Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (599)

Search Parameters:
Keywords = preconcentrator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1310 KiB  
Article
Enhancing Energy Efficiency of Electric Grade Isopropyl Alcohol Production Process by Using Noble Thermally Coupled Distillation Technology
by Neha Agarwal, Nguyen Nhu Nga, Le Cao Nhien, Raisa Aulia Hanifah, Minkyu Kim and Moonyong Lee
Energies 2025, 18(15), 4159; https://doi.org/10.3390/en18154159 - 5 Aug 2025
Abstract
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent [...] Read more.
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent feed that consists of IPA and water, along with other impurities. Modeling and energy optimization were performed for a conventional distillation train as a base case by using the rigorous process simulator Aspen Plus V12.1. To improve energy efficiency, various options for intensifying distillation were examined. The side-stream preconcentration column was subsequently replaced by a dividing wall column (DWC) with two side streams, i.e., a Kaibel column, reducing the total energy consumption of corresponding distillation columns by 9.1% compared to the base case. Further strengthening was achieved by combining two columns in the preconcentration process into a single Kaibel column, resulting in a 22.8% reduction in reboiler duty compared to the base case. Optimization using the response surface methodology identified key operating parameters, such as side-draw positions and stage design, which significantly influence both energy efficiency and separation quality. The intensified Kaibel setup offers significant energy efficiencies and simplified column design, suggesting enormous potential for process intensification in energy-intensive distillation processes at the industrial level, including the IPA purification process. Full article
Show Figures

Figure 1

20 pages, 6964 KiB  
Article
Mineralogical Analysis of Factors Affecting the Grade of High-Gradient Magnetic Separation Concentrates and Experimental Study on TiO2 Enrichment Using ARC
by Yifei Liu, Zhenqiang Liu, Yuhua Wang, Yuxin Zhang and Dongfang Lu
Minerals 2025, 15(8), 799; https://doi.org/10.3390/min15080799 - 30 Jul 2025
Viewed by 209
Abstract
High-gradient magnetic separation is a key step in the pre-concentration of ilmenite before flotation, particularly in the gravity separation process. However, as the amount of weakly magnetic gangue minerals increases, the grade of the coarse concentrate from high-gradient magnetic separation decreases. This paper [...] Read more.
High-gradient magnetic separation is a key step in the pre-concentration of ilmenite before flotation, particularly in the gravity separation process. However, as the amount of weakly magnetic gangue minerals increases, the grade of the coarse concentrate from high-gradient magnetic separation decreases. This paper investigates the mineralogical factors affecting the enrichment efficiency of high-gradient magnetic separation. Additionally, a newly developed stirred fluidized bed device, an agitated reflux classifier (ARC), was successfully applied to remove weakly magnetic gangue minerals that are difficult to separate by high-gradient magnetic separation (HGMS). For low-grade ilmenite with a feed grade of 3.97%, a combined process of magnetic separation and gravity separation was employed, achieving a concentrate with a grade of 16.50% and a recovery rate of 54.11%. This concentrate meets the requirements for flotation feed. This study provides a new approach for the beneficiation of low-grade ilmenite. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

11 pages, 1012 KiB  
Article
Quantification of Ultra-Trace Lead in Water After Preconcentration on Nano-Titanium Oxide Using the Slurry Sampling ETAAS Method
by Lucia Nemček and Ingrid Hagarová
Toxics 2025, 13(8), 610; https://doi.org/10.3390/toxics13080610 - 22 Jul 2025
Viewed by 276
Abstract
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental [...] Read more.
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental parameters affecting the DMSPE process, including pH, ionic strength, sorbent dosage, and preconcentration factor, were optimized. The optimized method demonstrated a preconcentration factor of 20, a relative standard deviation below 4.5%, and a detection limit of 0.11 µg/L. The procedure was validated using certified reference material (CRM TM-25.5) and applied to real water samples from a lake, a residential well, and industrial wastewater. Satisfactory recoveries (89–103%) confirmed the reliability of the method for the determination of low lead concentrations in complex matrices. Full article
Show Figures

