Effects of the Design of Overview Maps on Three-Dimensional Virtual Environment Interfaces
Abstract
:1. Introduction
- This is the first work to integrate the visual variables of size and transparency in one study of VE interfaces, making it possible to determine the most appropriate overview map design for user navigation.
- A design principle for better navigation performance: High level of transparency significantly improves efficiency for users with the overview map in the condition of 1/2 screen size. Low level of transparency significantly improves efficiency for users with the overview map in the condition of 1/8 screen size. For the 20% transparent overview map, 1/8 screen size and 1/16 screen size offer significantly higher efficiency than 1/2 screen size.
- The findings from this study suggest that reducing the size of overview maps could effectively improve users’ subjective evaluations of the 3D VE user interfaces.
2. Related Work
3. Materials and Methods
3.1. Experiment Design and Hypotheses
- H1: The transparency of overview maps can make significant differences in users’ spatial perception and their subjective evaluations of the 3D VE user interfaces.
- H2: The size of overview maps can make significant differences in users’ spatial perception.
- H3: Users’ subjective evaluations of the 3D VE user interfaces can be improved by reducing the size of overview maps.
- H4: A significant interaction effect exists between the size and transparency of overview maps.
3.2. Participants
- Group with the 1/2 screen-size 80% transparent overview map: 13 females and 5 males;
- Group with the 1/8 screen-size 80% transparent overview map: 13 females and 5 males;
- Group with the 1/16 screen-size 80% transparent overview map: 12 females and 6 males;
- Group with the 1/2 screen-size 20% transparent overview map: 17 females and 1 male;
- Group with the 1/8 screen-size 20% transparent overview map: 15 females and 3 males;
- Group with the 1/16 screen-size 20% transparent overview map: 13 females and 5 males.
3.3. Prototype and Apparatus
3.4. Experimental Procedure
4. Results
4.1. Analyses of Total Task Completion Time and Errors
4.2. Analysis of Subjective Satisfaction
4.3. Analysis of Subjective Preference
4.4. Analysis of SUS
4.5. Qualitative Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Interrante, V.; Ries, B.; Anderson, L. Distance Perception in Immersive Virtual Environments, Revisited. In Proceedings of the IEEE Conference on Virtual Reality, Alexandria, VA, USA, 25–29 March 2006. [Google Scholar]
- Rolland, J.P.; Gibson, W.; Ariely, D. Towards quantifying depth and size perception in virtual environments. Presence Teleoperators Virtual Environ. 1995, 4, 24–49. [Google Scholar] [CrossRef]
- Thompson, W.; Willemsen, P.; Gooch, A.; Creem-regehr, S.; Loomis, J.; Beall, A. Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence Teleoperators Virtual Environ. 2004, 13, 560–571. [Google Scholar] [CrossRef]
- Devlin, A.S.; Bernstein, J. Interactive wayfinding: Map style and effectiveness. J. Environ. Psychol. 1997, 17, 99–110. [Google Scholar] [CrossRef]
- Gagnon, K.T.; Thomas, B.J.; Munion, A.; Creem-Regehr, S.H.; Cashdan, E.A.; Stefanucci, J.K. Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition 2018, 180, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, S.; Foulsham, T.; Eardley, A.F. Individual differences and personality correlates of navigational performance in the virtual route learning task. Comput. Hum. Behav. 2015, 45, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Schmid, F.; Richter, K.F.; Peters, D. Route aware maps: Multi granular wayfinding assistance. Spat. Cogn. Comput. 2010, 10, 184–206. [Google Scholar] [CrossRef]
- LaViola, J.J., Jr.; Kruijff, E.; McMahan, R.P.; Bowman, D.A.; Poupyrev, I. 3D User Interfaces: Theory and Practice, 2nd ed.; Addison-Wesley Professional: Boston, MA, USA, 2017. [Google Scholar]
