Empirical Assessments of the Type and Strength of Stream Fish Habitat Associations Can Advance Understanding of Functional Diversity and Promote Effective Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Fish Sampling
2.3. Fish Guild Classification
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malaterre, C.; Dussault, A.C.; Mermans, E.; Barker, G.; Beisner, B.E.; Bouchard, F.; Desjardins, E.; Handa, I.T.; Kembel, S.W.; Lajoie, G.; et al. Functional Diversity: An Epistemic Roadmap. BioScience 2019, 69, 800–811. [Google Scholar] [CrossRef]
- Hoeinghaus, D.J.; Winemiller, K.O.; Birnbaum, J.S. Local and Regional Determinants of Stream Fish Assemblage Structure: Inferences Based on Taxonomic vs. Functional Groups. J. Biogeogr. 2007, 34, 324–338. [Google Scholar] [CrossRef]
- Moretti, M.; Dias, A.T.C.; De Bello, F.; Altermatt, F.; Chown, S.L.; Azcárate, F.M.; Bell, J.R.; Fournier, B.; Hedde, M.; Hortal, J.; et al. Handbook of Protocols for Standardized Measurement of Terrestrial Invertebrate Functional Traits. Funct. Ecol. 2017, 31, 558–567. [Google Scholar] [CrossRef]
- Villéger, S.; Brosse, S.; Mouchet, M.; Mouillot, D.; Vanni, M.J. Functional Ecology of Fish: Current Approaches and Future Challenges. Aquat. Sci. 2017, 79, 783–801. [Google Scholar] [CrossRef]
- Mcclure, M.M.; Alexander, M.; Borggaard, D.; Boughton, D.; Crozier, L.; Griffis, R.; Jorgensen, J.C.; Lindley, S.T.; Nye, J.; Rowland, M.J.; et al. Incorporating Climate Science in Applications of the US Endangered Species Act for Aquatic Species. Conserv. Biol. 2013, 27, 1222–1233. [Google Scholar] [CrossRef]
- Chiarucci, A.; Bacaro, G.; Scheiner, S.M. Old and New Challenges in Using Species Diversity for Assessing Biodiversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 2426–2437. [Google Scholar] [CrossRef]
- Benoit, D.M.; Jackson, D.A.; Chu, C. Partitioning Fish Communities into guilds for Ecological Analyses: An Overview of Current Approaches and Future Directions. Can. J. Fish. Aquat. Sci. 2021, 78, 984–993. [Google Scholar] [CrossRef]
- Root, R.B. The Niche Exploitation Pattern of the Blue-Gray Gnatcatcher. Ecol. Monogr. 1967, 37, 317–350. [Google Scholar] [CrossRef]
- Balon, E.K. Ecological guilds of Fishes: A Short Summary of the Concept and Its Application: With 2 Tables in the Text and 2 Figures in the Discussion. Int. Ver. Theor. Angew. Limnol. Verh. 1975, 19, 2430–2439. [Google Scholar] [CrossRef]
- Winemiller, K.O.; Rose, K.A. Patterns of Life-History Diversification in North American Fishes: Implications for Population Regulation. Can. J. Fish. Aquat. Sci. 1992, 49, 2196–2218. [Google Scholar] [CrossRef]
- Noble, R.A.A.; Cowx, I.G.; Goffaux, D.; Kestemont, P. Assessing the Health of European Rivers Using Functional Ecological guilds of Fish Communities: Standardising Species Classification and Approaches to Metric Selection. Fish. Manag. Ecol. 2007, 14, 381–392. [Google Scholar] [CrossRef]
- Cummins, K.W. Structure and Function of Stream Ecosystems. BioScience 1974, 24, 631–641. [Google Scholar] [CrossRef]
- Blondel, J. Guilds or Functional Groups: Does It Matter? Oikos 2003, 100, 223–231. [Google Scholar] [CrossRef]
- Frissell, C.A.; Liss, W.J.; Warren, C.E.; Hurley, M.D. A Hierarchical Framework for Stream Habitat Classification: Viewing Streams in a Watershed Context. Environ. Manag. 1986, 10, 199–214. [Google Scholar] [CrossRef]