Graphical abstract

13 pages, 1243 KiB  
Article
A Tandem MS Platform for Simultaneous Determination of Urinary Malondialdehyde and Diphenyl Phosphate
by Gabriela Chango, Diego García-Gómez, Carmelo García Pinto, Encarnación Rodríguez-Gonzalo and José Luis Pérez Pavón
Int. J. Environ. Res. Public Health 2025, 22(7), 1130; https://doi.org/10.3390/ijerph22071130 - 17 Jul 2025
Viewed by 271
Abstract
This study presents an advanced analytical method for the simultaneous quantification of malondialdehyde (MDA), a biomarker of oxidative stress, and diphenyl phosphate (DPhP), a metabolite of the organophosphate flame retardant triphenyl phosphate (TPhP), in human urine. The method integrates hydrophilic interaction liquid chromatography [...] Read more.
This study presents an advanced analytical method for the simultaneous quantification of malondialdehyde (MDA), a biomarker of oxidative stress, and diphenyl phosphate (DPhP), a metabolite of the organophosphate flame retardant triphenyl phosphate (TPhP), in human urine. The method integrates hydrophilic interaction liquid chromatography (HILIC), a type of liquid chromatography suitable for polar compounds, for MDA separation, and an online restricted access material (RAM), a preconcentration column, for DPhP isolation, achieving high specificity and sensitivity. Validation with certified urine samples confirmed its robustness across diverse analyte concentrations and complex biological matrices. The optimized clean-up steps effectively minimized carryover, allowing for high-throughput analysis. Application to 72 urine samples revealed a significant positive correlation (ρ = 0.702, p-value = 1.9 × 10−7) between MDA and DPhP levels, supporting a potential link between oxidative stress and TPhP exposure. The subset analysis demonstrated a statistically significant moderate positive correlation in women (ρ = 0.622, p-value = 0.020), although this result should be interpreted with caution because of the limited sample size (N = 14). This method provides a powerful tool for biomonitoring oxidative stress and environmental contaminants, offering valuable insights into exposure-related health risks. Full article
(This article belongs to the Special Issue Research on Environmental Exposure, Pollution, and Epidemiology)
Show Figures

Graphical abstract

23 pages, 1137 KiB  
Review
Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies
by Sara Sofia Pinheiro, Francisco Campos, Maria João Cabrita and Marco Gomes da Silva
Molecules 2025, 30(13), 2825; https://doi.org/10.3390/molecules30132825 - 30 Jun 2025
Viewed by 427
Abstract
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling [...] Read more.
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling wines, understanding the biochemical mechanisms related to aroma development has become increasingly relevant. This review provides a comprehensive overview of the secondary fermentation process, with particular emphasis on yeast selection, types of closure, and the impact of aging on the volatile composition. Special attention is also given to the analytical strategies employed for the identification and quantification of target compounds in sparkling wine matrices. Due to the presence of volatile compounds at trace levels, effective extraction and pre-concentration techniques are essential. Extraction methods such as solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and thin-film SPME (TF-SPME) are discussed, as well as chromatographic techniques, such as gas chromatography (GC) and liquid chromatography (LC). Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Figure 1

19 pages, 2435 KiB  
Article
From Waste to Product: New Circularity by Recovering Polypropylene from Mixed Commercial Waste
by Maximilian Julius Enengel, Julia Roitner, Lisa Kandlbauer, Tatjana Lasch, Markus Lehner and Renato Sarc
Recycling 2025, 10(4), 128; https://doi.org/10.3390/recycling10040128 - 27 Jun 2025
Viewed by 339
Abstract
To meet the EU’s ambitious recycling targets, it is crucial to expand mechanical recycling to include currently underutilized waste streams, such as mixed commercial waste (MCW), which today achieves a recycling rate of only 3–5%. This study addresses the challenge of recovering polypropylene [...] Read more.
To meet the EU’s ambitious recycling targets, it is crucial to expand mechanical recycling to include currently underutilized waste streams, such as mixed commercial waste (MCW), which today achieves a recycling rate of only 3–5%. This study addresses the challenge of recovering polypropylene (PP) from MCW and demonstrates a viable process to do so. The goal was to develop and test industrial-scale process concepts to extract PP and transform it into high-quality recyclate. Two process concepts were developed and tested at industrial scale to extract PP as a pre-concentrate. The recovered material was further sorted, shredded, washed, and granulated, ultimately reaching End-of-Waste status. Material analysis confirmed that the resulting PP granulate meets all relevant quality standards. A total of 456.8 kg of this recyclate was processed into market-ready products. To the best of the authors’ knowledge, this is the first demonstration of plastic products made entirely from MCW. By covering the full value chain—from waste to final product—this study highlights a viable and scalable approach for integrating complex waste streams into high-quality material cycles, thereby contributing to circular economy strategies. Full article
Show Figures

