You are currently viewing a new version of our website. To view the old version click .
Sensors
  • Review
  • Open Access

12 January 2011

Ge-Photodetectors for Si-Based Optoelectronic Integration

and
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576 Singapore, Singapore
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Photodetectors and Imaging Technologies

Abstract

High speed photodetectors are a key building block, which allow a large wavelength range of detection from 850 nm to telecommunication standards at optical fiber band passes of 1.3–1.55 μm. Such devices are key components in several applications such as local area networks, board to board, chip to chip and intrachip interconnects. Recent technological achievements in growth of high quality SiGe/Ge films on Si wafers have opened up the possibility of low cost Ge-based photodetectors for near infrared communication bands and high resolution spectral imaging with high quantum efficiencies. In this review article, the recent progress in the development and integration of Ge-photodetectors on Si-based photonics will be comprehensively reviewed, along with remaining technological issues to be overcome and future research trends.

1. Introduction

In the past decade, Si photonics has become one of the hottest research domains in the World since it holds great promise for maintaining the performance roadmap known as Moore’s Law. As short-distance data exchange rates approach 10 Gb/s, metal interconnection is facing a number of inevitable issues such as slow resistance-capacitance limit speed and large heat dissipation. Under these circumstances, it is well known that for data communication beyond 10 Gb/s, optical signal delivery is more advantageous compared to today’s copper interconnections. As a result, combining sophisticated process techniques, low cost and mass production, Si based Electro-Photonic Integrated Circuits (EPIC) emerge as one of the most promising solutions for next generation interconnection techniques. In fact, long-haul combinations have been based on fiber optics techniques for the last 30 years. The wavelength used for the majority of long-distance data transitions is in the 1.3–1.55 μm range, corresponding to the minimum loss window of silica optical fiber. If the same wavelength can be utilized in the future short-distance data transfers including inter-chip, chip-to-chip and Fiber-To-The-Home (FTTH) communications, all end users will be able to connect directly to the external servers without the need for wavelength conversion, making global communication much easier and cheaper. As a result, Si EPIC working in 1.3–1.55 μm wavelength has become aggressively pursued by researchers worldwide.

To date, enormous efforts have been invested in Si photonics techniques and critical breakthroughs and milestones have been achieved. Various passive components [1], active devises like lasers [2], and high speed modulators [3] have been reported. Being the device that ends the optical path, photodetectors, which convert light back into electrical signals, are vital component for Si photonic integrated circuits. In fact, the trigger of the past decade’s Si photonics upsurge was the first successful demonstration of the high-efficiency Germanium photodetector [4]. Although Si photodetectors have been widely used in optical receivers in the wavelength range around 850 nm, its relatively large bandgap of 1.12 eV corresponding to an absorption cutoff wavelength of ∼1.1 μm hinders Si photodetectors’ application in the longer wavelength range of 1.3 and 1.55 μm. For a more seamless integration with current long-haul communication technology, a material with strong absorption coefficient in the 1.30–1.55 μm is very desirable.

Among the available choices, III–V compound semiconductors possess the advantage of high absorption efficiency, high carrier drift velocity and mature design and fabrication technology for optical devices. Therefore, integration of high performance III–V photodetectors onto the Si platform by flip-chip bonding or direct heteroepitaxy has been widely reported. However, the introduction of III–V materials into Si process is at the expense of high cost, increased complexity and potential introduction of doping contaminants into the Si CMOS devices since III–V materials also act as dopants for group IV materials.

Germanium, a group IV material the same as Si, avoids the cross contamination issue. Though Ge is also an indirect bandgap (Eg = 0.66 eV) material like Si, its direct bandgap of 0.8 eV is only 140 meV above the dominant indirect bandgap. As a result, Ge offers much higher optical absorption in 1.3–1.55 μm wavelength range, thus making Ge-based photodetectors promising candidates for Si photonics integration. However, the 4% lattice mismatch between Ge and Si places challenging obstacle towards monolithic integration of high-quality low dislocation density Ge devices through Ge on Si heteroepitaxy. Nevertheless, to date, device-grade single-crystalline Ge films have been demonstrated by many groups with practical high performance Ge photodetectors.

In this review paper, we first introduce in Section 2 the various Ge growth techniques. Different photodetector electrical structures and light coupling schemes are briefly described in Sections 3 and 4, respectively. In Section 5, the historical research trends along with the performances of Ge photodetectors reported by various research groups are summarized, along with the remaining technical issues and future research directions. Conclusions are presented in Section 6.

2. Ge Growth Techniques

Tracing back in history, the first Ge on Si detector was reported in 1984 by Luryi et al. [5]. The demonstrated detector showed 41% quantum efficiency at a wavelength of 1.45 μm, where an MBE-grown 1,800 Ǻ n + GexSi1-x alloy (graded in ten steps from x = 0 to x = 1) acted as a buffer layer for the heteroepitaxy of Ge on Si. Since then, various techniques with their own pros and cons have been pursued for the growth of Ge films on Si surfaces. The main quality criterion of the Ge layer can be categorized as: procedure complexity, material cost, growth temperature, and the resulting Ge layer’s dislocation density and strain.

2.1. Poly Ge Films

For ease of integration of near-infrared detectors with standard Silicon process lines for signal acquisition, amplification and processing, low temperature growth of Ge layers is much desired. In 2000, a Ge deposition approach based on the thermal evaporation with process temperatures as low as ∼300 °C was first proposed in the pioneering work conducted by Masini et al. [6]. It was found that polycrystalline Ge deposition can be possible at substrate temperatures as low as 300 °C, as confirmed by the Raman spectra results (Figure 1). This method allows simple and low cost integration with Si processes. Monolithic integration of an array of eight polycrystalline Ge pixels with CMOS readout electronics was demonstrated based on this method [7], shortly after which Colace et al. [8] reported the realization of a digital camera, further confirming the process compatibility of the low-temperature approach.

