Factors Affecting Site Use Preference of Grazing Cattle Studied from 2000 to 2020 through GPS Tracking: A Review
Abstract
:1. Introduction
2. Selection of Studies and Their Main Characteristics
3. Effect of Stocking Rate and Grazing Method on Site Use Preference
4. Effect of External Factors on Site Use Preference
4.1. Water Location
4.2. Access to Shade and Shelter in Relation to Climate and Weather
4.3. Supplement Feed Location and Type
4.4. Vegetation Characteristics
4.5. Landscape—Topography
5. Effect of Animal Factors and Social Interactions on Site Use Preference
5.1. Phenotypes, Genetics and Breed
5.2. Previous Experience and Physiological Stage
5.3. Social Structure
6. Integrating GPS and Bio-Loggers Data
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sanderson, M.A.; Feldmann, C.; Schmidt, J.; Herrmann, A.; Taube, F. Spatial distribution of livestock concentration areas and soil nutrients in pastures. J. Soil Water Conserv. 2010, 65, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Koch, B.; Homburger, H.; Edwards, P.J.; Schneider, M.K. Phosphorus redistribution by dairy cattle on a heterogeneous subalpine pasture, quantified using GPS tracking. Agric. Ecosyst. Environ. 2018, 257, 183–192. [Google Scholar] [CrossRef]
- Betteridge, K.; Costall, D.; Balladur, S.; Upsdell, M.; Umemura, K. Urine distribution and grazing behaviour of female sheep and cattle grazing a steep New Zealand hill pasture. Anim. Prod. Sci. 2010, 50, 624–629. [Google Scholar] [CrossRef]
- Draganova, I.; Yule, I.; Stevenson, M.; Betteridge, K. The effects of temporal and environmental factors on the urination behaviour of dairy cows using tracking and sensor technologies. Precis. Agric. 2016, 17, 407–420. [Google Scholar] [CrossRef]
- Byers, H.L.; Cabrera, M.L.; Matthews, M.K.; Franklin, D.H.; Andrae, J.G.; Radcliffe, D.E.; McCann, M.A.; Kuykendall, H.A.; Hoveland, C.S.; Calvert, V.H. Phosphorus, sediment, and Escherichia coli loads in unfenced streams of the Georgia Piedmont, USA. J. Environ. Qual. 2005, 34, 2293–2300. [Google Scholar] [CrossRef] [Green Version]
- Schwarte, K.A.; Russell, J.R.; Morrical, D.G. Effects of pasture management and off-stream water on temporal/spatial distribution of cattle and stream bank characteristics in cool-season grass pastures. J. Anim. Sci. 2011, 89, 3236–3247. [Google Scholar] [CrossRef] [Green Version]
- Haan, M.M.; Russell, J.R.; Davis, J.D.; Morrical, D.G. Grazing Management and Microclimate Effects on Cattle Distribution Relative to a Cool Season Pasture Stream. Rangel. Ecol. Manag. 2010, 63, 572–580. [Google Scholar] [CrossRef]
- Bear, D.A.; Russell, J.R.; Morrical, D.G. Physical characteristics, shade distribution, and tall fescue effects on cow temporal/spatial distribution in midwestern pastures. Rangel. Ecol. Manag. 2012, 65, 401–408. [Google Scholar] [CrossRef]
- FAWC. Farm Animal Welfare Council updates the five freedoms. Vet. Rec. 1992, 17, 357. [Google Scholar]
- Gonzalez, L.A.; Bishop-Hurley, G.; Henry, D.; Charmley, E.; González, L.A.; Bishop-Hurley, G.; Henry, D.; Charmley, E. Wireless sensor networks to study, monitor and manage cattle in grazing systems. Anim. Prod. Sci. 2014, 54, 1687–1693. [Google Scholar] [CrossRef]
- Bailey, D.W.; Trotter, M.G.; Knight, C.W.; Thomas, M.G. Use of GPS tracking collars and accelerometers for rangeland livestock production research. Transl. Anim. Sci. 2018, 2, 81–88. [Google Scholar] [CrossRef]
