin. Transl. Gastroenterol. 2015, 6, e112. [Google Scholar] [CrossRef]
- Hibbard, T.; Killard, A.J. Breath ammonia analysis: Clinical application and measurement. Crit. Rev. Anal. Chem. 2011, 41, 21–35. [Google Scholar] [CrossRef]
- Lee, J.; Lim, S.H. CNT foam-embedded micro gas preconcentrator for low-concentration ethane measurements. Sensors 2018, 18, 1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligor, M.; Ligor, T.; Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Denz, H.; Fiegl, M.; Hilbe, W.; Weiss, W.; et al. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin. Chem. Lab. Med. 2009, 47, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Gregis, G.; Sanchez, J.B.; Bezverkhyy, I.; Guy, W.; Berger, F.; Fierro, V.; Bellat, J.P.; Celzard, A. Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor. Sens. Actuators B Chem. 2018, 255, 391–400. [Google Scholar] [CrossRef]
- Han, B.; Wang, H.; Huang, H.; Liu, T.; Wu, G.; Wang, J. Micro-fabricated packed metal gas preconcentrator for enhanced monitoring of ultralow concentration of isoprene. J. Chromatogr. A 2018, 1572, 27–36. [Google Scholar] [CrossRef]
- Chappuis, T.H.; Ho, B.A.P.; Ceillier, M.; Ricoul, F.; Alessio, M.; Beche, J.F.; Corne, C.; Besson, G.; Vial, J.; Thiébaut, D.; et al. Miniaturization of breath sampling with silicon chip: Application to volatile tobacco markers tracking. J. Breath Res. 2018, 12, 046011. [Google Scholar] [CrossRef] [PubMed]
- Zampetti, E.; Papa, P.; Bearzotti, A.; Macagnano, A. Pocket Mercury-Vapour Detection System Employing a Preconcentrator Based on Au-TiO2 Nanomaterials. Sensors 2021, 21, 8255. [Google Scholar] [CrossRef]
- Zaidi, N.A.; Tahir, M.W.; Vellekoop, M.J.; Lang, W. Design of Novel Ceramic Preconcentrator and Integration in Gas Chromatographic System for Detection of Ethylene Gas from Ripening Bananas. Sensors 2018, 18, 2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, C.; Rowe, N.; Hutter, T. Nanoporous Silica Preconcentrator for Vapor-Phase DMNB, a Detection Taggant for Explosives. ACS Omega 2020, 5, 18073–18079. [Google Scholar] [CrossRef]
- Day, C.; Hutter, T. Improved Gas-Phase Infrared Analysis of Nitrobenzene using Nanoporous Silica Preconcentrator. In Optical Sensors; Optical Society of America: Washington, DC, USA, 2021; p. SM2C.5. [Google Scholar]
- Manousi, N.; Kabir, A.; Zachariadis, G.A. Recent advances in the extraction of triazine herbicides from water samples. J. Sep. Sci. 2021, 45, 113–133. [Google Scholar] [CrossRef]
- Rajendran, S.; Loh, S.H.; Ariffin, M.M.; Khalik, W.M.A.W.M. CO2-Effervescence in Liquid Phase Microextraction for the Determination of Micropollutants in Environmental Water: A Review. J. Anal. Chem. 2021, 76, 1371–1383. [Google Scholar] [CrossRef]
- Han, W.; Chen, X. A novel micro-nanofluidic preconcentrator with Koch fractal nanochannel surface. J. Dispers. Sci. Technol. 2020, 42, 1060–1072. [Google Scholar] [CrossRef]
- Liu, N.; Xu, J.; An, H.J.; Phan, D.T.; Hashimoto, M.; Lew, W.S. Direct spraying method for fabrication of paper-based microfluidic devices. J. Micromechanics Microeng. 2017, 27, 104001. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.J.; Deng, C.Z.; Chung, P.S.; Tian, W.C.; Sheen, H.J. A high sensitivity bead-based immunoassay with nanofluidic preconcentration for biomarker detection. Sens. Actuators B Chem. 2018, 272, 502–509. [Google Scholar] [CrossRef]
