Remaining Useful Life Prediction of Airplane Engine Based on PCA–BLSTM
Abstract
1. Introduction
2. Design of Hybrid Model based on PCA–BLSTM
2.1. Principal Component Analysis
2.2. BLSTM Neural Network
2.3. PCA–BLSTM Model Construction
2.4. Training Process
3. Experimental Verification
3.1. Introduce NASAC-MAPSS
3.2. Data Set Validation
4. Comparison of Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heng, A.; Zhang, S.; Tan, A.C.; Mathew, J. Rotating machinery prognostics: State of the art, challenges and opportunities. Mech. Syst. Sig. Process. 2009, 23, 724–739. [Google Scholar] [CrossRef]
- Wei, Y. The Research of Projective Nonnegative Matrix Factorization and application in Machine Remain Useful Life Prediction. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2014. [Google Scholar]
- Chen, H.; Jiang, B. A Review of Fault Detection and Diagnosis for the Traction System in High-Speed Trains. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1–16. [Google Scholar] [CrossRef]
- Meng, L.; Xu, A. Prediction of Residual Life of a Multivariate Airborne Electromechanical System. Ship Electron. Eng. 2018, 38, 109–113. [Google Scholar]
- Ju, J.; Hu, S.; Zhu, C.; Xu, Y. Fault Prediction Method Based on Improved SVM Algorithm. Electron. Opt. Control. 2018, 25, 6–9. [Google Scholar]
- Yuan, N.; Yang, H.; Fang, H. Aero-engine Prognostic Method Based on Convolutional Neural Network. Comput. Meas. Control. 2019, 27, 74–78. [Google Scholar]
- Tang, X.; Xu, W.; Tan, J.; Tan, Y. Prediction for remaining useful life of rolling bearings based on Long Short-Term Memory. J. Mach. Des. 2019, 36, 117–119. [Google Scholar]
- Zeng, H.; Guo, J. Fault Prognostic of Aeroengine Using Bidirectional LSTM Neural Network. J. Air Force Eng. Univ. Nat. Sci. Ed. 2019, 20, 26–32. [Google Scholar]
- Ge, Y.; Guo, L.; Niu, S.; Dou, Y. Prediction of remaining useful life based on t-SNE and LSTM for rotating machinery. J. Vib. Shock. 2020, 39, 223–231. [Google Scholar]
- Kang, S.; Zhou, Y.; Wang, Y.; Xie, J.; Mikulovich, V.I. Rolling Bearing RUL Prediction Method Based on Improved SAE and Bidirectional LSTM. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.16383/j.aas.c190796 (accessed on 11 August 2020).
- Song, Y.; Xia, T.; Zheng, Y.; Zhuo, P.; Pan, E. Remaining useful life prediction of turbofan engine based on Autoencoder-BLSTM. Comput. Integr. Manuf. Syst. 2019, 25, 1611–1619. [Google Scholar]
- Li, Y.; Li, T.; Liu, H. Recent advances in feature selection and its applications. Knowl. Inf. Syst. 2017, 53, 1–27. [Google Scholar] [CrossRef]
- Cunningham, J.P.; Ghahramani, Z. Linear dimensionality reduction: Survey, insights, and generalizations. J. Mach. Learn. Res. 2015, 16, 2859–2900. [Google Scholar]
- Ting, D.; Jordan, M.I. On Nonlinear Dimensionality Reduction, Linear Smoothing and Autoencoding. arXiv 2018, arXiv:1803.02432. [Google Scholar]
- Bianchi, F.M.; De Santis, E.; Rizzi, A.; Sadeghian, A. Short-Term Electric Load Forecasting Using Echo State Networks and PCA Decomposition. IEEE Access 2015, 3, 1931–1943. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Ramasso, E. Investigating computational geometry for failure prognostics. Int. J. Progn. Health Manag. 2014, 5, 1–18. [Google Scholar]