Figure 1. (a) Raman spectra of the Ge on Si samples grown at different temperatures by thermal evaporation method. From [6]. (b) Photograph of one pixel of the digital camera (top) and a sketch of its cross section. From [8].

Moreover, although the low temperature deposition introduces a relatively high density of defects and dislocations into the poly-Ge layer and worsens the electrical properties compared to crystalline Ge films, it was shown recently that by a careful design, acceptable performance of the polycrystalline Ge photodetector for Si photonics integration can be obtained, with responsivities between 0.1 A/W and 0.3 A/W [9].

2.2. Crystalline Ge Growth with Graded SiGe Buffer Layers

In the early stage of crystalline Ge film epitaxy on Si wafers, a compositionally graded SiGe region was commonly adopted as buffer layer. This approach was first adopted in the SiGe/Si system by Luryi et al. [5] and later improved by Fitzgerald et al. in 1990 [10]. Multiple buffer layers with increasing Ge content were adopted to relax the high strain between Ge and Si, which minimizes dislocation nucleation and reduces the threading dislocations. The final strain-relaxed Si1-xGex layers grown on these graded layers showed low density of threading-dislocations, 4 × 105 cm−2 for x = 0.23 and 3 × 106 cm−2 for x = 0.50.

However, the graded SiGe buffer method usually requires a thick 10 μm buffer for pure Ge epitaxy on Si, while in modern Si photonics technology, Ge photodetectors are favorably fabricated in close adjacency with Si optical waveguide facilitating evanescent or butt-coupling of the optical power. As a result, a new technique with thin buffer layers is still needed.

2.3. Two Step LT/HT Ge Growth

The origin of the two-step LT/HT (low temperature/high temperature) growth technique can be traced back to 1986 for GaAs growth on Si by Fan et al. [11]. Its application in the epitaxially grown Ge on Si was first proposed and utilized by Colace et al. [12] in a ultra high vacuum chemical vapor deposition (UHVCVD) growth reactor in 1998, since when it has attracted wide interest for Ge epitaxial growth. In the two-step Ge growth procedure, first, after thorough cleaning, the substrate is maintained at low temperature (∼300–400 °C), and a thin layer of Ge buffer layer (∼50–100 nm) is grown to prevent strain release through undesirable island growth. Second, the substrate temperature is elevated to ∼550–700 °C and a thick Ge layer with reduced threading dislocation density is grown on top of the low-temperature thin Ge buffer. It should be noted that the two-step Ge method can be adopted not only in UHVCVD systems, but also in growth tools such as reduced-pressure CVD (RPCVD) [13] and molecule beam epitaxy (MBE) [14].

The Ge layers growth by two-step Ge epitaxy typically suffers from a high threading dislocation density (TDD) in the order of 108–109 cm−2. Therefore, high temperature annealling is employed by many groups to reduce the TDD to an acceptable level. For example, the research of Luan et al. indicates that the TDD in two-step Ge layer can be significantly reduced by cyclic thermal annealing. The optimized annealing condition (900 °C/10 min, 780 °C/10 min, cycle number: 10) can reduce the threading dislocation density to ∼2 × 107 cm−2 [15,16]. Ge photodetectors based on this process were successfully demonstrated to have improved performance [15,17]. However, the annealing process increases the thermal budget undesirable for photodetectors’ integration with Si MOSFET. Therefore, a number of experiments have been reported to demonstrate high Ge detector performance which are based on low-temperature anneal or even no additional thermal anneal [18,19]. In Table 1, some of the currently active groups’ Ge growth methods are summarized.

Table 1. Summary of recent Ge epitaxy method from selected groups.

2.4. Other Ge Growth Methods

Many attempts to modify the two-step Ge growth procedure have been reported. An UHV-CVD growth of high quality Ge on Si substrate using modified two-step Ge growth method combining with intermediate thin SiGe buffer layers was proposed first by Huang et al. in 2004 [26].The buffer region consisted of 0.6-μm-thick Si0.45Ge0.55 and 0.4-μm-thick Si0.35Ge0.65 layers. In-situ annealling for 15 min at 750 °C was carried out to further reduce the dislocation density. The thickness of the SiGe buffer was further reduced by Nakatsuru et al. [27] by employing a 13 nm-thick Si0.5Ge0.5 buffer layer grown at 450–520 °C. After post-deposition annealling of 800 °C/15 min, the Ge layer shows a low roughness of 0.44 nm. Loh et al. [28] also reported an epi-Ge layer based on the SiGe buffer method, where the SiGe buffer is grown at low temperature of 350–400 °C with the thickness of around 30 nm (Figures 2(a,b)).

Figure 2. (a) HR-TEM image of epitaxial Ge layer using two-step Ge growth method combining with an intermediate SiGe buffer layer. (b) Zoom-in image of the heterostructure epitaxial layers of Si/ Si0.75Ge0.25 /Ge. From [31].

Another way to improve Ge film quality is H2 annealing, which was reported by Choi et al. [29]. The demonstrated 800 °C/30 min anneal in H2 ambient is able to effectively improve the Ge film quality in terms of surface roughness and TDD. It is proposed that the increased atom mobility caused by hydrogen/Ge bonding is the main mechanism for the improved film surface planarity and defect density.