- Laca, E.A. Precision livestock production: Tools and concepts. Rev. Bras. Zootec. 2009, 38, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Turner, L.W.; Udal, M.C.; Larson, B.T.; Shearer, S.A. Monitoring cattle behavior and pasture use with GPS and GIS. Can. J. Anim. Sci. 2000, 80, 405–413. [Google Scholar] [CrossRef]
- Huhtala, A.; Suhonen, K.; Mäkelä, P.; Hakojärvi, M.; Ahokas, J. Evaluation of Instrumentation for Cow Positioning and Tracking Indoors. Biosyst. Eng. 2007, 96, 399–405. [Google Scholar] [CrossRef]
- Tomkiewicz, S.M.; Fuller, M.R.; Kie, J.G.; Bates, K.K. Global positioning system and associated technologies in animal behaviour and ecological research. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2163–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swain, D.L.; Friend, M.A.; Bishop-Hurley, G.J.; Handcock, R.N.; Wark, T. Tracking livestock using global positioning systems are we still lost? Anim. Prod. Sci. 2011, 51, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Poulton, G.; Corke, P.; Bishop-Hurley, G.J.; Wark, T.; Swain, D.L. Using accelerometer, high sample rate GPS and magnetometer data to develop a cattle movement and behaviour model. Ecol. Modell. 2009, 220, 2068–2075. [Google Scholar] [CrossRef] [Green Version]
- Manning, J.K.; Cronin, G.M.; González, L.A.; Hall, E.J.S.; Merchant, A.; Ingram, L.J. The effects of global navigation satellite system (GNSS) collars on cattle (Bos taurus) behaviour. Appl. Anim. Behav. Sci. 2017, 187, 54–59. [Google Scholar] [CrossRef]
- Briske, D.D.; Derner, J.D.; Brown, J.R.; Fuhlendorf, S.D.; Teague, W.R.; Havstad, K.M.; Gillen, R.L.; Ash, A.J.; Willms, W.D. Rotational Grazing on Rangelands: Reconciliation of Perception and Experimental Evidence. Rangel. Ecol Manag. Rangel. Ecol. Manag. 2008, 61, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, N.W.; O’Reagain, P.J.; Swain, D.; Bishop-Hurley, G.; Charmley, E. Determining the effect of stocking rate on the spatial distribution of cattle for the subtropical savannas. Rangel. J. 2009, 31, 267–276. [Google Scholar] [CrossRef]
- Schoenbaum, I.; Kigel, J.; Ungar, E.D.; Dolev, A.; Henkin, Z. Spatial and temporal activity of cattle grazing in Mediterranean oak woodland. Appl. Anim. Behav. Sci. 2017, 187, 45–53. [Google Scholar] [CrossRef]
- Sawalhah, M.N.; Cibils, A.F.; Maladi, A.; Cao, H.; Vanleeuwen, D.M.; Holechek, J.L.; Rubio, C.M.B.; Wesley, R.L.; Endecott, R.L.; Mulliniks, T.J.; et al. Forage and weather influence day versus nighttime cow behavior and calf weaning weights on rangeland. Rangel. Ecol. Manag. 2016, 69, 134–143. [Google Scholar] [CrossRef]
- Probo, M.; Lonati, M.; Pittarello, M.; Bailey, D.W.; Garbarino, M.; Gorlier, A.; Lombardi, G. Implementation of a rotational grazing system with large paddocks changes the distribution of grazing cattle in the south-western Italian Alps. Rangel. J. 2014, 36, 445–458. [Google Scholar] [CrossRef]
- Rinella, M.J.; Vavra, M.; Naylor, B.J.; Boyd, J.M. Estimating influence of stocking regimes on livestock grazing distributions. Ecol. Modell. 2011, 222, 619–625. [Google Scholar] [CrossRef]
- Williams, L.R.; Jackson, E.L.; Bishop-Hurley, G.J.; Swain, D.L. Drinking frequency effects on the performance of cattle: A systematic review. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1076–1092. [Google Scholar] [CrossRef] [PubMed]