Figure 1

14 pages, 992 KiB  
Article
On-Line Preconcentration of Selected Kynurenine Pathway Metabolites and Amino Acids in Urine via Pressure-Assisted Electrokinetic Injection in a Mixed Micelle System
by Michał Pieckowski, Ilona Olędzka, Tomasz Bączek and Piotr Kowalski
Int. J. Mol. Sci. 2025, 26(13), 6125; https://doi.org/10.3390/ijms26136125 - 26 Jun 2025
Viewed by 273
Abstract
To enhance the signal intensity of kynurenines, which are present at trace concentrations in biological fluids, a novel analytical approach was developed, combining pressure-assisted electrokinetic injection (PAEKI) with a mixed micelle system based on sodium dodecyl sulfate (SDS) and Brij-35. The method was [...] Read more.
To enhance the signal intensity of kynurenines, which are present at trace concentrations in biological fluids, a novel analytical approach was developed, combining pressure-assisted electrokinetic injection (PAEKI) with a mixed micelle system based on sodium dodecyl sulfate (SDS) and Brij-35. The method was applied to key compounds of the kynurenine pathway, including L-tryptophan, kynurenine, 3-hydroxykynurenine, and kynurenic acid, as well as to the aromatic amino acids (AAs) L-tyrosine and L-phenylalanine. PAEKI was performed by electrokinetic injection for 2 min at −6.5 kV (reversed polarity) and 0.5 psi (3.45 kPa) using a fused silica capillary (50 cm in length, 50 µm inner diameter). The background electrolyte (BGE) consisted of 20 mM Na2B4O7 (pH 9.2), 2 mM Brij-35, 20 mM SDS, and 20% (v/v) methanol (MeOH). The limit of detection (LOD) using a diode array detector (DAD) was 1.2 ng/mL for kynurenine and ranged from 1.5 to 3.0 ng/mL for the other analytes. The application of PAEKI in conjunction with micellar electrokinetic capillary chromatography (MEKC) and solid-phase extraction (SPE) of artificial urine samples resulted in a 146-fold increase in signal intensity for kynurenines compared to that observed using the hydrodynamic injection (HDI) mode. The developed method demonstrates strong potential for determining kynurenine pathway metabolites in complex biological matrices. Full article
Show Figures

