# Dynamic Constitutive Model Analysis of High Parameter Steel Fiber Reinforced Concrete

## Abstract

**:**

## 1. Introduction

## 2. Dynamic Constitutive Model Analysis of High Parameter Steel Fiber Reinforced Concrete

#### 2.1. Dynamic Constitutive Model Built by Static Force

#### 2.2. Building of HJC Constitutive Model

#### 2.3. Modified HJC Constitutive Model for High Parameter Steel Fiber Reinforced Concrete

## 3. Experimental Analysis

#### 3.1. Constitutive Model Unit Test

#### 3.2. Response of Simple-Supported Beam Under Impact Load

#### 3.3. Numerical Simulation of SHPB Test Process

^{3}, the elastic modulus is $E=210$ Gpa, and the Poisson ratio is $v=0.3$. The strength grade of high parameter steel fiber reinforced concrete specimen is CF100, the steel fiber content is 4%, and the ratio of length to diameter of steel fiber is 50.

## 4. Conclusions

## Funding

## Conflicts of Interest

## References

- Anastassova, N.O.; Mavrova, A.T.; Yancheva, D.Y.; Kondeva-Burdina, M.S.; Tzankova, V.I.; Stoyanov, S.S.; Shivachev, B.L.; Nikolova, R.P. Hepatotoxicity and antioxidant activity of some new N,N’-disubstituted benzimidazole-2-thiones, radical scavenging mechanism and structureactivity relationship. Arabian J. Chem.
**2018**, 11, 353–369. [Google Scholar] [CrossRef] - Asadi, H.; Bodaghi, M.; Shakeri, M.; Aghdam, M.M. Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation. Acta Mech.
**2015**, 226, 437–455. [Google Scholar] [CrossRef] - Calabrese, A.; Serino, G.; Strano, S.; Terzo, M. Experimental investigation of a low-cost elastomeric anti-seismic device using recycled rubber. Meccanica
**2015**, 50, 2201–2218. [Google Scholar] [CrossRef] - Chagnon, G.; Rebouah, M.; Favier, D. Hyperelastic energy densities for soft biological tissues: A review. J. Elast.
**2015**, 120, 129–160. [Google Scholar] [CrossRef] - Danby, A.M.; Lundin, M.D.; Subramaniam, B. Valorization of grass lignins: Swift and selective recovery of pendant aromatic groups with ozone. ACS Sustain. Chem. Eng.
**2018**, 6, 71–76. [Google Scholar] [CrossRef] - Daniel, I.M.; Cho, J.M.; Werner, B.T.; Fenner, J.S. Characterization and constitutive modeling of composite materials under static and dynamic loading. AIAA J.
**2015**, 49, 1658–1664. [Google Scholar] [CrossRef] - Gao, D.; Chen, G.; Hadi, M.N.S.; Wang, W.; Li, C. Bond-slip behavior and constitutive model between rebar and steel fibre reinforced concrete. Jianzhu Jiegou Xuebao/J. Build. Struct.
**2015**, 36, 132–139. [Google Scholar] - Ge, S.; Liu, Z.; Furuta, Y.; Peng, W. Characteristics of activated carbon remove sulfur particles against smog. Saudi J. Biol. Sci.
**2017**, 24, 1370–1374. [Google Scholar] [CrossRef] [PubMed] - Gholampour, A.; Ozbakkaloglu, T. Finite element analysis of constitutive behavior of FRP-Confined steel fiber reinforced concrete. Key Eng. Mater.
**2017**, 737, 511–516. [Google Scholar] [CrossRef] - Hao, X.; Liu, Y.D. Strength of concrete filled steel tube under fatigue load prediction model simulation analysis. Comput. Simul.
**2017**, 34, 361–364. [Google Scholar] - Ju, H.; Kang, S.K.; Lee, D.H.; Hwang, J.-H.; Choi, S.-H.; Oh, Y.-H. Torsional responses of steel fiber-reinforced concrete members. Compos. Struct.
**2015**, 129, 143–156. [Google Scholar] [CrossRef] - Kong, X.; Yong, Q.U.; Zou, D.; Zhang, Y.; Yu, X. Numerical analysis of seismic performance of steel fiber reinforced concrete face rockfill dam. J. Hydraul. Eng.
**2016**, 47, 841–849. [Google Scholar] - Li, T.; Fan, D.; Lu, L.; E, J.C.; Zhao, F.; Qi, M.L.; Sun, T.; Fezzaa, K.; Xiao, X.H.; Zhou, X.M.; et al. Dynamic fracture of C/SiC composites under high strain-rate loading: Microstructures and mechanisms. Carbon
**2015**, 91, 468–478. [Google Scholar] [CrossRef] - Lu, X.; Li, Y.; Guan, H.; Yang, M. Progressive collapse analysis of a typical super-tall reinforced concrete frame-core tube building exposed to extreme fires. Fire Technol.
**2016**, 53, 1–27. [Google Scholar] [CrossRef] - Martinez Meza, R.G.; Certucha Barragan, M.T.; Zavala Rivera, P. Removal of iron and manganese from a contaminated effluent using a chelating resin. Revista Internacional De Contaminacion Ambiental
**2017**, 33, 55–63. [Google Scholar] - Mehrpay, S.; Jalali, R.S. Strain rate effect in the mesoscopic modeling of high-strength steel fiber-reinforced concrete. Sci. Iran.
**2017**, 24, 512–525. [Google Scholar] [CrossRef] - Mobasher, B.; Yao, Y.; Soranakom, C. Analytical solutions for flexural design of hybrid steel fiber reinforced concrete beams. Eng. Struct.
**2015**, 100, 164–177. [Google Scholar] [CrossRef] - Moreno-Fernandez, S.; Garces-Rimon, M.; Gonzalez, C.; Uranga, J.A.; López-Miranda, V.; Vera, G.; Miguel, M. Pepsin egg white hydrolysate ameliorates metabolic syndrome in high-fat/high-dextrose fed rats. Food Funct.
**2018**, 9, 78–86. [Google Scholar] [CrossRef] - Orif, M.; El-Maradny, A. Bio-accumulation of polycyclic aromatic hydrocarbons in the grey mangrove (avicennia marina) along Arabian gulf, Saudi coast. Open Chem.
**2018**, 16, 340–348. [Google Scholar] [CrossRef] - Othman, H.; Marzouk, H. Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads. Int. J. Impact Eng.
**2018**, 114, 20–31. [Google Scholar] [CrossRef] - Peng, W.; Li, D.; Zhang, M.; Ge, S.; Mo, B.; Li, S.; Ohkoshi, M. Characteristics of antibacterial molecular activities in poplar wood extractives. Saudi J. Biol. Sci.
**2017**, 24, 399–404. [Google Scholar] [CrossRef] [PubMed] - Pivoto, D.; Waquil, P.D.; Talamini, E.; Pauletto, C.; Finocchio, S.; Francisco, V.; Corte, D.; de Vargas, M.G. Scientific development of smart farming technologies and their application in Brazil. Inf. Process. Agric.
**2018**, 5, 21–32. [Google Scholar] [CrossRef] - Prem, P.R.; Bharatkumar, B.H.; Murthy, A.R. Influence of curing regime and steel fibres on the mechanical properties of UHPC. Mag. Concr. Res.
**2015**, 67, 1–15. [Google Scholar] [CrossRef] - Spacone, E.; Filippou, F.C.; Taucer, F.F. Fibre beam–column model for non-linear analysis of r/c frames: Part I, formulation. Earthq. Eng. Struct. Dyn.
**2015**, 25, 711–725. [Google Scholar] [CrossRef] - Sucharda, O.; Konecny, P.; Kubosek, J.; Ponikiewski, T.; Done, P. Finite element modelling and identification of the material properties of fibre concrete. Procedia Eng.
**2015**, 109, 234–239. [Google Scholar] [CrossRef] - Tomczyk, L.; Szablewski, T.; Cegielska-Radziejewska, R.; Lewko, L.; Konieczny, P. An assessment of the influence of silver stabilized hydrogen peroxide on the eggshell condition. Emir. J. Food Agric.
**2018**, 30, 131–136. [Google Scholar] - Valoroso, N.; Marmo, F.; Sessa, S. A novel shell element for nonlinear pushover analysis of reinforced concrete shear walls. Bull. Earthq. Eng.
**2015**, 13, 2367–2388. [Google Scholar] [CrossRef] - Vu, V.D.; Sheikh, A.H.; Nguyen, G.D.; Shen, L. A kinematically enhanced constitutive model for elastic and inelastic analysis of unidirectional fibre reinforced composite materials. Int. J. Mech. Sci.
**2017**, 126, 171–185. [Google Scholar] [CrossRef] - Wang, J.; Tong, L.; Karihaloo, B.L. A bridging law and its application to the analysis of toughness of carbon nanotube-reinforced composites and pull-out of fibres grafted with nanotubes. Arch. Appl. Mech.
**2016**, 86, 361–373. [Google Scholar] [CrossRef] - Wani, S.A.; Najar, G.R.; Akhter, F. Characterization of available nutrients that influence pear productivity and quality in Jammu & Kashmir, India. J. Environ. Biol.
**2018**, 39, 37–41. [Google Scholar]