- Putfarken, D.; Dengler, J.; Lehmann, S.; Härdtle, W. Site use of grazing cattle and sheep in a large-scale pasture landscape: A GPS/GIS assessment. Appl. Anim. Behav. Sci. 2008, 111, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Ganskopp, D. Manipulating cattle distribution with salt and water in large arid-land pastures: A GPS/GIS assessment. Appl. Anim. Behav. Sci. 2001, 73, 251–262. [Google Scholar] [CrossRef]
- Ganskopp, D.C.; Bohnert, D.W. Landscape nutritional patterns and cattle distribution in rangeland pastures. Appl. Anim. Behav. Sci. 2009, 116, 110–119. [Google Scholar] [CrossRef]
- Riaboff, L.; Couvreur, S.; Madouasse, A.; Roig-Pons, M.; Aubin, S.; Massabie, P.; Chauvin, A.; Bédère, N.; Plantier, G. Use of predicted behavior from accelerometer data combined with GPS data to explore the relationship between dairy cow behavior and pasture characteristics. Sensors 2020, 20, 4741. [Google Scholar] [CrossRef]
- Hunt, L.P.; Petty, S.; Cowley, R.; Fisher, A.; Ash, A.J.; MacDonald, N. Factors affecting the management of cattle grazing distribution in northern Australia: Preliminary observations on the effect of paddock size and water points. Rangel. J. 2007, 29, 169–179. [Google Scholar] [CrossRef]
- Pandey, V.; Kiker, G.A.; Campbell, K.L.; Williams, M.J.; Coleman, S.W. GPS Monitoring of cattle location near water features in South Florida. Appl. Eng. Agric. 2009, 25, 551–562. [Google Scholar] [CrossRef]
- Kaucner, C.E.; Whiffin, V.; Ray, J.; Gilmour, M.; Ashbolt, N.J.; Stuetz, R.; Roser, D.J. Can off-river water and shade provision reduce cattle intrusion into drinking water catchment riparian zones? Agric. Water Manag. 2013, 130, 69–78. [Google Scholar] [CrossRef]
- Johnson, D.E.; Clark, P.E.; Larson, L.L.; Wilson, K.D.; Louhaichi, M.; Freeburg, T.; Williams, J. Cattle use of off-stream water developments across a northeastern Oregon landscape. J. Soil Water Conserv. 2016, 71, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Von Müller, A.R.; Renison, D.; Cingolani, A.M. Cattle landscape selectivity is influenced by ecological and management factors in a heterogeneous mountain rangeland. Rangel. J. 2017, 39, 1–14. [Google Scholar] [CrossRef]
- Halasz, A.; Nagy, G.; Tasi, J.; Bajnok, M.; Mikone, J.E. Weather regulated cattle behaviour on rangeland. Appl. Ecol. Environ. Res. 2016, 14, 149–158. [Google Scholar] [CrossRef]
- Blackshaw, J.K.; Blackshaw, A.W. Heat stress in cattle and the effect of shade on production and behaviour: A review. Aust. J. Exp. Agric. 1994, 34, 285–295. [Google Scholar] [CrossRef]
- Larson-Praplan, S.; George, M.R.; Buckhouse, J.C.; Laca, E.A. Spatial and temporal domains of scale of grazing cattle. Anim. Prod. Sci. 2015, 55, 284–297. [Google Scholar] [CrossRef]
- Diaz Falu, E.M.; Angel Brizuela, M.; Silvia Cid, M.; Francisco Cibils, A.; Gabriela Cendoya, M.; Bendersky, D. Daily feeding site selection of cattle and sheep co-grazing a heterogeneous subtropical grassland. Livest. Sci. 2014, 161, 147–157. [Google Scholar] [CrossRef]
- Spedener, M.; Tofastrud, M.; Devineau, O.; Zimmermann, B. Microhabitat selection of free-ranging beef cattle in south-boreal forest. Appl. Anim. Behav. Sci. 2019, 213, 33–39. [Google Scholar] [CrossRef]
- Rubio, C.M.B.; Cibils, A.F.; Endecott, R.L.; Petersen, M.K.; Boykin, K.G. Pinon-juniper woodland use by cattle in relation to weather and animal reproductive state. Rangel. Ecol. Manag. 2008, 61, 394–404. [Google Scholar] [CrossRef]
