Multimode Fabry–Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing
Abstract
:1. Introduction
2. The Optical Fiber Probe
2.1. Fabrication Process
2.2. Working Principle
3. Temperature Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chin, K.K.; Sun, Y.; Feng, G.; Georgiou, G.E.; Guo, K.; Niver, E.; Roman, H.; Noe, K. Fabry-Perot diaphragm fiber-optic sensor. Appl. Opt. 2007, 46, 7614. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Coelho, L.; Schuster, K.; Kobelke, J.; Santos, J.L.; Frazão, O. Fabry–Perot cavity based on a diaphragm-free hollow-core silica tube. Opt. Lett. 2011, 36, 4029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, Z.; Chen, N.; Pang, F.; Chen, Z.; Liu, Y.; Wang, T. Temperature characteristics of silicon core optical fiber Fabry–Perot interferometer. Opt. Lett. 2015, 40, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Favero, F.C.; Bouwmans, G.; Finazzi, V.; Villatoro, J.; Pruneri, V. Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing. Opt. Lett. 2011, 36, 4191–4193. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.R.; Hu, T.Y.; Wang, D.N. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express 2012, 20, 22813–22818. [Google Scholar] [CrossRef] [PubMed]
- André, R.M.; Warren-Smith, S.C.; Becker, M.; Dellith, J.; Rothhardt, M.; Zibaii, M.I.; Latifi, H.; Marques, M.B.; Bartelt, H.; Frazão, O. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips. Opt. Express 2016, 24, 14053–14065. [Google Scholar] [CrossRef]
- Warren-Smith, S.C.; André, R.M.; Dellith, J.; Eschrich, T.; Becker, M.; Bartelt, H. Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers. Sens. Actuators B Chem. 2017, 244, 1016–1021. [Google Scholar] [CrossRef]
- Islam, M.; Ali, M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef]
- Kou, J.; Feng, J.; Ye, L.; Xu, F.; Lu, Y. Miniaturized fiber taper reflective interferometer for high temperature measurement. Opt. Express 2010, 18, 14245–14250. [Google Scholar] [CrossRef]
- Rong, Q.; Sun, H.; Qiao, X.; Zhang, J.; Hu, M.; Feng, Z. A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer. J. Opt. 2012, 14, 045002. [Google Scholar] [CrossRef]
- Ge, M.; Li, Y.; Han, Y.; Xia, Z.; Guo, Z.; Gao, J.; Qu, S. High-sensitivity double-parameter sensor based on the fibre-tip Fabry–Pérot interferometer. J. Mod. Opt. 2017, 64, 596–600. [Google Scholar] [CrossRef]
- Chen, W.P.; Wang, D.N.; Xu, B.; Zhao, C.L.; Chen, H.F. Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement. Sci. Rep. 2017, 7, 368. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, C.; Xu, B.; Wang, D.; Yang, M. Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect. Opt. Commun. 2018, 414, 166–171. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, J.; Liao, H.; Lu, P.; Jiang, X.; Fu, X.; Ni, W.; Liu, D.; Zhang, J. Ultrasensitive Temperature Sensor With Cascaded Fiber Optic Fabry–Perot Interferometers Based on Vernier Effect. IEEE Photonics J. 2018, 10. [Google Scholar] [CrossRef]
- Xu, Z.; Luo, Y.; Liu, D.; Shum, P.P.; Sun, Q. Sensitivity-controllable refractive index sensor based on reflective θ-shaped microfiber resonator cooperated with Vernier effect. Sci. Rep. 2017, 7, 9620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Tang, M.; Gao, F.; Zhu, B.; Fu, S.; Ouyang, J.; Shum, P.P.; Liu, D. Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field. Opt. Express 2014, 22, 19581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Tang, M.; Gao, F.; Zhu, B.; Zhao, Z.; Duan, L.; Fu, S.; Ouyang, J.; Wei, H.; Shum, P.P.; et al. Simplified Hollow-Core Fiber-Based Fabry–Perot Interferometer With Modified Vernier Effect for Highly Sensitive High-Temperature Measurement. IEEE Photonics J. 2015, 7, 7100210. [Google Scholar] [CrossRef]
- Liao, H.; Lu, P.; Fu, X.; Jiang, X.; Ni, W.; Liu, D.; Zhang, J. Sensitivity amplification of fiber-optic in-line Mach–Zehnder Interferometer sensors with modified Vernier-effect. Opt. Express 2017, 25, 26898–26909. [Google Scholar] [CrossRef]
- Gomes, A.D.; Silveira, B.; Dellith, J.; Becker, M.; Rothhard, M.; Bartelt, H.; Frazao, O. Cleaved Silica Microsphere for Temperature Measurement. IEEE Photonics Technol. Lett. 2018, 30, 797–800. [Google Scholar] [CrossRef]
- André, R.M.; Pevec, S.; Becker, M.; Dellith, J.; Rothhardt, M.; Marques, M.B.; Donlagic, D.; Bartelt, H.; Frazão, O. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications. Opt. Express 2014, 22, 13102–13108. [Google Scholar] [CrossRef]
- Liu, G.; Han, M.; Hou, W. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express 2015, 23, 7237–7247. [Google Scholar] [CrossRef] [PubMed]
Sensitivity (pm/°C) | Temp. Range (°C) | Resolution (°C) | |
---|---|---|---|
FIB-milled FP modal interferometer (2010) [9] | 20 | 19–520 | - |
Polyvinyl alcohol FPI (2012) [10] | 173.5 (NL) | >80 | - |
SMF + etched P-doped fiber FPI (2014) [20] | 11.5–15.5 | 100–550 | - |
Silicon FPI (2015) [3] | 82 | 10–100 | 0.3 |
Silicon FPI (2015) [21] | 84.6 | 20–100 | 6 × 10−4 |
Hollow-core FPI with Vernier effect (2015) [17] | 816.65 | 20–90 | - |
Hollow-core FPI with Vernier effect (2015) [17] | 1019 | 250–300 | - |
FIB-milled silica FPI in fiber taper (2016) [6] | 15.8 | 40–140 | - |
Double polymer-capped FPI (2017) [11] | 689.68 | 20–75 | - |
MMF tip FPI + UV adhesive (2017) [12] | 213 (NL) | 55–85 | - |
Cascaded FPI with Vernier effect (2018) [13] | −97 | 30–60 | - |
Cascaded FPI with polymer, with Vernier effect (2018) [14] | 67,350 | 20–25 | - |
This work | −654 | 30–120 | 0.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, A.D.; Becker, M.; Dellith, J.; Zibaii, M.I.; Latifi, H.; Rothhardt, M.; Bartelt, H.; Frazão, O. Multimode Fabry–Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing. Sensors 2019, 19, 453. https://doi.org/10.3390/s19030453
Gomes AD, Becker M, Dellith J, Zibaii MI, Latifi H, Rothhardt M, Bartelt H, Frazão O. Multimode Fabry–Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing. Sensors. 2019; 19(3):453. https://doi.org/10.3390/s19030453
Chicago/Turabian StyleGomes, André D., Martin Becker, Jan Dellith, Mohammad I. Zibaii, Hamid Latifi, Manfred Rothhardt, Hartmut Bartelt, and Orlando Frazão. 2019. "Multimode Fabry–Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing" Sensors 19, no. 3: 453. https://doi.org/10.3390/s19030453
APA StyleGomes, A. D., Becker, M., Dellith, J., Zibaii, M. I., Latifi, H., Rothhardt, M., Bartelt, H., & Frazão, O. (2019). Multimode Fabry–Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing. Sensors, 19(3), 453. https://doi.org/10.3390/s19030453