Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Electrode Preparation Procedure
2.3. Apparatus and Procedures
2.4. Sample Preparation
3. Results and Discussion
3.1. Determination of CA at SNGC-CB Electrodes
3.2. Real Samples Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of Volatiles, Phenolics, Sugars, Antioxidant Vitamins, and Sensory Quality of Different Colored Carrot Varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Andrés-Lacueva, C. Polyphenols and Health: Current State and Progress. J. Agric. Food Chem. 2012, 60, 8773–8775. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef]
- David, I.G.; Bizgan, A.-M.C.; Popa, D.E.; Buleandra, M.; Moldovan, Z.; Badea, I.A.; Tekiner, T.A.; Basaga, H.; Ciucu, A.A. Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode. Food Chem. 2015, 173, 1059–1065. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Vajić, U.-J.V.; Mijin, D.Z.; Zdunić, G.M.; Šavikin, K.P.; Branković, S.; Kitić, D.; Bugarski, B.M. Polyphenol extraction in microwave reactor using by-product of Thymus serpyllum L. and biological potential of the extract. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100417. [Google Scholar] [CrossRef]
- Oliva, E.; Fanti, F.; Palmieri, S.; Viteritti, E.; Eugelio, F.; Pepe, A.; Compagnone, D.; Sergi, M. Predictive Multi Experiment Approach for the Determination of Conjugated Phenolic Compounds in Vegetal Matrices by Means of LC-MS/MS. Molecules 2022, 27, 3089. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Rodríguez-Pulido, F.J.; Toci, A.T.; García-Estevez, I. Phenolic Composition, Quality and Authenticity of Grapes and Wines by Vibrational Spectroscopy. Food Rev. Int. 2022, 38, 884–912. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Blasco, A.J.; Rogerio, M.C.; González, M.C.; Escarpa, A. “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal. Anal. Chim. Acta 2005, 539, 237–244. [Google Scholar] [CrossRef]
- Blasco, A.J.; González, M.C.; Escarpa, A. Electrochemical approach for discriminating and measuring predominant flavonoids and phenolic acids using differential pulse voltammetry: Towards an electrochemical index of natural antioxidants. Anal. Chim. Acta 2004, 511, 71–81. [Google Scholar] [CrossRef]
- Ruiz-Caro, P.; Espada-Bellido, E.; García-Guzmán, J.J.; Bellido-Milla, D.; Vázquez-González, M.; Cubillana-Aguilera, L.; Palacios-Santander, J.M. An electrochemical alternative for evaluating the antioxidant capacity in walnut kernel extracts. Food Chem. 2022, 393, 133417. [Google Scholar] [CrossRef]
- Seeber, R.; Pigani, L.; Terzi, F.; Zanardi, C. Amperometric sensing. A melting pot for material, electrochemical, and analytical sciences. Electrochim. Acta 2015, 179, 350–363. [Google Scholar] [CrossRef]
- Gorjanović, S.; Komes, D.; Laličić-Petronijević, J.; Pastor, F.T.; Belščak-Cvitanović, A.; Veljović, M.; Pezo, L.; Sužnjević, D. Antioxidant efficiency of polyphenols from coffee and coffee substitutes-electrochemical versus spectrophotometric approach. J. Food Sci. Technol. 2017, 54, 2324–2331. [Google Scholar] [CrossRef]
- García-Guzmán, J.J.; López-Iglesias, D.; Cubillana-Aguilera, L.; Bellido-Milla, D.; Palacios-Santander, J.M.; Marin, M.; Grigorescu, S.D.; Lete, C.; Lupu, S. Silver nanostructures—Poly(3,4-ethylenedioxythiophene) sensing material prepared by sinusoidal voltage procedure for detection of antioxidants. Electrochim. Acta 2021, 393, 139082. [Google Scholar] [CrossRef]
- Munteanu, I.-G.; Apetrei, C. Electrochemical Determination of Chlorogenic Acid in Nutraceuticals Using Voltammetric Sensors Based on Screen-Printed Carbon Electrode Modified with Graphene and Gold Nanoparticles. Int. J. Mol. Sci. 2021, 22, 8897. [Google Scholar] [CrossRef]
- Sekar, S.; Huijun, J.; Liuzhu, Z.; Jin, C.; Lee, S.; Kim, D.Y.; Manikandan, R. Copper phthalocyanine conjugated graphitic carbon nitride nanosheets as an efficient electrocatalyst for simultaneous detection of natural antioxidants. Electrochim. Acta 2022, 413, 140150. [Google Scholar] [CrossRef]
- Gao, F.; Ma, X.; Zeng, Q.; Gao, Y.-S.; Qian, Y.; Wang, X.-Q.; Yu, Y.-F.; Lu, L.-M. Graphene aerogel decorated with MoS2 sheets: An efficient electrochemical sensing platform for caffeic acid in red wine sample. Chin. J. Anal. Chem. 2021, 49, 55–61. [Google Scholar] [CrossRef]
- Oliveira-Neto, J.R.; Rezende, S.G.; de Fátima Reis, C.; Benjamin, S.R.; Rocha, M.L.; de Souza Gil, E. Electrochemical behavior and determination of major phenolic antioxidants in selected coffee samples. Food Chem. 2016, 190, 506–512. [Google Scholar] [CrossRef]