- Cheleuitte-Nieves, C.; Perotto-Baldivieso, H.L.; Wu, X.B.; Cooper, S.M. Environmental and landscape influences on the spatial and temporal distribution of a cattle herd in a South Texas rangeland. Ecol. Process. 2020, 9, 39. [Google Scholar] [CrossRef]
- Van Laer, E.; Ampe, B.; Moons, C.; Sonck, B.; Tuyttens, F.A.M. Wintertime use of natural versus artificial shelter by cattle in nature reserves in temperate areas. Appl. Anim. Behav. Sci. 2015, 163, 39–49. [Google Scholar] [CrossRef]
- Van Laer, E.; Moons, C.P.H.; Ampe, B.; Sonck, B.; Vangeyte, J.; Tuyttens, F.A.M. Summertime use of natural versus artificial shelter by cattle in nature reserves. Anim. Welf. 2015, 24, 345–356. [Google Scholar] [CrossRef]
- Sprinkle, J.E.; Taylor, J.B.; Clark, P.E.; Hall, J.B.; Strong, N.K.; Roberts-Lew, M.C. Grazing behavior and production characteristics among cows differing in residual feed intake while grazing late season Idaho rangeland. J. Anim. Sci. 2020, 98, skz371. [Google Scholar] [CrossRef]
- Sawalhah, M.N.; Cibils, A.F.; Hu, C.; Cao, H.; Holechek, J.L. Animal-Driven Rotational Grazing Patterns on Seasonally Grazed New Mexico Rangeland. Rangel. Ecol. Manag. 2014, 67, 710–714. [Google Scholar] [CrossRef]
- Browning, D.M.; Spiegal, S.; Estell, R.E.; Cibils, A.F.; Peinetti, R.H. Integrating space and time: A case for phenological context in grazing studies and management. Front. Agric. Sci. Eng. 2018, 5, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.W.; Thomas, M.G.; Walker, J.W.; Witmore, B.K.; Tolleson, D. Effect of Previous Experience on Grazing Patterns and Diet Selection of Brangus Cows in the Chihuahuan Desert. Rangel. Ecol. Manag. 2010, 63, 223–232. [Google Scholar] [CrossRef]
- Launchbaugh, K.L.; Howery, L.D. Understanding landscape use patterns of livestock as a consequence of foraging behavior. Rangel. Ecol. Manag. 2005, 58, 99–108. [Google Scholar] [CrossRef]
- Wyffels, S.A.; Boss, D.L.; Sowell, B.F.; DelCurto, T.; Bowman, J.G.P.; McNew, L.B. Dormant season grazing on northern mixed grass prairie agroecosystems: Does protein supplement intake, cow age, weight and body condition impact beef cattle resource use and residual vegetation cover? PLoS ONE 2020, 15, e0240629. [Google Scholar] [CrossRef]
- Bailey, D.W.; Welling, G.R.; Miller, E.T. Cattle use of foothills rangeland near dehydrated molasses supplement. J. Range Manag. 2001, 54, 338–347. [Google Scholar] [CrossRef]
- Probo, M.; Massolo, A.; Lonati, M.; Bailey, D.W.; Gorlier, A.; Maurino, L.; Lombardi, G. Use of mineral mix supplements to modify the grazing patterns by cattle for the restoration of sub-alpine and alpine shrub-encroached grasslands. Rangel. J. 2013, 35, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Pittarello, M.; Probo, M.; Lonati, M.; Bailey, D.W.; Lombardi, G. Effects of traditional salt placement and strategically placed mineral mix supplements oncattle distribution in the Western Italian Alps. Grass Forage Sci. 2015, 71, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.W.; Vanwagoner, H.C.; Weinmeister, R.; Jensen, D. Comparison of low-moisture blocks and salt for manipulating grazing patterns of beef cows. J. Anim. Sci. 2008, 86, 1271–1277. [Google Scholar] [CrossRef]
- Bailey, D.W.; Jensen, D. Method of supplementation may affect cattle grazing patterns. Rangel. Ecol. Manag. 2008, 61, 131–135. [Google Scholar] [CrossRef]
- Carvalho, P.C.F. Can grazing behaviour support innovations in grassland management? 22nd Int. Grassl. Congr. 2013, 1, 1134–1148. [Google Scholar]