- Burigat, S.; Chittaro, L. Visualizing references to off-screen content on mobile devices: A comparison of arrows, wedge, and overview+detail. Interact. Comput. 2011, 23, 156–166. [Google Scholar] [CrossRef]
- Wu, A.; Zhang, W.; Zhang, X. Evaluation of wayfinding aids in virtual environment. Int. J. Human-Comput. Interact. 2009, 25, 1–21. [Google Scholar] [CrossRef]
- Hornbæk, K.; Hertzum, M. The notion of overview in information visualization. Int. J. Human-Comput. Stud. 2011, 69, 509–525. [Google Scholar]
- Burigat, S.; Chittaro, L. Navigation in 3d virtual environments: Effects of user experience and location-pointing navigation aids. Int. J. Human-Comput. Stud. 2007, 65, 945–958. [Google Scholar] [CrossRef]
- Cockburn, A.; Karlson, A.; Bederson, B.B. A review of overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv. 2008, 41, 1–31. [Google Scholar] [CrossRef]
- Hornbæk, K.; Bederson, B.B.; Plaisant, C. Navigation patterns and usability of zoomable user interfaces with and without an overview. ACM Trans. Comput. Interact. 2002, 9, 362–389. [Google Scholar] [CrossRef]
- Sjölinder, M.; Höök, K.; Nilsson, L.G.; Andersson, G. Age differences and the acquisition of spatial knowledge in a three-dimensional environment: Evaluating the use of an overview map as a navigation aid. Int. J. Human-Comput. Stud. 2005, 63, 537–564. [Google Scholar] [CrossRef]
- Ruotolo, F.; Claessen, M.H.G.; van der Ham, I.J.M. Putting emotions in routes: The influence of emotionally laden landmarks on spatial memory. Psychol. Res. 2019, 83, 1083–1095. [Google Scholar] [CrossRef]
- Montello, D.R. Navigation. In Handbook of Visuospatial Thinking; Shah, P., Miyake, A., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 257–294. [Google Scholar]
- Siegel, A.W.; White, S.H. The development of spatial representations of large-scale environments. Adv. Child Develop. Behav. 1975, 10, 9–55. [Google Scholar]
- Yokosawa, K.; Wada, E.; Mitsumatsu, H. Coding and transformation of cognitive maps in a virtual environment. Electron. Commun. Jpn. 2005, 88, 43–50. [Google Scholar] [CrossRef]
- Chrastil, E.R.; Warren, W.H. Active and passive spatial learning in human navigation: Acquisition of survey knowledge. J. Exp. Psychol. Learn. Memory Cogn. 2013, 39, 1520–1537. [Google Scholar] [CrossRef] [Green Version]
- Ramloll, R.; Mowat, D. Wayfinding in Virtual Environments Using an Interactive Spatial Cognitive Map. In Proceedings of the 5th International Conference on Information Visualization, London, UK, 25–27 July 2001. [Google Scholar]
- Chen, C.H.; Chen, S.C.; Huang, Y.C. Effects of Wedge Design, Interaction Mode, and Viewing Perspective on User Wayfinding Behavior within a 3d Virtual Environment. In Proceedings of the 19th Triennial Congress of the International Ergonomics Association, Melbourne, Australia, 9–14 August 2015. [Google Scholar]
- Healey, C.G. Attention and visual memory in visualization and computer graphics. IEEE Trans. Vis. Comput. Graph. 2012, 18, 1170–1188. [Google Scholar] [CrossRef] [Green Version]
- Garlandini, S.; Fabrikant, S.I. Evaluating the effectiveness and efficiency of visual variables for geographic information visualization. In Spatial Information Theory; Hornsby, K.S., Claramunt, C., Eds.; Springer: Berlin, Germany, 2009; pp. 195–211. [Google Scholar]
- Burigat, S.; Chittaro, L. On the effectiveness of overview+detail visualization on mobile devices. Pers. Ubiquitous Comput. 2013, 17, 371–385. [Google Scholar] [CrossRef]
- Jakobsen, M.R.; Hornbæk, K. Interactive visualizations on large and small displays: The interrelation of display size, information space, and scale. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2336–2345. [Google Scholar] [CrossRef]