Recently, a new Ge epitaxy procedure based on low-energy plasma-enhanced chemical vapor deposition (LEPECVD) was demonstrated [30]. Thanks to the high deposition rates and high concentration of atomic H present in the chamber, Ge films with smooth surfaces and TDD ∼2 × 107 are achieved under low thermal budget. Moreover, the fabricated diode shows much lower dark current compared to the devices from UHVCVD method with comparable dislocation density. This is attributed to the improved passivation resulting from the dense plasma in the LEPECVD which is known to be efficient in generating atomic hydrogen radicals.

3. Photodetector Electrical Structures

Until now, a number of Ge based photodetectors with different structures are reported. Brief descriptions of typical photodetector structures will be given here for better understanding.

3.1. PIN Detectors

PN junctions are one of the most commonly used configurations for semiconductor photodetectors. The PIN diode where “I” stands for intrinsic, includes an intrinsic region in between the P and N regions. Due to the built-in potential or external reverse bias, the intrinsic region is depleted and has high resistivity, so that the voltage drop takes place mainly in this region, giving rise to high electric fields for effective collection of photo-generated electron-hole pairs (EHP). In this configuration, the thickness of the intrinsic region is always many times larger than the highly-doped regions so that most of the EHP’s are generated within the intrinsic region where the strong electric field helps to sweep the EHP to the adjacent p+/n+ region faster than diffusion. Another advantage of the PIN structure is that the depletion-region thickness (the intrinsic layer) can be tailored to optimize both the quantum efficiency and response bandwidth. In Ge PIN photodetectors, while the photoabsorption intrinsic layer is usually Ge for effective absorption around 1.55 μm, the p+ and n+ region can be formed either by implantation [32] or in-situ doping to form p+ and n+ regions for the PIN structure [14]. Another way is to use p+/n+ single crystalline Si substrates or deposited polycrystalline Si heterojunctions [33].

3.2. Metal-Semiconductor-Metal (MSM) Detectors

PIN photodiodes produce a voltage drop across the diode terminals in response to an external optical input. Such devices are categorized as photovoltaic devices. On the other hand, MSM photodetectors are photoconductive devices whose conductivity is altered when an optical illumination is imposed. Therefore, MSM photodetectors are only functional under non-zero external bias. MSM photodetectors possess the advantage of low capacitance and relative ease of fabrication. The intrinsically low capacitance resulting from its configuration has always been utilized to fabricate high-speed large area detectors. One issue in early Ge MSM photodetectors was their high dark current density, which gives rise to high stand-by power consumption, thus making Ge MSM photodetectors unfavorable and impractical. Due to the narrow bandgap and strong Fermi-level pinning of the metal/Ge interface at valence band, hole injection over Schottky Barrier Height (SBH) is the major component of the dark current in Ge MSM detectors. Regarding this issue, application of dopant segregation (DS) to Ge MSM photodetectors for dark current suppression was experimentally demonstrated by Zang et al. [3436]. Metal-Ge Schottky barrier height modification by an intermediate layer of large bandgap material such as amorphous Ge and SiC is also proposed [37]. While the demonstrated Ge MSM detectors are able to achieve dark current suppression of two to four orders of magnitude, it is still an open question whether these MSM Ge photodetectors are competitive with PIN devices.

3.3. Avalanche PD

The simplest avalanche photodiode (APD) has a similar device structure to a p-i-n photodiode. However, a voltage close to its breakdown is usually applied to APD for detection of low power signal with high sensitivity. Under sufficiently higher external bias, electrical field in the photodiode’s depletion region becomes high enough to initiate impact ionization which is responsible for carrier multiplication. Therefore, one absorbed incoming photon does not only generate one electron/hole pair but rather a large number of EPHs leading to a quantum efficiency potentially large than unity. The most important performance indices for APD is excess noise factor quantified by effective ratio of electron and hole ionization rate (keff), gain-efficiency product and sensitivity.

3.4. Dark Current Criteria for Photodetectors

An important issue in integrated photodetectors is dark current, which increases the power consumption of the receiver. Most importantly, shot noise associated with this leakage current undesirably degrades the Signal-to-Noise Ratio (SNR) leading to increased bit error rates (BERs).

Generally, dark currents less than 1 μA are referred to as acceptable value for a high-speed receiver design, below which the transimpedance amplifier (TIA) noise is the main noise source [23,38,39]. In practice, a precise value of the required dark current depends upon the speed of operation and the amplifier design. In the recent successful demonstration of an Ge-on-Si photodetector-based receiver, photodetectors with dark current of both ∼10 nA [38] and ∼2 μA [24] were reported. Depending on the receiver design, a higher dark current level is tolerable with certain sacrifices in the receiver parameters. For example, Vivien et al. [40] have shown that with an increase of the input power of about 20% in comparison with photodetector without dark current, a photodetector with 300 μA dark current is still able to ensure a BER of 10−18 at a frequency close to 50 GHz. The conclusion was drawn based on SPICE simulation taking into account of feedback resistance noise, the shot noise from detector dark current and photocurrent sources, and the transistor channel noise [41]. For the detailed modeling of the precise criteria for the dark current in high speed receiver, the readers are referred to [42] for further understanding.

4. Ge Photodetector Light Coupling Schemes

4.1. Normal Incidence Photodetectors and the Bandwidth-Efficiency Tradeoff

Normal incidence (NI) photodetectors are also known as vertical photodetectors or surface illuminated photodetectors. Normal incidence is the simplest light coupling scheme with incoming light illuminated on the top or bottom surface of the detector. Almost all the electrical structures, i.e., PIN, MSM and avalanche, can be fabricated in the fashion of NI photodetectors.