- Eikelboom, J.A.J.; de Knegt, H.J.; Klaver, M.; van Langevelde, F.; van der Wal, T.; Prins, H.H.T. Inferring an animal’s environment through biologging: Quantifying the environmental influence on animal movement. Mov. Ecol. 2020, 8, 40. [Google Scholar] [CrossRef]
- Schieltz, J.M.; Okanga, S.; Allan, B.F.; Rubenstein, D.I. GPS tracking cattle as a monitoring tool for conservation and management. Afr. J. Range Forage Sci. 2017, 34, 173–177. [Google Scholar] [CrossRef]
- Homburger, H.; Lüscher, A.; Scherer-Lorenzen, M.; Schneider, M.K. Patterns of livestock activity on heterogeneous subalpine pastures reveal distinct responses to spatial autocorrelation, environment and management. Mov. Ecol. 2015, 3, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, J.; Bork, E.W.; Blenis, P.V.; Alexander, M.J. Cattle habitat selection and associated habitat characteristics under free-range grazing within heterogeneous Montane rangelands of Alberta. Appl. Anim. Behav. Sci. 2013, 146, 1–10. [Google Scholar] [CrossRef]
- Meisser, M.; Deléglise, C.; Freléchoux, F.; Chassot, A.; Jeangros, B.; Mosimann, E. Foraging behaviour and occupation pattern of beef cows on a heterogeneous pasture in the swiss alps. Czech J. Anim. Sci. 2014, 59, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Sickel, H.; Ihse, M.; Norderhaug, A.; Sickel, M.A.K. How to monitor semi-natural key habitats in relation to grazing preferences of cattle in mountain summer farming areas—An aerial photo and GPS method study. Landsc. Urban Plan. 2004, 67, 67–77. [Google Scholar] [CrossRef]
- Thompson, D.J.; Wheatley, B.J.; Church, J.S.; Newman, R.; Walker, J. Comparing grazing and resting electivity of beef cattle for BC bunchgrass communities using GPS collars. Can. J. Anim. Sci. 2015, 95, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Gou, X.; Tsunekawa, A.; Tsubo, M.; Peng, F.; Sun, J.; Li, Y.; Zhao, X.; Lian, J. Seasonal dynamics of cattle grazing behaviors on contrasting landforms of a fenced ranch in northern China. Sci. Total Environ. 2020, 749, 141613. [Google Scholar] [CrossRef] [PubMed]
- Barcella, M.; Filipponi, F.; Assini, S. A simple model to support grazing management by direct field observation. Agric. Ecosyst. Environ. 2016, 234, 107–117. [Google Scholar] [CrossRef]
- Sant’Anna, A.C.; da Costa, M.J.; Pascoa, A.G.; Magalhaes Silva, L.C.; Jung, J. Assessing land use by cattle in heterogeneous environments. Cienc. Rural 2015, 45, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Larson, L.; Johnson, D.E.; Wilson, M.; Wilson, K.; Louhaichi, M.; Williams, J. Spatial occupancy patterns and activity of arid rangeland cattle grazing small riparian pastures. Anim. Sci. J. 2017, 88, 553–558. [Google Scholar] [CrossRef]
- Watanabe, N.; Umemura, K.; Sakanoue, S.; Kozakai, T.; Kawamura, K. Utilization by cattle of a pasture including aged hilly sections. Grassl. Sci. 2010, 56, 160–167. [Google Scholar] [CrossRef]
- Wyffels, S.A.; Petersen, M.K.; Boss, D.L.; Sowell, B.F.; Bowman, J.G.P.; McNew, L.B. Dormant Season Grazing: Effect of Supplementation Strategies on Heifer Resource Utilization and Vegetation Use. Rangel. Ecol. Manag. 2019, 72, 878–887. [Google Scholar] [CrossRef]
- Orr, R.J.; Tozer, K.N.; Griffith, B.A.; Champion, R.A.; Cook, J.E.; Rutter, S.M. Foraging paths through vegetation patches for beef cattle in semi-natural pastures. Appl. Anim. Behav. Sci. 2012, 141, 1–8. [Google Scholar] [CrossRef]