- Neuville, R.; Pouliot, J.; Poux, F.; De Rudder, L.; Billen, R. A Formalized 3D Geovisualization illustrated to selectivity purpose of virtual 3D city model. ISPRS Int. J. Geo-Inf. 2018, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Guiberson, P.F. An Examination of Transparency as a Visual Variable for the Mapping Sciences. Ph.D. Thesis, The University of Nebraska, Lincoln, NE, USA, 2007. [Google Scholar]
- Ardissono, L.; Delsanto, M.; Lucenteforte, M.; Mauro, N.; Savoca, A.; Scanu, D. Transparency-Based Information Filtering on 2D/3D Geographical Maps. In Proceedings of the 2018 International Conference on Advanced Visual Interfaces (AVI ’18), Castiglione della Pescaia, Italy, 29 May–1 June 2018. [Google Scholar]
- Halik, L. The analysis of visual variables for use in the cartographic design of point symbols for mobile augmented reality applications. Geod. Cartogr. 2012, 61, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Avery, B.; Sandor, C.; Thomas, B.H. Improving Spatial Perception for Augmented Reality X-ray Vision. In Proceedings of the Virtual Reality Conference 2009 (VR 2009), Lafayette, LA, USA, 14–18 March 2009. [Google Scholar]
- Wang, C.; Pouliot, J.; Hubert, F. How users perceive transparency in the 3D visualization of cadastre: Testing its usability in an online questionnaire. Geoinformatica 2017, 21, 599–618. [Google Scholar] [CrossRef]
- Baudisch, P.; Gutwin, C. Multiblending: Displaying Overlapping Windows Simultaneously without the Drawbacks of Alpha Blending. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’04), Vienna, Austria, 17–20 April 2004. [Google Scholar]
- Chen, M.X.; Chen, C.H. User Eexperience and Map Design for Wayfinding in a Virtual Environment. In Human Interface and the Management of Information: Information in Intelligent Systems, Proceedings of HCII 2019, Orlando, FL, USA, 26–31 July 2019; Yamamoto, S., Mori, H., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Harrison, B.L.; Kurtenbach, G.; Vicente, K.J. An Experimental Evaluation of Transparent User Interface Tools and Information Content. In Proceedings of the User Interface Software and Technology’95, Pittsburgh, PA, USA, 14–17 November 1995. [Google Scholar]
- Palmiero, M.; Nori, R.; Rogolino, C.; D’Amico, S.; Piccardi, L. Situated navigational working memory: The role of positive mood. Cogn. Process. 2015, 16, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Palmiero, M.; Piccardi, L. The role of emotional landmarks on topographical memory. Front. Psychol. 2017, 8, 763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccardi, L.; Guariglia, P.; Nori, R.; Palmiero, M. The role of emotional landmarks in embodied and not-embodied tasks. Brain Sci. 2020, 10, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooke, J. SUS: A Quick and Dirty Usability Scale. In Usability Evaluation in Industry; Jordan, P.W., Thomas, B., Weerdmeester, B.A., McClelland, A.L., Eds.; Taylor and Francis: London, UK, 1996; pp. 189–194. [Google Scholar]
- Alshammari, N.; Alshammari, T.; Sedky, M.; Champion, J.; Bauer, C. Openshs: Open smart home simulator. Sensors 2017, 17, 1003. [Google Scholar] [CrossRef] [Green Version]
- Pedroli, E.; Greci, L.; Colombo, D.; Serino, S.; Cipresso, P.; Arlati, S.; Mondellini, M.; Boilini, L.; Giussani, V.; Goulene, K.; et al. Characteristics, usability, and users experience of a system combining cognitive and physical therapy in a virtual environment: Positive bike. Sensors 2018, 18, 2343. [Google Scholar] [CrossRef] [Green Version]
- Preece, J. A Guide to Usability: Human Factors in Computing; Addison-Wesley: Wokingham, UK, 1993. [Google Scholar]
- Coulombe, D. Two-way ANOVA with and without repeated measurements, tests of simple main effects, and multiple comparisons for microcomputers. Behav. Res. Methods Instrum. Comput. 1984, 16, 397–398. [Google Scholar] [CrossRef]