Due to its low process complexity, NI photodetectors are widely used in communication technologies. However, they suffer from an inherent drawback due to the bandwidth-efficiency tradeoff. This tradeoff results from the opposite requirement of the thickness of the photoabsorption layer for high bandwidth and high efficiency [43]. The carrier-transit-time-limiting bandwidth ft can be expressed as [44]:

f t 0.45 × υ d

While the ideal efficiency η assuming zero reflection and full carrier collection is:

η 1 e α × d
where υ is carrier transit velocity, d is intrinsic region’s thickness and α is material’s absorption coefficient. Using υ = 6 × 106 cm/s for Ge and α = 4,000 cm−1, the carrier-transit-time-limiting bandwidth and efficiencies versus intrinsic region thickness can be plotted as Figure 3. As can be seen, for a Ge device with 3dB bandwidth of 100 GHz, an intrinsic layer thinner than 0.27 μm is required with a resulting efficiency of ∼10%.
Figure 3. A Calculated carrier-transit-time-limiting bandwidth and efficiencies of normal incidence PIN Ge photodetector.

4.2. Resonant Cavity Enhanced (RCE) Detectors

To overcome the tradeoff between bandwidth and efficiency in NI detectors, one method is to sandwich a thin layer of photo absorbing material between two light reflectors so that cavity resonance is enhanced [45,46]. In this structure, light is ideally trapped between the two reflectors and travels through the center light absorber multiple times until fully absorbed. At the same time, the photoabsorption layer can be thin enough to achieve high bandwidth. Another advantage of RCE detectors is the wavelength selectivity. When the light reflector is fabricated in the form of a Bragg reflector, only light in a small range of certain wavelengths is reflected effectively so as to produce high efficiency. The RCE device’s light selectivity makes it especially useful for wavelength division multiplexing (WDM) systems.

Ge RCE Schottky photodetectors (Figure 4) were demonstrated by Dosunmu et al. [45] in 2005. The resonant cavity was formed between the Au reflecting top metal contact and the SOI substrate. The backside of the SOI wafer was polished to facilitate light coupling. Schottky contact was formed between the top contact Au and the Ge layer while the bottom contact of Au and p+-Si was ohmic contact. The resonant wavelength was found at around 1,538 nm, leading to an increased quantum efficiency of 59%.

Figure 4. Cross-sectional view of the back-illuminated Ge-SOI Schottky photodetector. From [45].

Although RCE photodetectors solve the bandwidth-efficiency tradeoff to some extent, the fabrication of high reflectivity mirrors increase the design and process complexity significantly. The multiple layers needed for effective reflection also make RCE detectors difficult integrate with other functional devices. Therefore, other methods with more process and integration friendliness are still required.

4.3. Waveguide Photodetectors

Waveguide integrated photodetectors have been considered to be one of the most promising candidates for overcoming the bandwidth-efficiency tradeoff in normal incidence detectors. In this configuration, a light signal is delivered to the device by in-plane optical waveguide rather than top down, permitting the bandwidth and efficiency to be determined almost independently because the efficiency is specified no longer by the photoabsorption layer thickness, but rather by the waveguide length. Furthermore, large scale integration of Si optical and electrical devices requires all devices to be fabricated on the same planar wafer, which makes an optical waveguide indispensable. Thus integration of a waveguide with photodetectors seems to be a natural choice. The development of Ge-on-Si photodetectors has been going on for more than ten years. In Table 2 and Figure 5, performances reported for some typical Ge photodetectors are summarized.

Table 2. Summary of performances from selected Ge photodetectors.
Figure 5. Bandwidth and responsivity of selected Ge photodetectors.

6. Conclusions

This paper summarizes the historical and current trends of Ge-on-Si photodetectors development, which is essential for Si EPIC integration. Various electrical structures (PIN, MSM, and avalanche) and optical coupling schemes (normal incidence, resonant cavity enhancement and waveguide integration) have been adopted in Ge photodetectors, demonstrating high responsivity approaching 100% quantum efficiency and high speed operation at around 40 Gb/s. With practical Si photonics EPIC around the corner, higher speed, easier integration with CMOS fabrication and novel approaches such as plasmonics-enabled nano-scale detector will become the main focuses of research in the near future.