- Manning, J.K.; Cronin, G.M.; González, L.A.; Hall, E.J.S.; Merchant, A.; Ingram, L.J. The behavioural responses of beef cattle (Bos taurus) to declining pasture availability and the use of gnss technology to determine grazing preference. Agriculture 2017, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Zengeya, F.M.; Murwira, A.; de Garine-Witchatitsky, M. Inference of herder presence from GPS collar data of semi-free range cattle. Geocarto Int. 2015, 30, 905–918. [Google Scholar] [CrossRef]
- Zengeya, F.M.; Mutanga, O.; Murwira, A. Linking remotely sensed forage quality estimates from WorldView-2 multispectral data with cattle distribution in a savanna landscape. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 513–524. [Google Scholar] [CrossRef]
- Handcock, R.N.; Swain, D.L.; Bishop-Hurley, G.J.; Patison, K.P.; Wark, T.; Valencia, P.; Corke, P.; O’Neill, C.J. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing. Sensors 2009, 9, 3586–3603. [Google Scholar] [CrossRef] [Green Version]
- Rook, A.J.; Harvey, A.; Parsons, A.J.; Orr, R.J.; Rutter, S.M. Bite dimensions and grazing movements by sheep and cattle grazing homogeneous perennial ryegrass swards. Appl. Anim. Behav. Sci. 2004, 88, 227–242. [Google Scholar] [CrossRef]
- Wall, J.; Douglas-Hamilton, I.; Vollrath, F. Elephants avoid costly mountaineering. Curr. Biol. 2006, 16, 527–529. [Google Scholar] [CrossRef] [Green Version]
- Tofastrud, M.; Devineau, O.; Zimmermann, B. Habitat selection of free-ranging cattle in productive coniferous forests of south-eastern Norway. For. Ecol. Manag. 2019, 437, 1–9. [Google Scholar] [CrossRef]
- Kaufmann, J.; Bork, E.W.; Alexander, M.J.; Blenis, P.V. Habitat selection by cattle in Foothill landscapes following variable harvest of aspen forest. For. Ecol. Manag. 2013, 306, 15–22. [Google Scholar] [CrossRef]
- Augustine, D.J.; Derner, J.D. Controls over the strength and timing of fire-grazer interactions in a semi-arid rangeland. J. Appl. Ecol. 2014, 51, 242–250. [Google Scholar] [CrossRef]
- Clark, P.E.; Lee, J.; Ko, K.; Nielson, R.M.; Johnson, D.E.; Ganskopp, D.C.; Chigbrow, J.; Pierson, F.B.; Hardegree, S.P. Prescribed fire effects on resource selection by cattle in mesic sagebrush steppe. Part 1: Spring grazing. J. Arid Environ. 2014, 100, 78–88. [Google Scholar] [CrossRef]
- Shepard, E.L.C.; Wilson, R.P.; Rees, W.G.; Grundy, E.; Lambertucci, S.A.; Vosper, S.B. Energy landscapes shape animal movement ecology. Am. Nat. 2013, 182, 298–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganskopp, D.; Cruz, R.; Johnson, D.E. Least-effort pathways?: A GIS analysis of livestock trails in rugged terrain. Appl. Anim. Behav. Sci. 2000, 68, 179–190. [Google Scholar] [CrossRef]
- Bailey, D.W.; Stephenson, M.B.; Pittarello, M. Effect of terrain heterogeneity on feeding site selection and livestock movement patterns. Anim. Prod. Sci. 2015, 55, 298–308. [Google Scholar] [CrossRef]
- Henkin, Z.; Ungar, E.D.; Dolev, A. Foraging behaviour of beef cattle in the hilly terrain of a Mediterranean grassland. Rangel. J. 2012, 34, 163–172. [Google Scholar] [CrossRef]
- Tomkins, N.; O’Reagain, P. Global positioning systems indicate landscape preferences of cattle in the subtropical savannas. Rangel. J. 2007, 29, 217–222. [Google Scholar] [CrossRef]
- Cooper, S.M.; Perotto-Baldivieso, H.L.; Owens, M.K.; Meek, M.G.; Figueroa-Pagan, M. Distribution and interaction of white-tailed deer and cattle in a semi-arid grazing system. Agric. Ecosyst. Environ. 2008, 127, 85–92. [Google Scholar] [CrossRef]