- Jessop, P.G.; Heldebrant, D.J.; Li, X.; Eckert, C.A.; Liotta, C.L. Reversible nonpolar-to-polar solvent. Nature 2005, 436, 1102. [Google Scholar] [CrossRef]
- Santos, L.B.; de Assis, R.d.S.; Silva, U.N.; Lemos, V.A. Switchable-hydrophilicity solvent-based liquid-phase microextraction in an on-line system: Cobalt determination in food and water samples. Talanta 2022, 238, 123038. [Google Scholar] [CrossRef] [PubMed]
- Hayati, M.; Ramezani, M.; Rezanejade Bardajee, G.; Momeni Isfahani, T. Application of robust syringe-to-syringe dispersive liquid-phase microextraction method for preconcentration and determination of mercury with the aid of an experimental design. Sep. Sci. Technol. 2021, 57, 274–283. [Google Scholar] [CrossRef]
- Niazi, A.; Azizi, A.; Ramezani, M. Simultaneous spectrophotometric determination of mercury and palladium with Thio-Michler’s Ketone using partial least squares regression and orthogonal signal correction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 1172–1177. [Google Scholar] [CrossRef]
- Miková, B.; Dvořák, M.; Ryšavá, L.; Malá, Z.; Gebauer, P.; Kubáň, P. At-line coupling of hollow fiber liquid-phase microextraction to capillary electrophoresis for trace determination of acidic drugs in complex samples. Talanta 2022, 238, 123068. [Google Scholar] [CrossRef] [PubMed]
Analyte | Detection Method | PC Factor a | Limit of Detection | Refs. | |
---|---|---|---|---|---|
without PC | with PC | ||||
ethylene | electrochemical ethylene gas sensor (Membrapor) | - | 25 ppm | 5 ppb | [37] |
mercury vapour | QCM sensor d | - | 48 ppb c | 0.6 ppb c | [36] |
gas-phase 2,3-dimethyl-2,3-dinitrobutane | GC–MS | 12 | - | 0.5 ppm | [38] |
nitrobenzene | gas-phase IR | - | - | - | [39] |
VOCs mixtures | GC-FID e | 2300 | - | ≥13.5 ppb c | [15] |
BTEX | GC-PID | - | 1–3 ppb | 0.057, 0.150, 0.368 ppb | [16] |
BTEX mixtures | GC-FID | 144 | 1 ppm | 10 ppb | [17] |
BTX f | GC-PID g | - | 1–3 ppb | 20 ppb | [18] |
formaldehyde | 2D GC-PID | - | 2 ppb | 0.23 ppb | [19] |
VOC mixtures | GC-FID | 13.7 | - | 22 ppb b | [20] |
ethanol, acetone, ethyl acetate, benzene | GC-FID | - | 200 ppb | 2.3, 2.0, 1.3, 0.4 ppb | [22] |
DMMP | GC-MS h | 171 | - | 520 ppb | [23] |
PAHs | UV–vis | - | - | 4.75–19 ppb c | [24] |
VOCs | GC-MS | 3000 | 3 ppm | 100 ppb | [26] |
ethane | GC-FID | 90.2 | 100 ppb | [31] | |
toluene, o-xylene, propanol, cyclohexane | SnO2-based gas sensor | - | 24, 5, 21, 112 ppb | [33] | |
isoprene | GC-FID | 352 | 1.98 ppb | 0.016 ppb | [34] |
Fluorescent-labeled protein | fluorescence microscope | 220 | - | - | [43] |
Prostate Specific Antigen (P3338, Sigma-Aldrich) | epifluorescence microscope | 10,000 | 1 g/cm3 | 50 pg/cm3 | [44] |
Co2+ | colorimetric | 41 | - | 0.8 g/dm3 | [46] |
Hg2+ | UV-Vis | 120 | 9 g/dm3 | 1.6 g/dm3 | [47,48] |
warfarin, ibuprofen, naproxen, ketoprofen, diclofenac | ESI-MS i | 29–97 | - | 0.2–3.4 g/dm3 | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolarczyk, A.; Jarosz, T. Micropreconcentrators: Recent Progress in Designs and Applications. Sensors 2022, 22, 1327. https://doi.org/10.3390/s22041327
Stolarczyk A, Jarosz T. Micropreconcentrators: Recent Progress in Designs and Applications. Sensors. 2022; 22(4):1327. https://doi.org/10.3390/s22041327
Chicago/Turabian StyleStolarczyk, Agnieszka, and Tomasz Jarosz. 2022. "Micropreconcentrators: Recent Progress in Designs and Applications" Sensors 22, no. 4: 1327. https://doi.org/10.3390/s22041327