Development and Validation of an Autonomous System for Measurement of Sunshine Duration
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Design
2.2. Contrast Pattern
2.3. Algorithm Calculation of Sunshine Duration
2.4. Experimental Tests and Prototype
2.5. Data and Experimental Area
2.6. Data Analysis
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chelbi, M.; Gagnon, Y.; Waewsak, J. Solar radiation mapping using sunshine duration-based models and interpolation techniques: Application to Tunisia. Energy Convers. Manag. 2019, 101, 203–215. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zhang, F.; Cai, H.; Zeng, W.; Wang, X. Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China. Renew. Sustain. Energy Rev. 2018, 100, 186–212. [Google Scholar] [CrossRef]
- Matuszko, D. A comparison of sunshine duration records from the Campbell-Stokes sunshine recorder and CSD3 sunshine duration sensor. Theor. Appl. Climatol. 2014, 119, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Tiba, C. Atlas Solarimétrico do Brasil: Banco de Dados Terrestres, 2nd ed.; UFPE: Recife, Brasil, 2000; p. 111. [Google Scholar]
- Breniuc, L.; Haba, C. A development system for the sunshine duration estimation. Electrot. Energ. Electron 2013, 4, 79–91. [Google Scholar]
- Rüedi, I. Measurement of sunshine duration. In WMO Guide to Meteorological Instruments and Methods of Observation; SWI: Geneva, Switzerland, 2006; p. 569. [Google Scholar]
- Mellit, A.; Shaari, S.; Mekki, H.; Khorissi, N. FPGA-based artificial neural network for prediction of solar radiation data from sunshine duration and air temperature. In Proceedings of the 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, Novosibirsk, Russia, 21–25 July 2008; Volume 33, pp. 118–123. [Google Scholar]
- Matuszko, D. Long-term variability in solar radiation in Krakow based on measurements of sunshine duration. Int. J. Climatol. 2014, 34, 228–234. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, C.; Calbó, A.; Wild, J.; Azorin-Molina, M. New insights into the history of the Campbell-Stokes sunshine recorder Weather. Weather 2013, 68, 326–327. [Google Scholar] [CrossRef] [Green Version]
- Horseman, A.; Richardson, T.; Boardman, A.; Tych, W.; Timmis, R.; MacKenzie, A. Calibrated digital images of Campbell-Stokes recorder card archives for direct solar irradiance studies. Atmos. Meas. Tech. 2013, 6, 1371–1379. [Google Scholar] [CrossRef] [Green Version]
- Muneer, T.; Zhang, X.; Wood, J. Evaluation of an innovative sensor for measuring global and diffuse irradiance, and sunshine duration. Int. J. Sol. Energy 2014, 22, 115–122. [Google Scholar] [CrossRef]
- Hannak, L.; Friedrich, K.; Imbery, F.; Kaspar, F. Comparison of manual and automatic daily sunshine duration measurements at German climate reference stations. Adv. Sci. Res. 2019, 16, 175–183. [Google Scholar] [CrossRef]
- Legg, T. Comparison of daily sunshine duration recorded by Campbell-Stokes and Kipp and Zonen sensors. Weather 2014, 69, 264–267. [Google Scholar] [CrossRef]
- Suehrcke, H.; Bowden, R.; Hollands, K. Relationship between sunshine duration and solar radiation. Sol. Energy 2013, 92, 160–171. [Google Scholar] [CrossRef]
- Almeida, H.A. Climatologia Aplicada à Geografia, 2nd ed.; ADUEPB: Campina Grande, Brazil, 2016; p. 317. [Google Scholar]
- Cheung, H.; Chung, T. Analyzing sunlight duration and optimum shading using a sky map. Build. Environ. 2007, 42, 3138–3148. [Google Scholar] [CrossRef]
- Beruski, G.; Pereira, A.; Sentelhas, P. Desempenho de diferentes modelos de estimativa da radiação solar global em Ponta Grossa, PR. Rev. Bras. Meteorol. 2015, 30, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cui, N.; Feng, Y.; Jia, Y.; Li, Z.; Gong, D. Comparative Analysis of Global Solar Radiation Models in Different Regions of China. Adv. Meteorol. 2018, 2018, 3894831. [Google Scholar] [CrossRef] [Green Version]
- Dunn, A.; Hofmann, O.; Waters, B.; Witchel, E. Cloaking malware with the trusted platform module. In Proceedings of the 20th USENIX Security Symposium, San Francisco, CA, USA, 8–12 August 2011; Volume 1, pp. 395–410. [Google Scholar]
- Baumgartner, D.; Pötzi, W.; Freislich, H.; Strutzmann, H.; Veronig, A.; Foelsche, U.; Rieder, H. A comparison of long-term parallel measurements of sunshine duration obtained with a Campbell-Stokes sunshine recorder and two automated sunshine sensors. Theor. Appl. Climatol. 2018, 133, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Kómar, L.; Kocifaj, M. Statistical cloud coverage as determined from sunshine duration: A model applicable in daylighting and solar energy forecasting. J. Atmos. Sol.-Terr. Phys. 2016, 150, 1–8. [Google Scholar] [CrossRef]
- Moradi, I. Quality control of global solar radiation using sunshine duration hours. Energy 2009, 34, 1–6. [Google Scholar] [CrossRef]