- Wesley, R.L.; Cibils, A.F.; Mulliniks, J.T.; Pollak, E.R.; Petersen, M.K.; Fredrickson, E.L. An assessment of behavioural syndromes in rangeland-raised beef cattle. Appl. Anim. Behav. Sci. 2012, 139, 183–194. [Google Scholar] [CrossRef]
- Tofastrud, M.; Hessle, A.; Rekdal, Y.; Zimmermann, B. Weight gain of free-ranging beef cattle grazing in the boreal forest of south-eastern Norway. Livest. Sci. 2020, 233, 103955. [Google Scholar] [CrossRef]
- Bailey, D.W.; Keil, M.R.; Rittenhouse, L.R. Research observation: Daily movement patterns of hill climbing and bottom dwelling cows. J. Range Manag. 2004, 57, 20–28. [Google Scholar] [CrossRef]
- Bailey, D.W.; Thomas, M.G.; Holt, T.N.; Stephenson, M.B.; Enns, R.M.; Speidel, S.E. Relationship of pulmonary arterial pressure and terrain use of Angus cows grazing high-altitude foothill rangelands. Livest. Sci. 2016, 190, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.W.; Lunt, S.; Lipka, A.; Thomas, M.G.; Medrano, J.F.; Canovas, A.; Rincon, G.; Stephenson, M.B.; Jensen, D. Genetic Influences on Cattle Grazing Distribution: Association of Genetic Markers with Terrain Use in Cattle. Rangel. Ecol. Manag. 2015, 68, 142–149. [Google Scholar] [CrossRef]
- Pierce, C.F.; Speidel, S.E.; Coleman, S.J.; Enns, R.M.; Bailey, D.W.; Medrano, J.F.; Cánovas, A.; Meiman, P.J.; Howery, L.D.; Mandeville, W.F.; et al. Genome-wide association studies of beef cow terrain-use traits using Bayesian multiple-SNP regression. Livest. Sci. 2020, 232. [Google Scholar] [CrossRef]
- Aharoni, Y.; Dolev, A.; Henkin, Z.; Yehuda, Y.; Ezra, A.; Ungar, E.D.; Shabtay, A.; Brosh, A. Foraging behavior of two cattle breeds, a whole-year study: I. Heat production, activity, and energy costs. J. Anim. Sci. 2013, 91, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Saether, N.H.; Sickel, H.; Norderhaug, A.; Sickel, M.; Vangen, O. Plant and vegetation preferences for a high and a moderate yielding Norwegian dairy cattle breed grazing semi-natural mountain pastures. Anim. Res. 2006, 55, 367–387. [Google Scholar] [CrossRef]
- Hessle, A.; Rutter, M.; Wallin, K. Effect of breed, season and pasture moisture gradient on foraging behaviour in cattle on semi-natural grasslands. Appl. Anim. Behav. Sci. 2008, 111, 108–119. [Google Scholar] [CrossRef]
- Russell, M.L.; Bailey, D.W.; Thomas, M.G.; Witmore, B.K. Grazing Distribution and Diet Quality of Angus, Brangus, and Brahman Cows in the Chihuahuan Desert. Rangel. Ecol. Manag. 2012, 65, 371–381. [Google Scholar] [CrossRef]
- Spiegal, S.; Estell, R.E.; Cibils, A.F.; James, D.K.; Peinetti, H.R.; Browning, D.M.; Romig, K.B.; Gonzalez, A.L.; Lyons, A.J.; Bestelmeyer, B.T. Seasonal Divergence of Landscape Use by Heritage and Conventional Cattle on Desert Rangeland. Rangel. Ecol. Manag. 2019, 72, 590–601. [Google Scholar] [CrossRef]
- Peinetti, H.R.; Fredrickson, E.L.; Peters, D.P.C.; Cibils, A.F.; Octavio Roacho-Estrada, J.; Laliberte, A.S. Foraging behavior of heritage versus recently introduced herbivores on desert landscapes of the American Southwest. Ecosphere 2011, 2. [Google Scholar] [CrossRef]
- Thomas, D.T.; Wilmot, M.G.; Kelly, R.W.; Revell, D.K. Adaptation behaviour of local and rangeland cattle relocated to a temperate agricultural pasture. Anim. Prod. Sci. 2011, 51, 1088–1097. [Google Scholar] [CrossRef]