Figure 1

24 pages, 4061 KiB  
Article
Snow Cover as a Medium for Polycyclic Aromatic Hydrocarbons (PAHs) Deposition and a Measure of Atmospheric Pollution in Carpathian Village–Study Case of Zawoja, Poland
by Kinga Wencel, Witold Żukowski, Gabriela Berkowicz-Płatek and Igor Łabaj
Appl. Sci. 2025, 15(12), 6497; https://doi.org/10.3390/app15126497 - 9 Jun 2025
Viewed by 331
Abstract
Snow cover constitutes a medium that can be used as a way of assessing air pollution. The chemical composition of snow layers from the same snowfall event reflects the composition of atmospheric aerosols and dry precipitates, depending on the properties of the adsorbing [...] Read more.
Snow cover constitutes a medium that can be used as a way of assessing air pollution. The chemical composition of snow layers from the same snowfall event reflects the composition of atmospheric aerosols and dry precipitates, depending on the properties of the adsorbing surface and prevailing weather conditions. Analyzing snow samples provides reliable insights into anthropogenic pollution accumulated in soil and groundwater of different land use type areas, as well as allows the evaluation of the degree and sources of environmental pollution. The aim of the research was to determine the distribution of polycyclic aromatic hydrocarbons in various sites of Zawoja village and identify their possible sources and factors influencing their differentiation. A total of 15 surface snow samples of the same thickness and snowfall origin were collected from different locations in the village in the winter of 2024. The samples were pre-concentrated by solid phase extraction and analyzed by gas chromatography—tandem mass spectrometry. The sampling set was invented, and the extraction procedure and analysis parameters were optimized. A spatial distribution map of PAHs was created. The contamination of ∑16PAHs varied from 710 to 2310 ng/L in melted snow with the highest concentrations detected in Zawoja Markowa by the border of the Babia Góra National Park, which is interpreted mainly as a result of the topographical setting. Medium molecular weight PAHs were the dominant fraction, which, combined with specific PAH ratios, indicate the combustion of biomass and coal as the main source of contamination. Full article
(This article belongs to the Special Issue Air Pollution and Its Impact on the Atmospheric Environment)
Show Figures

Figure 1

14 pages, 1050 KiB  
Article
Green On-Site Diclofenac Extraction from Wastewater Matrices Using a 3D-Printed Device Followed by PTV-GC-MS Determination
by César Castro-García, Edwin Palacio, Rogelio Rodríguez-Maese, Luz O. Leal and Laura Ferrer
Chemosensors 2025, 13(6), 212; https://doi.org/10.3390/chemosensors13060212 - 9 Jun 2025
Viewed by 946
Abstract
A 3D-printed device was designed and printed by a stereolithographic technique (SLA) and coated with a highly selective solid phase extraction resin for on-site diclofenac extraction from wastewater, avoiding the transport and treatment of large volumes of samples in the laboratory. The best [...] Read more.
A 3D-printed device was designed and printed by a stereolithographic technique (SLA) and coated with a highly selective solid phase extraction resin for on-site diclofenac extraction from wastewater, avoiding the transport and treatment of large volumes of samples in the laboratory. The best results in terms of chemical and mechanical resistance were obtained with Rigid 10K resin. The “stick-and-cure” impregnation technique was used to coat the 3D-printed device with Oasis® HLB resin. The coated 3D-printed device can be reused up to eight times without losing extraction efficiency. The eluent and derivatization reagent volumes were optimized by a multivariate design. The proposed method allowed for the extraction and determination of diclofenac by PTV-GC-MS, achieving methodological detection and quantification limits of 0.019 and 0.055 μg L−1, respectively, with a preconcentration factor of 46. The analysis time was 23 min per sample. To validate the proposed methodology, addition/recovery tests were carried out in different wastewater samples, obtaining recoveries above 90%. The methodology was applied at the wastewater treatment plant (WWTP) of Calvià (Mallorca, Spain), finding diclofenac in concentrations of 15.39 ± 0.07 μg L−1 at the input of the primary decantation process, 4.48 ± 0.03 μg L−1 at the output of the secondary decantation, and 0.099 ± 0.001 μg L−1 at the output of the tertiary treatment, demonstrating the feasibility of the on-site extraction method in monitoring diclofenac over a wide concentration range. Finally, a greenness index of 0.58 for the proposed on-site sample preparation was achieved according to the AGREEprep metrics, making it an eco-friendly alternative for diclofenac monitoring. Full article
Show Figures