References

  1. Michel, J.; Liu, J.; Ahn, D.; Sparacin, D.; Sun, R.; Hong, C.; Giziewicz, W.; Beals, M.; Kimerling, L.; Kopa, A. Advances in fully CMOS integrated photonic devices. Proc. SPIE 2007. [Google Scholar] [CrossRef]
  2. Liu, J.; Sun, X.; Camacho-Aguilera, R.; Kimerling, L.; Michel, J. Ge-on-Si laser operating at room temperature. Optic. lett 2010, 35, 679–681. [Google Scholar]
  3. Liu, J.; Beals, M.; Pomerene, A.; Bernardis, S.; Sun, R.; Cheng, J.; Kimerling, L.; Michel, J. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photon 2008, 2, 433–437. [Google Scholar]
  4. Colace, L.; Masini, G.; Assanto, G.; Luan, H.; Wada, K.; Kimerling, L. Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett 2000, 76, 1231–1233. [Google Scholar]
  5. Luryi, S.; Kastalsky, A.; Bean, J. New infrared detector on a silicon chip. IEEE Trans. Electron. Dev 1984, 31, 1135–1139. [Google Scholar]
  6. Masini, G.; Colace, L.; Galluzzi, F.; Assanto, G. Advances in the field of poly-Ge on Si near infrared photodetectors. Mater. Sci. Eng. B 2000, 69, 257–260. [Google Scholar]
  7. Masini, G.; Cencelli, V.; Colace, L.; De Notaristefani, F.; Assanto, G. Monolithic integration of near-infrared Ge photodetectors with Si complementary metal-oxide-semiconductor readout electronics. Appl. Phys. Lett 2002, 80, 3268–3270. [Google Scholar]
  8. Colace, L.; Masini, G.; Cencelli, V.; DeNotaristefani, F.; Assanto, G. A near-infrared digital camera in polycrystalline germanium integrated on silicon. IEEE J. Quantum Electron 2007, 43, 311–315. [Google Scholar]
  9. Sorianello, V.; Balbi, M.; Colace, L.; Assanto, G.; Socci, L.; Bolla, L.; Mutinati, G.; Romagnoli, M. Guided-wave photodetectors in germanium on SOI optical chips. Physica E 2009, 41, 1090–1093. [Google Scholar]
  10. Fitzgerald, E.; Xie, Y.; Green, M.; Brasen, D.; Kortan, A.; Michel, J.; Mii, Y.; Weir, B. Totally relaxed GeSi layers with low threading dislocation densities grown on Si substrates. Appl. Phys. Lett 1991, 59, 811–814. [Google Scholar]
  11. Fan, J.; Tsaur, B.; Gale, R.; Davis, F. Reducing Dislocations in Semiconductors Utilizing Repeated Thermal Cycling during Multistage Epitaxial Growth. U.S. Patent 4,632,712,. 30 December 1986. [Google Scholar]
  12. Colace, L.; Masini, G.; Galluzzi, F.; Assanto, G.; Capellini, G.; Di Gaspare, L.; Palange, E.; Evangelisti, F. Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si. Appl. Phys. Lett 1998, 72, 3175–3178. [Google Scholar]
  13. Hartmann, J.M.; Abbadie, A.; Papon, A.M.; Holliger, P.; Rolland, G.; Billon, T.; Fedeli, J.M.; Rouviere, M.; Vivien, L.; Laval, S. Reduced pressure—chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-mu m photodetection. J. Appl. Phys 2004, 95, 5905–5913. [Google Scholar]
  14. Jutzi, M.; Berroth, M.; Wohl, G.; Oehme, M.; Kasper, E. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photon. Technol. Lett 2005, 17, 1510–1512. [Google Scholar]
  15. Luan, H.; Lim, D.; Colace, L.; Masini, G.; Assanto, G.; Wada, K.; Kimerling, L. Germanium Photodetectors for Silicon Microphotonics by Direct Epitaxy on Silicon; Warrendale, P., Ed.; Materials Research Society: Warrendale, PA, USA, 2000; pp. 279–284. [Google Scholar]
  16. Luan, H.; Lim, D.; Lee, K.; Chen, K.; Sandland, J.; Wada, K.; Kimerling, L. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett 1999, 75, 2909–2912. [Google Scholar]
  17. Fama, S.; Colace, L.; Masini, G.; Assanto, G.; Luan, H. High performance germanium-on-silicon detectors for optical communications. Appl. Phys. Lett 2002, 81, 586–589. [Google Scholar]
  18. Colace, L.; Balbi, M.; Masini, G.; Assanto, G.; Luan, H.; Kimerling, L. Ge on Si pin photodiodes operating at 10 Gbit/s. Appl. Phys. Lett 2006, 88, 101111–101114. [Google Scholar]
  19. Feng, N.; Dong, P.; Zheng, D.; Liao, S.; Liang, H.; Shafiiha, R.; Feng, D.; Li, G.; Cunningham, J.; Krishnamoorthy, A. Vertical pin germanium photodetector with high external responsivity integrated with large core Si waveguides. Opt. Express 2010, 18, 96–101. [Google Scholar]
  20. Vivien, L.; Osmond, J.; Fédéli, J.; Marris-Morini, D.; Crozat, P.; Damlencourt, J.; Cassan, E.; Lecunff, Y.; Laval, S. 42 GHz pin Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 2009, 17, 6252–6257. [Google Scholar]
  21. Morse, M.; Dosunmu, O.; Sarid, G.; Chetrit, Y. Performance of Ge-on-Si pin photodetectors for standard receiver modules. IEEE Photon. Technol. Lett 2006, 18, 2442–2444. [Google Scholar]