- McGookin, D.; Herteleer, I.; Brewster, S. Transparency in Mobile Navigation. In Proceedings of the CHI ’11, Vancouver, BC, Canada, 7–12 May 2011. [Google Scholar]
- Kim, H.; Huh, B.K.; Im, S.H.; Joung, H.Y.; Kwon, G.H.; Park, J.H. Finding Satisfactory Transparency: An Empirical Study on Public Transparent Displays in a Shop Context. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’15), Seoul, Korea, 18–23 April 2015. [Google Scholar]
Paper | Conditions | Tasks | Results |
---|---|---|---|
Hornbæk et al. [14] | Interfaces with and without an overview on desktop. | Search for specific objects. Spatial recall of map objects. | • Overview maps should at least be 1/16 of the size of a detail view and should be larger to support navigation for small screens. • Faster navigation and better spatial recall of map objects for interfaces without an overview when the detail interface provides richer cues. • Higher preference for interfaces with an overview. • Users take more time to switch between overview and detail views. |
Burigat and Chittaro [25] | Overview maps with and without highlighted objects of interest on mobile devices. | Search for specific objects. Spatial recall of map objects. | • The size of an overview map is generally smaller than the detail view, and it is rarely the same or larger than the detail view. • Both direct manipulation of the overview and highlighting objects of interest in the overview improve navigation performance, but do not help spatial recall of map objects. |
Jakobsen and Hornbæk [26] | Focus + context, overview + detail, and zooming interfaces on different displays:0.17, 1.5, and 13.8 megapixels. | Select and compare specific objects. Trace a route. | • The median size of the overview region was 1/10 of the screen space. • Users perform worse for higher ratios of overview map size and screen size in navigation and object selection tasks, especially for small screens. |
Chen, M.X. and Chen, C.H. [34] | Opaque and semi-transparent overview maps on tablet devices. | Search for and compare specific objects. | • User performance with a semi-transparent overview map is significantly better than an opaque overview map regarding a difficult navigation task in VEs. |
No. | Question |
---|---|
1 | I think that I would like to use this interface frequently. |
2 | I found the interface unnecessarily complex. |
3 | I thought the interface was easy to use. |
4 | I think that I would need the support of a technical person to be able to use this interface. |
5 | I found the various functions in the interface were well integrated. |
6 | I thought there was too much inconsistency in this interface. |
7 | I imagine that most people would learn to use this interface very quickly. |
8 | I found the interface very awkward to use. |
9 | I felt very confident using the interface. |
10 | I needed to learn a lot of things before I could get going with this interface. |
Total Task Completion Time | 80% Transparent | 20% Transparent | Mean (Size) | Size | Transparency | Size × Transparency | |||
---|---|---|---|---|---|---|---|---|---|
Mean | (SD) | Mean | (SD) | Mean | (SD) | p | p | p | |
1/2 screen | 98.701 | 38.449 | 142.354 | 48.451 | 120.528 | 48.459 | p > 0.05 | p > 0.05 | p < 0.01 |
1/8 screen | 119.918 | 55.320 | 90.746 | 35.156 | 105.332 | 48.017 | |||
1/16 screen | 91.667 | 30.637 | 101.418 | 43.327 | 96.543 | 37.312 | |||
Mean (transparency) | 103.429 | 43.632 | 111.506 | 47.494 |
Size | Transparency(I) | Transparency(J) | MD(I-J) | SE | P |
1/2 screen | 20% transparent | 80% transparent | 43.653 | 14.232 | p < 0.01 |
1/8 screen | 20% transparent | 80% transparent | 29.172 | 14.232 | p < 0.05 |
1/16 screen | 20% transparent | 80% transparent | 9.752 | 14.232 | p > 0.05 |
Transparency | Size(I) | Size (J) | |||
80% transparent | 1/2 screen | 1/16 screen | 7.034 | 14.232 | p > 0.05 |