- Wiens, J.A. Riverine Landscapes: Taking Landscape Ecology into the Water. Freshw. Biol. 2002, 47, 501–515. [Google Scholar] [CrossRef]
- Bisson, P.A.; Montgomery, D.R.; Buffington, J.M. Valley Segments, Stream Reaches, and Channel Units. In Methods in Stream Ecology; Hauer, F.R., Lamberti, G., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 1, pp. 21–47. [Google Scholar]
- Angermeier, P.L.; Schlosser, I.J. Species-Area Relationship for Stream Fishes. Ecology 1989, 70, 1450–1462. [Google Scholar] [CrossRef]
- Hitchman, S.M.; Mather, M.E.; Smith, J.M. Does Type, Quantity, and Location of Habitat Matter for Fish Diversity in a Great Plains Riverscape? Fisheries 2021, 46, 495–504. [Google Scholar] [CrossRef]
- Taylor, C. Abundance and Distribution Within a Guild of Benthic Stream Fishes: Local Processes and Regional Patterns. Freshw. Biol. 1996, 36, 385–396. [Google Scholar] [CrossRef]
- Gosselin, M.-P.; Petts, G.E.; Maddock, I.P. Mesohabitat Use by Bullhead (Cottus gobio). Hydrobiologia 2010, 652, 299–310. [Google Scholar] [CrossRef]
- Gorney, R.M.; Williams, M.G.; Ferris, D.R.; Williams, L.R. The Influence of Channelization on Fish Communities in an Agricultural Coldwater Stream System. Am. Midl. Nat. 2012, 168, 132–143. [Google Scholar] [CrossRef]
- Juracek, K.E.; Perry, C.A. Gravel Sources in the Neosho River in Kansas, 2004; No. 2005–5282; U.S. Geological Survey: Lawrence, KS, USA, 2005. [Google Scholar]
- Tiemann, J.S.; Gillette, D.P.; Wildhaber, M.L.; Edds, D.R. Correlations Among Densities of Stream Fishes in the Upper Neosho River, with Focus on the Federally Threatened Neosho Madtom Noturus placidus. Trans. Kans. Acad. Sci. 2004, 107, 17–24. [Google Scholar] [CrossRef]
- Cross, F.B. Handbook of Fishes of Kansas; University Kansas. Nat. Hist. Misc. Publ.: Lawrence, KS, USA, 1967; Volume 45, pp. 1–357. [Google Scholar]
- Dodds, W.K.; Gido, K.; Whiles, M.R.; Fritz, K.M.; Matthews, W.J. Life on the Edge: The Ecology of Great Plains Prairie Streams. BioScience 2004, 54, 205–216. [Google Scholar] [CrossRef]
- McCain, M.E. Stream Habitat Classification and Inventory Procedures for Northern California; FHR Currents, no. 1; U.S. Department of Agriculture, Forest Service, Pacific Southwest Region: Vallejo, CA, USA, 1990. [Google Scholar]
- Harvey, G.L.; Clifford, N.J. Microscale Hydrodynamics and Coherent Flow Structures in Rivers: Implications for the Characterization of Physical Habitat. River Res. Appl. 2009, 25, 160–180. [Google Scholar] [CrossRef]
- Hitchman, S.M.; Mather, M.E.; Smith, J.M.; Fencl, J.S. Identifying Keystone Habitats with a Mosaic Approach Can Improve Biodiversity Conservation in Disturbed Ecosystems. Glob. Change Biol. 2018, 24, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Fencl, J.S. How Big of an Effect Do Small Dams Have?: Using Ecology and Geomorphology to Quantify Impacts of Low-Head Dams on Fish Biodiversity. Doctoral Dissertation, Kansas State University, Manhattan, KS, USA, 2015. [Google Scholar]
- Giraudoux, P. pgirmess: Data Analysis in Ecology. R Package Version 1.6.8. 2017. Available online: https://cran.r-project.org/web/packages/pgirmess/pgirmess.pdf (accessed on 10 October 2024).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K.; cluster: Cluster Analysis Basics and Extensions. R Package Version 2.1.6. 2023. Available online: https://CRAN.R-project.org/package=cluster (accessed on 10 October 2024).