  22. Dehlinger, G.; Koester, S.; Schaub, J.; Chu, J.; Ouyang, Q.; Grill, A.; Technologie, I.; Villach, A. High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photon. Technol. Lett 2004, 16, 2547–2549. [Google Scholar]
  23. Ahn, D.; Hong, C.; Liu, J.; Giziewicz, W.; Beals, M.; Kimerling, L.; Michel, J.; Chen, J.; Krtner, F. High performance, waveguide integrated Ge photodetectors. Opt. Express 2007, 15, 3916–3921. [Google Scholar]
  24. Masini, G.; Capellini, G.; Witzens, J.; Gunn, C. A 1,550nm, 10 Gbps monolithic optical receiver in 130 nm CMOS with integrated Ge waveguide photodetector. Proceedings of the 4th IEEE International Conference on Group IV Photonics 2007, Tokyo, Japan, 19–21 September 2007; pp. 1–3.
  25. Suh, D.; Kim, S.; Joo, J.; Kim, G. 36-GHz high-responsivity Ge photodetectors grown by RPCVD. IEEE Photon. Technol. Lett 2009, 21, 672–674. [Google Scholar]
  26. Huang, Z.; Oh, J.; Campbell, J. Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers. Appl. Phys. Lett 2004, 85, 3286–3289. [Google Scholar]
  27. Nakatsuru, J.; Date, H.; Mashiro, S.; Ikemoto, M. Growth of High Quality Ge Epitaxial Layer on Si (100) Substrate Using Ultra Thin SiGe Buffer; Materials Research Society: Warrendale, PA, USA, 2006; pp. 315–320. [Google Scholar]
  28. Loh, T.; Nguyen, H.; Tung, C.; Trigg, A.; Lo, G.; Balasubramanian, N.; Kwong, D.; Tripathy, S. Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si (100) by ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett 2007, 90, 092108:1–092108:3. [Google Scholar]
  29. Choi, D.; Ge, Y.; Harris, J.S.; Cagnon, J.; Stemmer, S. Low surface roughness and threading dislocation density Ge growth on Si (0 0 1). J. Cryst. Growth 2008, 310, 4273–4279. [Google Scholar]
  30. Osmond, J.; Isella, G.; Chrastina, D.; Kaufmann, R.; Acciarri, M.; Kanel, H.V. Ultralow dark current Ge/Si(100) photodiodes with low thermal budget. Appl. Phys. Lett 2009, 94, 201106:1–201106:3. [Google Scholar]
  31. Zang, H.; Loh, W.; Ye, J.; Loh, T.H.; Lo, G.; Cho, B. Integration of dual channels MOSFET on defect-free, tensile-strained germanium on Silicon. Proceedings of International Conference on Solid State Devices and Materials (SSDM 2007), Ibaraki, Japan, 18–21 September 2007; pp. 32–33.
  32. Wang, J.; Loh, W.Y.; Zang, H.; Yu, M.B.; Chua, K.T.; Loh, T.H.; Ye, J.D.; Yang, R.; Wang, X.L.; Lee, S.J.; Cho, B.J.; Lo, G.Q.; Kwong, D.L. Integration of tensile-strained Ge p-i-n photodetector on advanced CMOS platform. Proceedings of the 4th IEEE International Conference on Group IV Photonics 2007, Tokyo, Japan, 19–21 September 2007; pp. 1–3.
  33. Liu, J.; Michel, J.; Giziewicz, W.; Pan, D.; Wada, K.; Cannon, D.; Jongthammanurak, S.; Danielson, D.; Kimerling, L.; Chen, J. High-performance, tensile-strained Ge pin photodetectors on a Si platform. Appl. Phys. Lett 2005, 87, 103501–103504. [Google Scholar]
  34. Zang, H.; Lee, S.; Loh, W.; Wang, J.; Chua, K.; Yu, M.; Cho, B.; Lo, G.; Kwong, D. Dark-current suppression in metal-germanium-metal photodetectors through dopant-segregation in NiGe-Schottky barrier. IEEE Electr. Dev. Lett 2008, 29, 161–164. [Google Scholar]
  35. Zang, H.; Lee, S.; Loh, W.; Wang, J.; Yu, M.; Lo, G.; Kwong, D.; Cho, B. Application of dopant segregation to metal-germanium-metal photodetectors and its dark current suppression mechanism. Appl. Phys. Lett 2008, 92, 051110:1–051110:3. [Google Scholar]
  36. Zang, H.; Lee, S.; Yu, M.; Loh, W.; Wang, J.; Lo, G.; Kwong, D. High-speed metal-germanium-metal configured PIN-like Ge-photodetector under photovoltaic mode and with dopant-segregated Schottky-contact engineering. IEEE Photon. Technol. Lett 2008, 20, 1965–1967. [Google Scholar]
  37. Ang, K.; Zhu, S.; Wang, J.; Chua, K.; Yu, M.; Lo, G.; Kwong, D. Novel silicon-carbon (Si: C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors. IEEE Electr. Dev. Lett 2008, 29, 704–707. [Google Scholar]
  38. Koester, S.; Schow, C.; Schares, L.; Dehlinger, G.; Schaub, J.; Doany, F.; John, R. Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications. J. Lightwave Technol 2007, 25, 46–57. [Google Scholar]
  39. Koester, S.; Schaub, J.; Dehlinger, G.; Chu, J. Germanium-on-SOI infrared detectors for integrated photonic applications. IEEE J. Sel. Top. Quantum Electr 2007, 12, 1489–1502. [Google Scholar]
  40. Vivien, L.; Rouvière, M.; Fédéli, J.; Marris-Morini, D.; Damlencourt, J.; Mangeney, J.; Crozat, P.; El Melhaoui, L.; Cassan, E.; Le Roux, X. High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide. Opt. Express 2007, 15, 9843–9848. [Google Scholar]