- Arcos-Garcia, A.; Alvarez-Garcia, J.A.; Soria-Morillo, L.M. Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods. Neural Netw. 2018, 99, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Shan, K. Research on Engine Fault Prediction Method Based on Deep Learning. Master’s Thesis, Civil Aviation University of China, Tianjin, China, 2019. [Google Scholar]
- Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation. In Proceedings of the 1st International Conference on Prognostics and Health Management (PHM08), Denver, CO, USA, 6–9 October 2008. [Google Scholar]
- Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long Short-Term Memory Network for Remaining Useful Life estimation. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 88–95. [Google Scholar] [CrossRef]
Name | Number of Engines in Training Set | Number of Engines in Test Set | Types of Working Conditions | Type of Failure | Number of Sensors | Type of Working Condition Parameters |
---|---|---|---|---|---|---|
FD003 | 100 | 100 | 1 | 2 | 21 | 3 |
Principal Component Sequence | Eigenvalue | Contribution Rate | Cumulative Contribution Rate |
---|---|---|---|
1 | 3659.51 | 0.3787 | 0.3787 |
2 | 2469.95 | 0.2556 | 0.6342 |
3 | 1264.72 | 0.1309 | 0.7651 |
4 | 616.37 | 0.0638 | 0.8289 |
5 | 402.09 | 0.0416 | 0.8705 |
6 | 190.44 | 0.0197 | 0.8902 |
7 | 174.23 | 0.018 | 0.9082 |
8 | 165.91 | 0.0172 | 0.9254 |
9 | 141.84 | 0.0147 | 0.94 |
10 | 116.44 | 0.012 | 0.9521 |
11 | 93.17 | 0.0096 | 0.9617 |
12 | 89.98 | 0.0093 | 0.971 |
13 | 83.77 | 0.0087 | 0.9797 |
14 | 76.8 | 0.0079 | 0.9877 |
15 | 61.47 | 0.0064 | 0.994 |
16 | 35.34 | 0.0037 | 0.9977 |
17 | 7.79 | 0.0008 | 0.9985 |
18 | 7.42 | 0.0008 | 0.9992 |
19 | 7.3 | 0.0008 | 1 |
Parameter | Value |
---|---|
Degradation threshold | 140 |
Units in the first layer of BLSTM | 100 |
Units in the second layer of BLSTM | 100 |
Units in the first layer of the full connection layer | 30 |
Units on the second layer of the full connection layer | 1 |
Dropout | 0.2 |
Bitch | 100 |
Parameter | Value |
---|---|
Degradation threshold | 140 |
Units in the first layer of BLSTM | 100 |
Units in the second layer of BLSTM | 50 |
Units of the full connection layer | 1 |
Dropout | 0.2 |
Bitch | 200 |
Parameter | Value |
---|---|
Degradation threshold | 140 |
Units in the first layer of BLSTM | 100 |
Units in the second layer of BLSTM | 50 |
Units in the first layer of the full connection layer | 30 |
Units on the second layer of the full connection layer | 1 |
Dropout | 0.2 |
Bitch | 100 |
Model | RMSE | Score |
---|---|---|
SVR | 25.69 | 52.84 |
LSTM | 11.99 | 15.22 |
BLSTM | 11.65 | 6.69 |
PCA–BLSTM | 11.1 | 4.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, S.; Han, X.; Hou, Y.; Song, Y.; Du, Q. Remaining Useful Life Prediction of Airplane Engine Based on PCA–BLSTM. Sensors 2020, 20, 4537. https://doi.org/10.3390/s20164537
Ji S, Han X, Hou Y, Song Y, Du Q. Remaining Useful Life Prediction of Airplane Engine Based on PCA–BLSTM. Sensors. 2020; 20(16):4537. https://doi.org/10.3390/s20164537
Chicago/Turabian StyleJi, Shixin, Xuehao Han, Yichun Hou, Yong Song, and Qingfu Du. 2020. "Remaining Useful Life Prediction of Airplane Engine Based on PCA–BLSTM" Sensors 20, no. 16: 4537. https://doi.org/10.3390/s20164537
APA StyleJi, S., Han, X., Hou, Y., Song, Y., & Du, Q. (2020). Remaining Useful Life Prediction of Airplane Engine Based on PCA–BLSTM. Sensors, 20(16), 4537. https://doi.org/10.3390/s20164537