Fiber Content (%) | CF60 | CF80 | CF100 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 | |

$\omega $ | 4 | 5.01 | 6.28 | 9.16 | 3.82 | 4.93 | 6.31 | 9.06 | 4.57 | 5.04 | 6.17 | 9.23 |

$m$ | 4.3 | 3.58 | 2.31 | 1.79 | 4.44 | 3.66 | 2.28 | 1.89 | 4.63 | 3.55 | 2.42 | 1.73 |

Steel Fiber Content (%) | Mid-Span Deflection (mm) | ||
---|---|---|---|

HJC Model | Model of This Paper | ANN Model | |

0 | 0.025 | 0.025 | 0.026 |

1 | — | 0.022 | 0.024 |

2 | — | 0.018 | 0.021 |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Luo, D.
Dynamic Constitutive Model Analysis of High Parameter Steel Fiber Reinforced Concrete. *Symmetry* **2019**, *11*, 377.
https://doi.org/10.3390/sym11030377

**AMA Style**

Luo D.
Dynamic Constitutive Model Analysis of High Parameter Steel Fiber Reinforced Concrete. *Symmetry*. 2019; 11(3):377.
https://doi.org/10.3390/sym11030377

**Chicago/Turabian Style**

Luo, Dong.
2019. "Dynamic Constitutive Model Analysis of High Parameter Steel Fiber Reinforced Concrete" *Symmetry* 11, no. 3: 377.
https://doi.org/10.3390/sym11030377