- Nyamuryekung’e, S.; Cibils, A.F.; Estell, R.E.; VanLeeuwen, D.; Steele, C.; Estrada, O.R.; Almeida, F.A.R.; González, A.L.; Spiegal, S. Do young calves influence movement patterns of nursing Raramuri Criollo cows on rangeland? Rangel. Ecol. Manag. 2020, 73, 84–92. [Google Scholar] [CrossRef]
- Anderson, D.M.; Winters, C.; Estell, R.E.; Fredrickson, E.L.; Doniec, M.; Detweiler, C.; Rus, D.; James, D.; Nolen, B. Characterising the spatial and temporal activities of free-ranging cows from GPS data. Rangel. J. 2012, 34, 149–161. [Google Scholar] [CrossRef]
- Stephenson, M.B.; Bailey, D.W. Do movement patterns of GPS-tracked cattle on extensive rangelands suggest independence among individuals? Ariculture 2017, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Harris, N.R.; Johnson, D.E.; McDougald, N.K.; George, M.R. Social associations and dominance of individuals in small herds of cattle. Rangel. Ecol. Manag. 2007, 60, 339–349. [Google Scholar] [CrossRef]
- Cheleuitte-Nieves, C.T.; Perotto-Baldivieso, H.L.; Wu, X.B.; Cooper, S.M. Association patterns reveal dispersal-aggregation dynamics among cattle in a South Texas Rangeland, USA. Ecol. Process. 2018, 7, 29. [Google Scholar] [CrossRef]
- Šárová, R.; Špinka, M.; Panamá, J.L.A.; Šimeček, P. Graded leadership by dominant animals in a herd of female beef cattle on pasture. Anim. Behav. 2010, 79, 1037–1045. [Google Scholar] [CrossRef]
- Frost, A.R.; Schofield, C.P.; Beaulah, S.A.; Mottram, T.T.; Lines, J.A.; Wathes, C.M. A review of livestock monitoring and the need for integrated systems. Comput. Electron. Agric. 1997, 17, 139–159. [Google Scholar] [CrossRef]
- Brosh, A.; Henkin, Z.; Ungar, E.D.; Dolev, A.; Orlov, A.; Yehuda, Y.; Aharoni, Y. Energy cost of cows’ grazing activity: Use of the heart rate method and the Global Positioning System for direct field estimation. J. Anim. Sci. 2006, 84, 1951–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantor, M.C.; Costa, J.H.C.; Bewley, J.M. Impact of observed and controlled water intake on reticulorumen temperature in lactating dairy cattle. Animals 2018, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Eigenberg, R.A.; Brown-Brandl, T.M.; Nienaber, J.A. Sensors for dynamic physiological measurements. Comput. Electron. Agric. 2008, 62, 41–47. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero, M.J.; Grau-Campanario, P.; Mullan, S.; Held, S.D.E.; Stokes, J.E.; Lee, M.R.F.; Cardenas, L.M. Factors Affecting Site Use Preference of Grazing Cattle Studied from 2000 to 2020 through GPS Tracking: A Review. Sensors 2021, 21, 2696. https://doi.org/10.3390/s21082696
Rivero MJ, Grau-Campanario P, Mullan S, Held SDE, Stokes JE, Lee MRF, Cardenas LM. Factors Affecting Site Use Preference of Grazing Cattle Studied from 2000 to 2020 through GPS Tracking: A Review. Sensors. 2021; 21(8):2696. https://doi.org/10.3390/s21082696
Chicago/Turabian StyleRivero, M. Jordana, Patricia Grau-Campanario, Siobhan Mullan, Suzanne D. E. Held, Jessica E. Stokes, Michael R. F. Lee, and Laura M. Cardenas. 2021. "Factors Affecting Site Use Preference of Grazing Cattle Studied from 2000 to 2020 through GPS Tracking: A Review" Sensors 21, no. 8: 2696. https://doi.org/10.3390/s21082696
APA StyleRivero, M. J., Grau-Campanario, P., Mullan, S., Held, S. D. E., Stokes, J. E., Lee, M. R. F., & Cardenas, L. M. (2021). Factors Affecting Site Use Preference of Grazing Cattle Studied from 2000 to 2020 through GPS Tracking: A Review. Sensors, 21(8), 2696. https://doi.org/10.3390/s21082696