  41. Cassan, E.; Marris, D.; Rouviere, M.; Laval, S.; Vivien, L.; Koster, A. Comparison between electrical and optical clock distribution for CMOS integrated circuits. Proceedings of SPIE 2004, Denver, CO, USA, 1 August 2004; pp. 89–100.
  42. Muoi, T. Receiver design for high-speed optical-fiber systems. J. Lightwave Technol 1986, 2, 243–267. [Google Scholar]
  43. Kato, K. Ultrawide-band/high-frequency photodetectors. IEEE Trans. Microwave Theory 1999, 47, 1265–1281. [Google Scholar]
  44. Sze, S.; Ng, K. Physics of Semiconductor Devices; Wiley-Blackwell: Boston, MA, USA, 2007. [Google Scholar]
  45. Dosunmu, O.; Cannon, D.; Emsley, M.; Kimerling, L.; Unlu, M. High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1,550-nm operation. IEEE Photon. Technol. Lett 2005, 17, 175–177. [Google Scholar]
  46. Dosunmu, O.; Emsley, M.K.; Cannon, D.D.; Ghyselen, B.; Kimerling, L.C.; Unlu, M.S. Germanium on Double-SOI Photodetectors for 1,550 nm Operation, Proceedings of the 16th Annual Meeting of the IEEE, Tucson, AZ, USA, 27–28 October 2003; Lasers and Electro-Optics Society (LEOS): Piscataway, NJ, USA, 2003; 852, pp. 853–854.
  47. Yin, T.; Cohen, R.; Morse, M.; Sarid, G.; Chetrit, Y.; Rubin, D.; Paniccia, M. 31 GHz Ge nip waveguide photodetectors on Silicon-on-Insulator substrate. Opt. Express 2007, 15, 13965–13971. [Google Scholar]
  48. Wang, J.; Loh, W.; Chua, K.; Zang, H.; Xiong, Y.; Tan, S.; Yu, M.; Lee, S.; Lo, G.; Kwong, D. Low-voltage high-speed (18 GHz/1 V) evanescent-coupled thin-film-Ge lateral PIN photodetectors integrated on Si waveguide. IEEE Photon. Technol. Lett 2008, 20, 1485–1487. [Google Scholar]
  49. Chen, L.; Lipson, M. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 2009, 17, 7901–7906. [Google Scholar]
  50. Klinger, S.; Berroth, M.; Kaschel, M.; Oehme, M.; Kasper, E. Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photon. Technol. Lett 2009, 21, 920–922. [Google Scholar]
  51. Dongwoo, S.; Jiho, J.; Sanghoon, K.; Gyungock, K. High-speed RPCVD Ge waveguide photodetector. Proceedings of the 6th IEEE International Conference on Group IV Photonics (GFP’ 09), San Francisco, CA, USA, 9–11 September 2009; pp. 16–18.
  52. Assefa, S.; Fengnian, X.; Vlasov, Y.A. CMOS-integrated low-noise germanium waveguide avalanche photodetector operating at 40 Gbps. Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2010), Los Angeles, CA, USA, 21–25 March 2010; pp. 1–3.
  53. Kang, Y.; Liu, H.; Morse, M.; Paniccia, M.; Zadka, M.; Litski, S.; Sarid, G.; Pauchard, A.; Kuo, Y.; Chen, H. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat. Photon 2008, 3, 59–63. [Google Scholar]
  54. Ang, K.; Ng, J.; Lim, A.; Yu, M.; Lo, G.; Kwong, D. Waveguide-integrated Ge/Si avalanche photodetector with 105 GHz gain-bandwidth product. Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2010), Los Angeles, CA, USA, 21–25 March 2010.
  55. Assefa, S.; Xia, F.; Vlasov, Y. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 2010, 464, 80–84. [Google Scholar]
  56. Wang, J.; Loh, W.; Zang, H.; Yu, M.; Chua, K.; Loh, T.; Ye, J.; Yang, R.; Wang, X.; Lee, S. Integration of tensile-strained Ge pin photodetector on advanced CMOS platform. Proceedings of the 4th IEEE International Conference on Group IV Photonics 2007, Tokyo, Japan, 19–21 September 2007; pp. 1–3.
  57. Loh, W.; Wang, J.; Ye, J.; Yang, R.; Nguyen, H.; Chua, K.; Song, J.; Loh, T.; Xiong, Y.; Lee, S. Impact of local strain from selective epitaxial germanium with thin Si/SiGe buffer on high-performance pin photodetectors with a low thermal budget. IEEE Electron. Dev. Lett 2007, 28, 984–986. [Google Scholar]
  58. Loh, T.; Nguyen, H.; Murthy, R.; Yu, M.; Loh, W.; Lo, G.; Balasubramanian, N.; Kwong, D.; Wang, J.; Lee, S. Selective epitaxial germanium on silicon-on-insulator high speed photodetectors using low-temperature ultrathin Si 0.8 Ge 0.2 buffer. Appl. Phys. Lett 2007, 91, 073503:1–073503:3. [Google Scholar]
  59. Ang, K.; Yu, M.; Zhu, S.; Chua, K.; Lo, G.; Kwong, D. Novel NiGe MSM photodetector geaturing asymmetrical Schottky barriers using sulfur Co-implantation and segregation. IEEE Electron. Dev. Lett 2008, 29, 708–710. [Google Scholar]
  60. Masini, G.; Colace, L.; Assanto, G.; Luan, H.; Kimerling, L. High-performance pin Ge on Si photodetectors for the near infrared: from model to demonstration. IEEE Trans. Electron. Dev 2001, 48, 1092–1096. [Google Scholar]
  61. Rouvière, M.; Vivien, L.; Le Roux, X.; Mangeney, J.; Crozat, P.; Hoarau, C.; Cassan, E.; Pascal, D.; Laval, S.; Fédéli, J. Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 m operation. Appl. Phys. Lett 2005, 87, 231109:1–231109:3. [Google Scholar]
