GNSS Based Low-Cost Magnetometer Calibration
Abstract
1. Introduction
2. Magnetometer Calibration Based on GNSS
2.1. Magnetometer Error
2.2. GNSS Error
2.3. Calibration Options
3. Experimental Verification
3.1. Data Acquisition Module
3.2. Data Processing
- without calibration: 33.6°,
- averaging error (AVG): 6.0°,
- linear regression (LinReg): 4.39°
- and calibration matrix estimation (Matrix): 4.33°.
4. Achieved Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J. Real-Time Magnetometer Disturbance Estimation via Online Nonlinear Programming. IEEE Sens. J. 2019, 19, 4405–4411. [Google Scholar] [CrossRef]
- Renaudin, V.; Afzal, M.H.; Lachapelle, G. Complete triaxis magnetometer calibration in the magnetic domain. J. Sens. 2010, 2010, 967245. [Google Scholar] [CrossRef]
- Vasconcelos, J.F.; Elkaim, G.; Silvestre, C.; Oliveira, P.; Cardeira, B. Geometric approach to strapdown magnetometer calibration in sensor frame. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1293–1306. [Google Scholar] [CrossRef]
- Li, Q.; Griffiths, J.G. Least squares ellipsoid specific fitting. In Proceedings of the Geometric Modeling and Processing 2004, Beijing, China, 13–15 April 2004; pp. 335–340. [Google Scholar] [CrossRef]
- Li, S.; Cheng, D.; Gao, Q.; Wang, Y.; Yue, L.; Wang, M.; Zhao, J. An Improved Calibration Method for the Misalignment Error of a Triaxial Magnetometer and Inertial Navigation System in a Three-Component Magnetic Survey System. Appl. Sci. 2020, 10, 6707. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, W. On Calibration of Three-Axis Magnetometer. IEEE Sens. J. 2015, 15, 6424–6431. [Google Scholar] [CrossRef]
- Han, K.; Han, H.; Wang, Z.; Xu, F. Extended Kalman filter-based gyroscope-aided magnetometer calibration for consumer electronic devices. IEEE Sens. J. 2017, 17, 63–71. [Google Scholar] [CrossRef]
- Wu, Y.; Zou, D.; Liu, P.; Yu, W. Dynamic Magnetometer Calibration and Alignment to Inertial Sensors by Kalman Filtering. IEEE Trans. Control Syst. Technol. 2018, 26, 716–723. [Google Scholar] [CrossRef]
- Cao, G.; Xu, X.; Xu, D. Real-Time Calibration of Magnetometers Using the RLS/ML Algorithm. Sensors 2020, 20, 535. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, S.; Bassompierre, C.; Godin, C.; Lesecq, S.; Barraud, A. Calibration methods for inertial and magnetic sensors. Sens. Actuators A Phys. 2009, 156, 302–311. [Google Scholar] [CrossRef]
- Salehi, S.; Mostofi, N.; Bleser, G. A practical in-field magnetometer calibration method for IMUs. In Proceedings of the IROS Workshop Cognitive Assistive Systems: Closing the Action-Perception Loop, Vilamoura, Portugal, 7–12 October 2012; pp. 39–44. [Google Scholar]
- Li, X.; Li, Z. A new calibration method for tri-axial field sensors in strap-down navigation systems. Meas. Sci. Technol. 2012, 23, 105105. [Google Scholar] [CrossRef]
- Yang, D.; You, Z.; Li, B.; Duan, W.; Yuan, B. Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary. Sensors 2017, 17, 1223. [Google Scholar] [CrossRef] [PubMed]
- Claesson, E.; Marklund, S. Calibration of IMUs Using Neural Networks and Adaptive Techniques—Targeting a Self-Calibrated IMU. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2019. Available online: https://odr.chalmers.se/bitstream/20.500.12380/256912/1/256912.pdf (accessed on 23 June 2022).
- Wu, Z.; Wang, W. Magnetometer and Gyroscope Calibration Method with Level Rotation. Sensors 2018, 18, 748. [Google Scholar] [CrossRef] [PubMed]
- Opromolla, R. Magnetometer Calibration for Small Unmanned Aerial Vehicles Using Cooperative Flight Data. Sensors 2020, 20, 538. [Google Scholar] [CrossRef] [PubMed]
- Henkel, P.; Berthold, P.; Kiam, J.J. Calibration of magnetic field sensors with two mass-market GNSS receivers. In Proceedings of the 2014 11th Workshop on Positioning, Navigation and Communication (WPNC), Dresden, Germany, 12–13 March 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Henkel, P. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing. Sensors 2017, 17, 1324. [Google Scholar] [CrossRef] [PubMed]
- Jonas, M. Mathematical and experimental analysis of GNSS horizontal and vertical errors. In Proceedings of the 2014 24th International Conference Radioelektronika, Bratislava, Slovakia, 15–16 April 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Tang, D.; Lu, D.; Cai, B.; Wang, J. GNSS Localization Propagation Error Estimation Considering Environmental Conditions. In Proceedings of the 2018 16th International Conference on Intelligent Transportation Systems Telecommunications (ITST), Lisboa, Portugal, 15–17 October 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Dautermann, T.; Ludwig, T.; Geister, R.; Ehmke, L. Enabling LPV for GLS equipped aircraft using an airborne SBAS to GBAS converter. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8–12 September 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Fortunato, M.; Critchley-Marrows, J.; Siutkowska, M.; Ivanovici, M.L.; Benedetti, E.; Roberts, W. Enabling High Accuracy Dynamic Applications in Urban Environments Using PPP and RTK on Android Multi-Frequency and Multi-GNSS Smartphones. In Proceedings of the 2019 European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; pp. 1–9. [Google Scholar] [CrossRef]
- InvenSense Inc. MPU-9250 Product Specification, Revision 1.1. Available online: https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf (accessed on 23 June 2022).
- u-blox. NEO-6 u-blox 6 GPS Modules, Data Sheet. Available online: https://content.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_%28GPS.G6-HW-09005%29.pdf (accessed on 23 June 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andel, J.; Šimák, V.; Kanálikova, A.; Pirník, R. GNSS Based Low-Cost Magnetometer Calibration. Sensors 2022, 22, 8447. https://doi.org/10.3390/s22218447
Andel J, Šimák V, Kanálikova A, Pirník R. GNSS Based Low-Cost Magnetometer Calibration. Sensors. 2022; 22(21):8447. https://doi.org/10.3390/s22218447
Chicago/Turabian StyleAndel, Ján, Vojtech Šimák, Alžbeta Kanálikova, and Rastislav Pirník. 2022. "GNSS Based Low-Cost Magnetometer Calibration" Sensors 22, no. 21: 8447. https://doi.org/10.3390/s22218447
APA StyleAndel, J., Šimák, V., Kanálikova, A., & Pirník, R. (2022). GNSS Based Low-Cost Magnetometer Calibration. Sensors, 22(21), 8447. https://doi.org/10.3390/s22218447