Graphical abstract

27 pages, 5226 KiB  
Article
A Novel Pulsation Reflux Classifier Used for Enhanced Preconcentration Efficiency of Antimony Oxide Ore
by Dongfang Lu, Yuxin Zhang, Zhenqiang Liu, Xiayu Zheng, Yuhua Wang and Yifei Liu
Minerals 2025, 15(6), 605; https://doi.org/10.3390/min15060605 - 4 Jun 2025
Cited by 1 | Viewed by 486
Abstract
This study developed a novel pulsation-fluidized bed system, and the device was integrated into a reflux classifier to enhance the preconcentration of antimony oxide ore. The diaphragm-based pulsation device converts a stable upward water flow into a vertically alternating pulsation flow. By precisely [...] Read more.
This study developed a novel pulsation-fluidized bed system, and the device was integrated into a reflux classifier to enhance the preconcentration of antimony oxide ore. The diaphragm-based pulsation device converts a stable upward water flow into a vertically alternating pulsation flow. By precisely controlling the pulsation parameters and optimizing operational conditions, the density-based stratification of particles can be significantly enhanced, thereby improving bed layering and effectively reducing entrainment. An antimony oxide ore from flotation tailings with an Sb grade of 0.8% was used as the feed material to evaluate the performance of the pulsation reflux classifier (PRC). Under optimized conditions, the PRC produced a concentrate with an Sb grade of 5.48% and a recovery of 81.68%, corresponding to a high separation efficiency of 70.97%. The response surface statistical model revealed that the interaction between the fluidization rate and pulsation frequency significantly enhanced the Sb grade of the concentrate, while pulsation stroke was identified as the key factor influencing separation efficiency. Furthermore, the variation in bed profile parameters with changing pulsation characteristics elucidates the interplay between particle suspension, stratification, and fluid disturbances. This study demonstrates that pulsation fluidization significantly enhances the separation performance of the reflux classifier, offering a new approach for the efficient preconcentration of complex fine-grained minerals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 3216 KiB  
Article
Multi-Template Molecularly Imprinted Polymers Coupled with a Solid-Phase Extraction System in the Selective Determination of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Environmental Water Samples
by David Aurelio-Soria, Giaan A. Alvarez-Romero, Maria E. Paez-Hernandez, I. Perez-Silva, Miriam Franco-Guzman, Gabriela Islas and Israel S. Ibarra
Separations 2025, 12(6), 140; https://doi.org/10.3390/separations12060140 - 25 May 2025
Viewed by 460
Abstract
A simple, fast, and low-cost pre-concentration methodology based on the application of multi-template molecularly imprinted polymers (mt-MIP) in a solid-phase extraction system coupled with capillary electrophoresis was developed for the determination of naproxen, diclofenac, and ibuprofen in environmental water samples. A systematic study [...] Read more.
A simple, fast, and low-cost pre-concentration methodology based on the application of multi-template molecularly imprinted polymers (mt-MIP) in a solid-phase extraction system coupled with capillary electrophoresis was developed for the determination of naproxen, diclofenac, and ibuprofen in environmental water samples. A systematic study of the mt-MIP composition was conducted using a second-order simplex lattice experiment design (fraction of the functional monomer methacrylic acid (MAA), the total moles of functional monomers, and the total moles of the cross-linker agent). The optimal mt-MIP, consisting of 0.025 mmol of each analyte, with 2.40 mmol of methacrylic acid (MAA) and 3.60 mmol of 4-vinylpyridine (4VP) and 23.00 mmol of the cross-linker agent (EGDMA), was coupled to an SPE system under the optimal conditions: pH = 3.5; 20 mg of mt-MIP; and an eluent (MeOH/NaOH [0.001]). This methodology provides limits of detection from 3.00 to 12.00 µg L−1 for the studied NSAIDs. The methodology’s precision was evaluated in terms of inter- and intra-day repeatability, with %RSD < 10% in all cases. Finally, the proposed method can be successfully applied in the analysis of environmental water samples (bottle, tap, cistern, well, and river water samples), which demonstrates the developed method’s robustness. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