  62. Liu, J.; Cannon, D.; Wada, K.; Ishikawa, Y.; Jongthammanurak, S.; Danielson, D.; Michel, J.; Kimerling, L. Tensile strained Ge pin photodetectors on Si platform for C and L band telecommunications. Appl. Phys. Lett 2005, 87, 011110:1–011110:3. [Google Scholar]
  63. Jutzi, M.; Berroth, M.; Wöhl, G.; Oehme, M.; Kasper, E. Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2 GHz at 1,300 nm. Mater. Sci. Semicond. Process 2005, 8, 423–427. [Google Scholar]
  64. Oehme, M.; Werner, J.; Kasper, E.; Jutzi, M.; Berroth, M. High bandwidth Ge pin photodetector integrated on Si. Appl. Phys. Lett 2006, 89, 071117:1–071117:3. [Google Scholar]
  65. Liu, J.F.; Pan, D.; Jongthammanurak, S.; Ahn, D.; Hong, C.Y.; Beals, M.; Kimerling, L.C.; Michel, J.; Pomerene, A.T.; Hill, C.; Jaso, M.; Tu, K.Y.; Chen, Y.K.; Patel, S.; Rasras, M.; White, A.; Gill, D.M. Waveguide-Integrated Ge p-i-n Photodetectors on SOI Platform. Proceedings of 3rd IEEE International Conference on Group IV Photonics 2006, Ottawa, Canada, 13–15 September 2006; pp. 173–175.
  66. Donghwan, A.; Ching-Yin, H.; Jifeng, L.; Beals, M.; Jian, C.; Kaertner, F.X.; Kimerling, L.C.; Michel, J. Ge photodetectors integrated with waveguides for electronic-photonic integrated circuits on CMOS platform. Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2007), Anaheim, CA, USA, 25–29 March 2007; pp. 1–3.
  67. Liu, J.; Ahn, D.; Hong, C.; Pan, D.; Jongthammanurak, S.; Beals, M.; Kimerling, L.; Michel, J.; Pomerene, A.; Carothers, D. Waveguide integrated Ge pin photodetectors on a silicon-on-insulator platform. Proceedings of 2006 Optics Valley of China International Symposium on Optoelectronics, Wuhan, China, November 2006; pp. 1–4.
  68. Wang, J.; Loh, W.; Chua, K.; Zang, H.; Xiong, Y.; Loh, T.; Yu, M.; Lee, S.; Lo, G.; Kwong, D. Evanescent-coupled Ge pin photodetectors on Si-waveguide with SEG-Ge and comparative study of lateral and vertical pin configurations. IEEE Electron. Dev. Lett 2008, 29, 445–448. [Google Scholar]
  69. Shiyang, Z.; Kah-Wee, A.; Rustagi, S.C.; Wang, J.; Xiong, Y.Z.; Lo, G.Q.; Kwong, D.L. Waveguided Ge/Si avalanche photodiode with separate vertical SEG-Ge absorption, lateral Si charge, and multiplication configuration. IEEE Electron. Dev. Lett 2009, 30, 934–936. [Google Scholar]
  70. Tao, Y.; Cohen, R.; Morse, M.M.; Sarid, G.; Chetrit, Y.; Rubin, D.; Paniccia, M.J. 40 Gb/s Ge-on-SOI waveguide photodetectors by selective Ge growth. Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2008), San Diego, CA, USA, 24–28 Feburary 2008; pp. 1–3.
  71. Assefa, S.; Xia, F.; Bedell, S.; Zhang, Y.; Topuria, T.; Rice, P.; Vlasov, Y. CMOS-integrated high-speed MSM germanium waveguide photodetector. Opt. Express 2010, 18, 4986–4999. [Google Scholar]
  72. Dazeng, F.; Shirong, L.; Po, D.; Ning-Ning, F.; Dawei, Z.; Hong, L.; Shafiiha, R.; Guoliang, L.; Cunningham, J.; Raj, K.; Krishnamoorthy, A.V.; Asghari, M. Horizontal p-i-n high-speed Ge waveguide detector on large cross-section SOI waveguide. Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2010), Los Angeles, CA, USA, 21–25 March 2010; pp. 1–3.
  73. Suh, D.; Joo, J.; Kim, S.; Kim, G. High-speed RPCVD Ge waveguide photodetector. Proceedings of the 6th IEEE International Conference on Group IV Photonics (GFP’ 09), San Francisco, CA, USA, 9–11 September 2009; pp. 16–18.
  74. Pavesi, L.; Lockwood, D. Silicon Photonics, Topics in Applied Physics; Springer-Verlag: Berlin, Germany, 2004; Volume 94. [Google Scholar]
  75. Ang, K.; Liow, T.; Yu, M.; Fang, Q.; Song, J.; Lo, G.; Kwong, D. Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform. IEEE J. Sel. Top. Quantum Electron 2010, 16, 106–113. [Google Scholar]
  76. Schuller, J.; Barnard, E.; Cai, W.; Jun, Y.; White, J.; Brongersma, M. Plasmonics for extreme light concentration and manipulation. Nat. Mater 2010, 9, 193–204. [Google Scholar]
  77. Ishi, T.; Fujikata, J.; Makita, K.; Baba, T.; Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys 2005, 44, L364–L366. [Google Scholar]
  78. Ren, F.; Ang, K.; Lo, G.; Kwong, D. Nanometer germanium photodetector with aluminum surface plasmon antenna for enhanced photo-response. Proc. SPIE 2010. [Google Scholar] [CrossRef]
  79. Ang, K.; Liow, T.; Fang, Q.; Yu, M.; Ren, F.; Zhu, S.; Zhang, J.; Ng, J.; Song, J.; Xiong, Y.; Lo, G.Q.; Kwong, D.-L. Silicon photonics technologies for monolithic electronic-photonic integrated circuit (EPIC) applications: Current progress and future outlook. Proceedings of 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.