Cascaded-Cavity Fabry-Perot Interferometric Gas Pressure Sensor based on Vernier Effect
Abstract
1. Introduction
2. Principle
3. Experimental Results and Discussion
3.1. Sensor Fabrication
3.2. Gas Pressure Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tang, D.; Yang, D.; Jiang, Y. Fiber loop ring-down optical fiber grating gas pressure sensor. Opt. Lasers Eng. 2010, 48, 1262–1265. [Google Scholar] [CrossRef]
- Schroeder, K.; Ecke, W.; Willsch, R. Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer. Opt. Lasers Eng. 2009, 10, 1018–1022. [Google Scholar] [CrossRef]
- Wang, J.N.; Tang, J.L. Photonic Crystal Fiber Mach-Zehnder Interferometer for Refractive Index Sensing. Sensors 2012, 12, 2983–2995. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liao, C.; Wang, Y. Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer. Opt. Express 2015, 23, 6673–6678. [Google Scholar] [CrossRef] [PubMed]
- Alwis, L.; Sun, T.; Grattan, K.T.V. Fibre optic long period grating-based humidity sensor probe using a Michelson interferometric arrangement. Sens. Actuators B Chem. 2013, 178, 694–699. [Google Scholar] [CrossRef]
- Liao, H.; Lu, P.; Fu, X.; Jiang, X.Y.; Ni, W.J.; Liu, D.M.; Zhang, J.S. Sensitivity amplification of fiber-optic in-line Mach–Zehnder Interferometer sensors with modified Vernier-effect. Opt. Express 2017, 25, 26898–26909. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shao, Y.; Yu, Y. A Highly Sensitive Fiber-Optic Fabry–Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement. Sensors 2016, 16, 794. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Park, K.S.; Park, S.J. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett. 2008, 33, 2455. [Google Scholar] [CrossRef] [PubMed]
- Thews, B.N. Measurement of Temperature, Refractive Index, or Axial Acceleration with Etched PCF Microfiber Structure. Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2015. [Google Scholar]
- Xu, L.C.; Deng, M.; Duan, D.W. High-temperature measurement by using a PCF-based Fabry–Perot interferometer. Opt. Lasers Eng. 2012, 50, 1391–1396. [Google Scholar] [CrossRef]
- Liu, B.; Lin, J.; Liu, H.; Ma, Y.; Yan, L.; Jin, P. Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier. Opt. Commun. 2017, 382, 514–518. [Google Scholar] [CrossRef]
- Melissinaki, V.; Farsari, M.; Pissadakis, S. Fabry-Perot vapour microsensor onto fibre endface fabricated by multiphoton polymerization technique. In Proceedings of the 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, Germany, 12–16 May 2013. [Google Scholar]
- Hou, M.; Wang, Y.; Liu, S.; Guo, J.; Li, Z.; Lu, P. Sensitivity-Enhanced Pressure Sensor With Hollow-Core Photonic Crystal Fiber. Lightw. Technol. 2014, 32, 4637–4641. [Google Scholar]
- Guan, B.O.; Wu, C.; Fu, H.Y. High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber. Opt. Lett. 2011, 36, 412–415. [Google Scholar]
- Ran, Z.; Liu, S.; Liu, Q. Novel High-Temperature Fiber-Optic Pressure Sensor Based on Etched PCF F-P Interferometer Micromachined by a 157-nm Laser. IEEE Sens. J. 2015, 15, 3955–3958. [Google Scholar]
- Donlagic, D.; Cibula, E. All-fiber high-sensitivity pressure sensor with SiO2 diaphragm. Opt. Lett. 2005, 30, 2071–2073. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, J.; Zhu, Y.; Cooper, K.; Wang, A. All-fused-silica miniature optical fiber tip pressure sensor. Opt. Lett. 2006, 31, 885–887. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Jin, W.; Ho, H.L. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 2012, 37, 2493–2495. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Fink, T.; Han, M.; Koester, L.; Turner, J.; Huang, J. High-sensitivity, high-frequency extrinsic Fabry–Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett. 2012, 37, 1505–1507. [Google Scholar] [CrossRef] [PubMed]
- Quan, M.; Tian, J.; Yao, Y. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect. Opt. Lett. 2015, 40, 4891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Tang, M.; Gao, F. Simplified Hollow-Core Fiber-Based Fabry–Perot Interferometer with Modified Vernier Effect for Highly Sensitive High-Temperature Measurement. IEEE Photonics J. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, M.; Gao, F. Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field. Opt. Express 2014, 22, 19581–19588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, P.; Lv, R. Highly Sensitive Airflow Sensor Based on Fabry–Perot Interferometer and Vernier Effect. J. Lightw. Technol. 2016, 34, 5351–5356. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Xu, B. Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect. Opt. Commun. 2018, 414, 166–171. [Google Scholar] [CrossRef]
- Dai, D. Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. Opt. Express 2009, 17, 23817–23822. [Google Scholar] [CrossRef] [PubMed]
- Claes, T.; Bogaerts, W.; Bienstman, P. Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 2010, 18, 22747–22761. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Qiao, X. Gas Refractometer Based on Optical Fiber Extrinsic Fabry—Perot Interferometer with Open Cavity. IEEE Photonics Technol. Lett. 2015, 27, 245–248. [Google Scholar] [CrossRef]
Parameter | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 |
---|---|---|---|---|
FSRs (nm) | 2.113 | 2.033 | 2.091 | 2.025 |
FSRr (nm) | 1.960 | 1.920 | 2.005 | 1.953 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Dai, Y.; Zhang, D.; Wen, X.; Yang, M. Cascaded-Cavity Fabry-Perot Interferometric Gas Pressure Sensor based on Vernier Effect. Sensors 2018, 18, 3677. https://doi.org/10.3390/s18113677
Chen P, Dai Y, Zhang D, Wen X, Yang M. Cascaded-Cavity Fabry-Perot Interferometric Gas Pressure Sensor based on Vernier Effect. Sensors. 2018; 18(11):3677. https://doi.org/10.3390/s18113677
Chicago/Turabian StyleChen, Peng, Yutang Dai, Dongsheng Zhang, Xiaoyan Wen, and Minghong Yang. 2018. "Cascaded-Cavity Fabry-Perot Interferometric Gas Pressure Sensor based on Vernier Effect" Sensors 18, no. 11: 3677. https://doi.org/10.3390/s18113677
APA StyleChen, P., Dai, Y., Zhang, D., Wen, X., & Yang, M. (2018). Cascaded-Cavity Fabry-Perot Interferometric Gas Pressure Sensor based on Vernier Effect. Sensors, 18(11), 3677. https://doi.org/10.3390/s18113677