20 pages, 1691 KiB  
Article
MEMS-Based Micropacked Thermal Desorption GC/PID for In-Field Volatile Organic Compound Profiling from Hot Mix Asphalt
by Stefano Dugheri, Giovanni Cappelli, Riccardo Gori, Stefano Zampolli, Niccolò Fanfani, Ettore Guerriero, Donato Squillaci, Ilaria Rapi, Lorenzo Venturini, Alexander Pittella, Chiara Vita, Fabio Cioni, Domenico Cipriano, Mieczyslaw Sajewicz, Ivan Elmi, Luca Masini, Simone De Sio, Antonio Baldassarre, Veronica Traversini and Nicola Mucci
Separations 2025, 12(5), 133; https://doi.org/10.3390/separations12050133 - 19 May 2025
Viewed by 2391
Abstract
Background: In response to the growing demand for the real-time, in-field characterization of odorous anthropogenic emissions, this study develops and uses a MEMS-based micropacked thermal desorption Gas Chromatography system coupled with a PhotoIonization Detector (GC/PID) for Hot Mix Asphalt (HMA) plant emissions. Methods: [...] Read more.
Background: In response to the growing demand for the real-time, in-field characterization of odorous anthropogenic emissions, this study develops and uses a MEMS-based micropacked thermal desorption Gas Chromatography system coupled with a PhotoIonization Detector (GC/PID) for Hot Mix Asphalt (HMA) plant emissions. Methods: The innovative portable device, Pyxis GC, enables the high-sensitivity profiling of Volatile Organic Compounds (VOCs), particularly aldehydes and ketones, with sub-ppb detection limits using ambient air as the carrier gas. A comprehensive experimental design optimized the preconcentration parameters, resulting in an efficient, green analytical method evaluated via the Green Analytical Procedure Index (GAPI). Sorbent comparison showed quinoxaline-bridged cavitands outperform the conventional materials. Results and conclusions: The method was successfully deployed on site for source-specific sampling at an HMA plant, generating robust emission fingerprints. To assess environmental impact, a Generalized Additive Model (GAM) was developed, incorporating the process temperature and Sum of Odour Activity Values (SOAV) to predict odour concentrations. The model revealed a significant non-linear influence of temperature on emissions and validated its predictive capability despite the limited sample size. This integrated analytical–statistical approach demonstrates the utility of MEMS technology for real-time air quality assessment and odour dispersion modelling, offering a powerful tool for environmental monitoring and regulatory compliance. Full article
(This article belongs to the Special Issue Separation Techniques on a Miniaturized Scale)
Show Figures

Graphical abstract

20 pages, 2766 KiB  
Article
Liquid Chromatography-Tandem Mass Spectrometry Method Development and Validation for the Determination of a New Mitochondrial Antioxidant in Mouse Liver and Cerebellum, Employing Advanced Chemometrics
by Anthi Panara, Dimitra Biliraki, Markus Nussbaumer, Michaela D. Filiou, Nikolaos S. Thomaidis, Ioannis K. Kostakis and Evagelos Gikas
Molecules 2025, 30(9), 1900; https://doi.org/10.3390/molecules30091900 - 24 Apr 2025
Viewed by 623
Abstract
Anxiety and stress-related disorders affect all ages in all geographical areas. As high anxiety and chronic stress result in the modulation of mitochondrial pathways, intensive research is being carried out on pharmaceutical interventions that alleviate pertinent symptomatology. Therefore, innovative approaches being currently pursued [...] Read more.
Anxiety and stress-related disorders affect all ages in all geographical areas. As high anxiety and chronic stress result in the modulation of mitochondrial pathways, intensive research is being carried out on pharmaceutical interventions that alleviate pertinent symptomatology. Therefore, innovative approaches being currently pursued include substances that target mitochondria bearing an antioxidant moiety. In this study, a newly synthesized antioxidant consisting of triphenylphosphine (TPP), a six-carbon alkyl spacer, and hydroxytyrosol (HT) was administered orally to mice via drinking water. Cerebellum and liver samples were collected and analyzed using ultra-high-performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-MS/MS) to assess the levels of TPP-HT in the respective tissues to evaluate in vivo administration efficacy. Sample preparation included extraction with appropriate solvents and a preconcentration step to achieve the required sensitivity. Both methods were validated in terms of selectivity, linearity, accuracy, and limits of detection and quantification. Additionally, a workflow for evaluating and statistically summarizing multiple fortified calibration curves was devised. TPP-HT penetrates the blood–brain barrier (BBB), with a level of 11.5 ng g−1 quantified in the cerebellum, whereas a level of 4.8 ng g−1 was detected in the liver, highlighting the plausibility of orally administering TPP-HT to achieve mitochondrial targeting. Full article
Show Figures