1/8 screen | 1/2 screen | 21.217 | 14.232 | p > 0.05 | |
1/8 screen | 1/16 screen | 28.251 | 14.232 | p > 0.05 | |
20% transparent | 1/2 screen | 1/8 screen | 51.608 | 14.232 | p < 0.01 |
1/2 screen | 1/16 screen | 40.936 | 14.232 | p < 0.05 | |
1/16 screen | 1/8 screen | 10.672 | 14.232 | p > 0.05 |
Total Errors | 80% Transparent | 20% Transparent | Mean (Size) | Size | Transparency | Size × Transparency | |||
---|---|---|---|---|---|---|---|---|---|
Mean | (SD) | Mean | (SD) | Mean | (SD) | p | p | p | |
1/2 screen | 0.44 | 0.705 | 0.28 | 0.461 | 0.36 | 0.593 | p > 0.05 | p > 0.05 | p > 0.05 |
1/8 screen | 0.44 | 0.616 | 0.61 | 0.502 | 0.53 | 0.560 | |||
1/16 screen | 0.44 | 0.616 | 0.44 | 0.511 | 0.44 | 0.558 | |||
Mean (transparency) | 0.44 | 0.634 | 0.44 | 0.502 |
Satisfaction | 80% Transparent | 20% Transparent | Mean (Size) | Size | Transparency | Size × Transparency | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | (SD) | Mean | (SD) | Mean | (SD) | p | Post Hoc (LSD) | p | p | |
1/2 screen | 5.67 | 1.029 | 5.39 | 0.698 | 5.53 | 0.878 | p < 0.05 | 1/8 > 1/2 | p > 0.05 | p > 0.05 |
1/8 screen | 6.06 | 0.802 | 6.22 | 0.548 | 6.14 | 0.683 | ||||
1/16 screen | 5.83 | 0.985 | 5.72 | 0.958 | 5.78 | 0.959 | ||||
Mean (transparency) | 5.85 | 0.940 | 5.78 | 0.816 |
Preference | 80% Transparent | 20% Transparent | Mean (Size) | Size | Transparency | Size × Transparency | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | (SD) | Mean | (SD) | Mean | (SD) | p | Post Hoc (LSD) | p | p | |
1/2 screen | 5.56 | 1.247 | 4.83 | 1.043 | 5.19 | 1.191 | p < 0.01 | 1/8 > 1/2, 1/16 > 1/2 | p > 0.05 | p < 0.05 |
1/8 screen | 5.89 | 1.079 | 5.78 | 0.647 | 5.83 | 0.878 | ||||
1/16 screen | 5.61 | 0.916 | 6.06 | 0.873 | 5.83 | 0.910 | ||||
Mean (transparency) | 5.69 | 1.079 | 5.56 | 1.003 |
Size | Transparency(I) | Transparency(J) | MD(I-J) | SE | P |
1/2 screen | 80% transparent | 20% transparent | 0.722 | 0.328 | p < 0.05 |
1/8 screen | 80% transparent | 20% transparent | 0.111 | 0.328 | p > 0.05 |
1/16 screen | 20% transparent | 80% transparent | 0.444 | 0.328 | p > 0.05 |
Transparency | Size(I) | Size (J) | |||
80% transparent | 1/8 screen | 1/2 screen | 0.333 | 0.328 | p > 0.05 |
1/8 screen | 1/16 screen | 0.278 | 0.328 | p > 0.05 | |
1/16 screen | 1/2 screen | 0.056 | 0.328 | p > 0.05 | |
20% transparent | 1/8 screen | 1/2 screen | 0.944 | 0.328 | p < 0.05 |
1/16 screen | 1/2 screen | 1.222 | 0.328 | p < 0.01 | |
1/16 screen | 1/8 screen | 0.278 | 0.328 | p > 0.05 |
SUS | 80% Transparent | 20% Transparent | Mean (Size) | Size | Transparency | Size × Transparency | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | (SD) | Mean | (SD) | Mean | (SD) | p | Post Hoc (LSD) | p | p | |
1/2 screen | 74.03 | 12.61 | 68.06 | 10.02 | 71.04 | 11.62 | p < 0.05 | 1/8 > 1/2 | p > 0.05 | p > 0.05 |
1/8 screen | 76.67 | 12.37 | 79.72 | 9.70 | 78.19 | 11.06 | ||||
1/16 screen | 77.64 | 13.13 | 73.33 | 9.39 | 75.49 | 11.46 | ||||
Mean (transparency) | 76.11 | 12.56 | 73.70 | 10.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Chen, M.-X. Effects of the Design of Overview Maps on Three-Dimensional Virtual Environment Interfaces. Sensors 2020, 20, 4605. https://doi.org/10.3390/s20164605
Chen C-H, Chen M-X. Effects of the Design of Overview Maps on Three-Dimensional Virtual Environment Interfaces. Sensors. 2020; 20(16):4605. https://doi.org/10.3390/s20164605
Chicago/Turabian StyleChen, Chien-Hsiung, and Meng-Xi Chen. 2020. "Effects of the Design of Overview Maps on Three-Dimensional Virtual Environment Interfaces" Sensors 20, no. 16: 4605. https://doi.org/10.3390/s20164605
APA StyleChen, C.-H., & Chen, M.-X. (2020). Effects of the Design of Overview Maps on Three-Dimensional Virtual Environment Interfaces. Sensors, 20(16), 4605. https://doi.org/10.3390/s20164605