- Pigani, L.; Rioli, C.; López-Iglesias, D.; Zanardi, C.; Zanfrognini, B.; Cubillana-Aguilera, L.; Palacios-Santander, J. Preparation and characterization of reusable Sonogel-Carbon electrodes containing carbon black: Application as amperometric sensors for determination of cathecol. J. Electroanal. Chem. 2020, 877, 114653. [Google Scholar] [CrossRef]
- Talarico, D.; Arduini, F.; Constantino, A.; Del Carlo, M.; Compagnone, D.; Moscone, D.; Palleschi, G. Carbon black as successful screen-printed electrode modifier for phenolic compound detection. Electrochem. Commun. 2015, 60, 78–82. [Google Scholar] [CrossRef]
- López-Iglesias, D.; García-Guzmán, J.J.; Bellido-Milla, D.; Naranjo-Rodríguez, I.; Palacios-Santander, J.M.; Cubillana-Aguilera, L. The Sonogel-Carbon-PEDOT Material: An Innovative Bulk Material for Sensor Devices. J. Electrochem. Soc. 2018, 165, B906–B915. [Google Scholar] [CrossRef]
- López-Iglesias, D.; Fanelli, F.; Marchi, L.; Alcántara, R.; Cocchi, M.; Cubillana-Aguilera, L.; Palacios-Santander, J.M.; García-Guzmán, J.J. Ceramic polyaniline-carbon composite obtained by ultrasound-assisted sol–gel route: Electrochemical performance towards environmental pollutants. J. Electroanal. Chem. 2022, 905, 115971. [Google Scholar] [CrossRef]
- Manchón, N.; Mateo-Vivaracho, L.; D’arrigo, M.; García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A. Distribution patterns of polyphenols and alkaloids in instant coffee, soft and energy drinks, and tea. Czech J. Food Sci. 2013, 31, 483–500. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef]
- Gao, Y.; Jin, C.; Zhang, X.; Li, J.; Wang, F.; Zhang, Y. Determination of caffeic acid using a glassy carbon electrode modified with porous carbon material obtained from Tetrapanax papyriferus. Ionics 2022, 28, 1441–1450. [Google Scholar] [CrossRef]
- Della Pelle, F.; Rojas, D.; Silveri, F.; Ferraro, G.; Fratini, E.; Scroccarello, A.; Escarpa, A.; Compagnone, D. Class-selective voltammetric determination of hydroxycinnamic acids structural analogs using a WS2/catechin-capped AuNPs/carbon black–based nanocomposite sensor. Mikrochim. Acta 2020, 187, 296. [Google Scholar] [CrossRef]
- Tomac, I. Electrochemical Properties of Chlorogenic Acids and Determination of Their Content in Coffee Using Differential Pulse Voltammetry. Int. J. Electrochem. Sci. 2016, 11, 2854–2876. [Google Scholar] [CrossRef]
- De Araújo, T.A.; Cardoso, J.C.; Barbosa, A.M.J.; Ferreira, V.S. Influence of the surfactant bromide of cetyltrimetyl ammonium in the determination of chlorogenic acid in instant coffee and mate tea samples. Colloids Surfaces B Biointerfaces 2009, 73, 408–414. [Google Scholar] [CrossRef]
- Farah, A.; de Paulis, T.; Moreira, D.P.; Trugo, L.C.; Martin, P.R. Chlorogenic Acids and Lactones in Regular and Water-Decaffeinated Arabica Coffees. J. Agric. Food Chem. 2006, 54, 374–381. [Google Scholar] [CrossRef]
Sensor Type 1 | Linear Range (μM) | LOD (μM) | Refs. |
---|---|---|---|
Ag-PEDOT/GCE | 2–100 | 1.9 | [16] |
PCMTP/GCE | 0.01–10 | 0.00534 | [27] |
SPE-CB | 1–50 | 0.8 | [22] |
PGE | 0.10–3000 | 0.0883 | [6] |
MoS2/GA/GCE | 0.001–10.0 | 0.3 | [19] |
WS2/catechin-capped AuNPs/CB | 0.3–112.0 | 0.10 | [28] |
SNGC | 1–50 | 1.8 | This work |
SNGC-CB | 1–50 | 0.76 | This work |
Coffee | CA/Coffee (mg/g) (External Calibration) | CA/Coffee (mg/g) (Standard Addition) | R% |
---|---|---|---|
#1 | 23.2 ± 0.5 | 23.4 ± 0.1 | 99.0 |
#2 | 24.2 ± 1.3 | 23.6 ± 1.5 | 102.7 |
#3 | 24.4 ± 0.4 | 24.2 ± 1.7 | 100.8 |
#4 | 35.4 ± 1.2 | 33.14 ± 1.7 | 107.5 |
Coffee | DPV (External Calibration) CA/Coffee (mg/g) | HPLC CA/Coffee (mg/g) | Folin–Ciocalteu TPC as CA/Coffee (mg/g) |
---|---|---|---|
#1 | 23.2 | 0.21 | 161 |
#2 | 24.2 | 0.21 | 160 |
#3 | 24.4 | 0.23 | 166 |
#4 | 35.4 | 0.26 | 158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pigani, L.; Rioli, C.; Zanfrognini, B.; García-Guzmán, J.J.; Palacios-Santander, J.M.; Cubillana-Aguilera, L.M. Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes. Sensors 2022, 22, 8448. https://doi.org/10.3390/s22218448
Pigani L, Rioli C, Zanfrognini B, García-Guzmán JJ, Palacios-Santander JM, Cubillana-Aguilera LM. Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes. Sensors. 2022; 22(21):8448. https://doi.org/10.3390/s22218448
Chicago/Turabian StylePigani, Laura, Cristina Rioli, Barbara Zanfrognini, Juan José García-Guzmán, José Maria Palacios-Santander, and Laura María Cubillana-Aguilera. 2022. "Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes" Sensors 22, no. 21: 8448. https://doi.org/10.3390/s22218448
APA StylePigani, L., Rioli, C., Zanfrognini, B., García-Guzmán, J. J., Palacios-Santander, J. M., & Cubillana-Aguilera, L. M. (2022). Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes. Sensors, 22(21), 8448. https://doi.org/10.3390/s22218448