Graphical abstract

18 pages, 3813 KiB  
Article
Optimizing Dense Medium Separation Pre-Concentration by Comparative Evaluation of High-Pressure Grinding Rolls vs. Conventional Crushing
by Tebogo Mokgomola, Getrude Marape and Rabelani Mariba
Minerals 2025, 15(4), 422; https://doi.org/10.3390/min15040422 - 18 Apr 2025
Viewed by 524
Abstract
This paper investigated pre-concentration of a low-grade Upper Group 2 (UG2) ore to assess the possibility of rejecting waste at a typical discard Platinum Group Metals (PGMs) grade of <0.4 g/t at mass rejection to floats greater than 16% by comparing feed prepared [...] Read more.
This paper investigated pre-concentration of a low-grade Upper Group 2 (UG2) ore to assess the possibility of rejecting waste at a typical discard Platinum Group Metals (PGMs) grade of <0.4 g/t at mass rejection to floats greater than 16% by comparing feed prepared by High pressure grinding rolls (HPGR) to Conventional crushers (Cone crushers). Heavy Liquid Separation (HLS) was conducted as a benchmark test to Dense Medium Separation (DMS) to determine the expected grade, recovery, and mass yield for various size classes and crusher. The comparison between fine size classes −9.5 + 1.18 mm and −6.7 + 1.18 mm crushed by HPGR and conventional crushing showed that, under the conditions tested, the conventional crusher outperformed HPGR in terms of high sinks grade and a higher percentage of material exposed to pre-concentration. Looking at coarser size fractions (+12 mm), HLS results showed that under the conditions tested, size fraction −20 + 1.18 mm crushed by a conventional crusher at an optimum density of 3.4 g/cm3 is an optimized size fraction to run the DMS plant. The pilot DMS cyclone testwork showed that 61.1% by mass could be rejected to the floats stream based on Run of Mine (ROM) feed at 1.12% Cr2O3 and 0.42 g/t Total PGMs + Au grade, a typical discardable PGMs grade. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 1268 KiB  
Article
Strategies for Signal Amplification of Thyroid Hormones via Electromigration Techniques Coupled with UV Detection and Laser-Induced Fluorescence
by Michał Pieckowski, Ilona Olędzka, Tomasz Bączek and Piotr Kowalski
Int. J. Mol. Sci. 2025, 26(8), 3708; https://doi.org/10.3390/ijms26083708 - 14 Apr 2025
Cited by 1 | Viewed by 422
Abstract
Several strategies, including UV detection with a diode array detector (DAD), laser-induced fluorescence (LIF), derivatization reactions, the use of micelles in the separation buffer, as well as online preconcentration techniques based on pressure-assisted electrokinetic injection (PAEKI), and offline preconcentration using solid-phase extraction (SPE) [...] Read more.
Several strategies, including UV detection with a diode array detector (DAD), laser-induced fluorescence (LIF), derivatization reactions, the use of micelles in the separation buffer, as well as online preconcentration techniques based on pressure-assisted electrokinetic injection (PAEKI), and offline preconcentration using solid-phase extraction (SPE) columns containing quaternary amine groups with a chloride counterion, were investigated for the simultaneous separation and signal amplification of free thyroid hormones (THs) in biological samples. Moreover, a sensitive method for the quantification of THs in selected biological samples using micellar electrokinetic capillary chromatography with LIF detection (MEKC-LIF) was developed. The THs present in biological samples (L-tyrosine, T2, T3, rT3, T4, and DIT) were successfully separated in less than 10 min. The analytes were separated following a derivatization procedure with fluorescein isothiocyanate isomer I (FITC). A background electrolyte (BGE) composed of 20 mM sodium tetraborate (Na2B4O7) and 20 mM sodium dodecyl sulphate (SDS) was employed. Key validation parameters such as linearity, precision, limits of detection (LOD), and limits of quantification (LOQ) were determined. The use of PAEKI for the electrophoretic determination of free THs demonstrates significant potential for monitoring these hormones in real urine samples due to its high sensitivity and efficiency. Full article
Show Figures

Graphical abstract

Back to TopTop