- Maranhã, G.; Brito, A.; Leal, A.; Fonseca, J.; Macêdo, W. Using LDR as sensing element for an external fuzzy controller applied in photovoltaic pumping systems with variable-speed drives. Sensors 2015, 15, 24445–24457. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, Z.; Ullarh, S.; Ilyas, Z.; Aslam, N.; Iqbal, S.; Liu, S.; Meo, J.; Madni, H. An automation system for controlling streetlights and monitoring objects using Arduino. Sensors 2018, 18, 3178. [Google Scholar] [CrossRef] [Green Version]
- Barros, R.; Callegari, J.; Mendonca, D.; Amorim, W.; Silva, M.; Pereira, H. Low-cost solar irradiance meter using LDR sensors. In Proceedings of the 13th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, 12–14 November 2019; Volume 13, pp. 72–79. [Google Scholar]
- Júnior, F.G.F.; Lopes, J.S.B.; Maitelli, A.L.; Araújo, F.M.U.; Oliveira, L.A.H.G. Implementação de controladores pid utilizando lógica fuzzy e instrumentação industrial. Presented at the VII Simpósio Brasileiro Automação Inteligente, São Luiz, Brazil, 27–30 September 2005. [Google Scholar]
- Souza, F.; Tunala, L.; Rocha, P.; Abreu, C.; Martins, R.; Lima, I.; Lopes, R. Application of fuzzy logic for correction of gamma ray profile data and correlation with effective porosity of cores from the Resende basin, Rio de Janeiro. Rev. Bras. Geophys. 2010, 28, 619–629. [Google Scholar] [CrossRef]
- Carneiro, R.; Aguiar, B.; Neto, F.; Silveira, D. Cognitive Ability Assessment in adaptive systems using fuzzy logic and item response theory. In Proceedings of the XIII Brazilian Congress of Computational Intelligence, Niterói, Brazil, 30 October–1 November 2017; Volume 20, pp. 1–6. [Google Scholar]
- Şen, Z. Fuzzy algorithm for estimation of solar irradiation from sunshine duration. Sol. Energy 1997, 63, 39–49. [Google Scholar] [CrossRef]
- Diniz, J. Variability of precipitation and number of days with rain from two different cities in Paraíba. Holos 2013, 3, 112–123. [Google Scholar]
- Rocha, A.; Junior, W.; Duarte, R.; Fernandes, E.; Marcelino, E.; Diniz, J. Development and test of an electronic sunshine duration. COBEM 2019, 25, 10–18. [Google Scholar]
- National Institute of Meteorology (INMET): Historical Meteorological Data. Available online: http:/www.inmet.gov.br/dadoshistoricos (accessed on 5 July 2018).
- Cunha, J.; Nascimento, P.; Silveira, J.; Júnior, P.; Junior, J. Efficient methods to calculate class tank the coefficients to estimate the reference evapotranspiration. Eng. Agric. 2013, 24, 46–50. [Google Scholar]
- Miot, H. Agreement analysis in clinical and experimental studies. J. Vasc. Bras. 2016, 15, 89–92. [Google Scholar] [CrossRef]
- Diniz, J.; Dantas, R.; FIlho, J. Spatio-temporal variability of temperature and thermal diffusivity of the soil of Lagoa Seca-PB. Rev. Ambient. Agua 2014, 9, 445–458. [Google Scholar]
- Willmott, C.; Ackleson, S.; Davis, R.; Feddema, J.; Klink, K.; Legates, D.; O’Donnell, J.; Rowe, C. Statistics for the evaluation and comparison of models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Raniero, A.; Calça, M.; Pai, M. Automation of the process of counting the hours of sunlight. In Proceedings of the VII Brazilian Congress of Solar Energy, Gramado, Brazil, 17–20 April 2018; Volume 7, pp. 17–20. [Google Scholar]
- Carlos, A.; Porfirio, S.; Ceballos, J. Comparison between different methods of estimating heat stroke: An application to the Petrolina and Natal stations. In Proceedings of the XVII Brazilian Congress of Meteorology, Gramado, Brasil, 23–28 September 2008; Volume 17, pp. 23–28. [Google Scholar]
Correlation Coefficient (r) | Classification | Confidence Index (c) | Classification |
---|---|---|---|
>0.99 | Perfect | >0.85 | Excellent |
0.91–0.99 | Almost perfect | 0.76–0.85 | Very good |
0.71–0.90 | Very high | 0.66–0.75 | Good |
0.51–0.70 | High | 0.61–0.65 | Satisfactory |
0.31–0.50 | Moderate | 0.51–0.60 | poor |
0.11–0.30 | Low | 0.41–0.50 | Bad |
<0.10 | Very low | <0.40 | Very bad |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, Á.B.d.; Fernandes, E.d.M.; Santos, C.A.C.d.; Diniz, J.M.T.; Junior, W.F.A. Development and Validation of an Autonomous System for Measurement of Sunshine Duration. Sensors 2020, 20, 4606. https://doi.org/10.3390/s20164606
Rocha ÁBd, Fernandes EdM, Santos CACd, Diniz JMT, Junior WFA. Development and Validation of an Autonomous System for Measurement of Sunshine Duration. Sensors. 2020; 20(16):4606. https://doi.org/10.3390/s20164606
Chicago/Turabian StyleRocha, Álvaro B. da, Eisenhawer de M. Fernandes, Carlos A. C. dos Santos, Júlio M. T. Diniz, and Wanderley F. A. Junior. 2020. "Development and Validation of an Autonomous System for Measurement of Sunshine Duration" Sensors 20, no. 16: 4606. https://doi.org/10.3390/s20164606
APA StyleRocha, Á. B. d., Fernandes, E. d. M., Santos, C. A. C. d., Diniz, J. M. T., & Junior, W. F. A. (2020). Development and Validation of an Autonomous System for Measurement of Sunshine Duration. Sensors, 20(16), 4606. https://doi.org/10.3390/s20164606