- Hennig, C. fpc: Flexible Procedures for Clustering; R Package Version 2.2-13. 2024. Available online: https://CRAN.R-project.org/package=fpc (accessed on 10 October 2024).
- Legendre, P.; Legendre, L. Numerical Ecology, 2nd ed.; Elsevier Science BV.: Amsterdam, The Netherlands, 1998; 853p. [Google Scholar]
- Bonato, K.O.; Delariva, R.L.; Silva, J.C.D. Diet and Trophic guilds of Fish Assemblages in Two Streams with Different Anthropic Impacts in the Northwest of Paraná, Brazil. Zoologica (Curitiba) 2012, 29, 27–38. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package. R Package Version 2.5-2. 2018. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 10 October 2024).
- Frimpong, E.A.; Angermeier, P.L. Comparative Utility of Selected Frameworks for Regionalizing Fish-Based Bioassessments Across the United States. Trans. Am. Fish. Soc. 2010, 139, 1872–1895. [Google Scholar] [CrossRef]
- Schlosser, I.J. Fish Community Structure and Function Along Two Habitat Gradients in a Headwater Stream. Ecol. Monogr. 1982, 52, 395–414. [Google Scholar] [CrossRef]
- Bart, H.L. Fish Habitat Association in an Ozark Stream. Environ. Biol. Fishes 1989, 24, 173–186. [Google Scholar] [CrossRef]
- Gelwick, F.P.; Matthews, W.J. Temporal and Spatial Patterns in Littoral-Zone Fish Assemblages of a Reservoir (Lake Texoma, Oklahoma-Texas, USA). Environ. Biol. Fishes 1990, 27, 107–120. [Google Scholar] [CrossRef]
- Aadland, L.P. Stream Habitat Types: Their Fish Assemblages and Relationship to Flow. N. Am. J. Fish. Manag. 1993, 13, 790–806. [Google Scholar] [CrossRef]
- Page, L.M.; Burr, B.M. A Field Guide to Freshwater Fishes: North America North of Mexico; Houghton Mifflin Harcourt: Boston, MA, USA, 1991. [Google Scholar]
- Patterson, L.; Phelan, J.; Goudreau, C.; Dykes, R. Flow-Biology Relationships Based on Fish Habitat guilds in North Carolina. J. Am. Water Resour. Assoc. 2017, 53, 56–66. [Google Scholar] [CrossRef]
- Cross, F.B.; Collins, J.T. Fishes in Kansas; Natural History Museum, University of Kansas: Lawrence, KS, USA, 1995. [Google Scholar]
- Kansas Fishes Committee. Kansas Fishes; University Press of Kansas: Lawrence, KS, USA, 2014. [Google Scholar]
- Vadas, R.L.; Vadas, R.L.; Orth, D.J. Habitat Use of Fish Communities in a Virginia Stream System. Environ. Biol. Fishes 2000, 59, 253–269. [Google Scholar] [CrossRef]
- Etnier, D.A.; Starnes, W.C. The Fishes of Tennessee; University of Tennessee Press: Knoxville, TN, USA, 1993. [Google Scholar]
- Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L. Habitat Use by a Midwestern USA Riverine Fish Assemblage: Effects of Season, Water Temperature and River Discharge. J. Fish Biol. 2006, 68, 1494–1512. [Google Scholar] [CrossRef]
- Strayer, D.L.; Dudgeon, D. Freshwater Biodiversity Conservation: Recent Progress and Future Challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity. Biol. Rev. Camb. Philos. Soc. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Herbert, M.E.; Gelwick, F.P. Spatial Variation of Headwater Fish Assemblages Explained by Hydrologic Variability and Upstream Effects of Impoundment. Copeia 2003, 2003, 273–284. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, Y.; Gong, Z.; Wang, L.; Heino, J.; Qin, B. Unveiling the Influence of Specialists and Generalists on Macroinvertebrate Assemblage Heterogeneity in Lake Taihu. Ecol. Indic. 2023, 154, 110741. [Google Scholar] [CrossRef]
- McKinney, M.L. Extinction Vulnerability and Selectivity: Combining Ecological and Paleontological Views. Annu. Rev. Ecol. Syst. 1997, 28, 495–516. [Google Scholar] [CrossRef]
- Brown, J.S. Habitat Selection as an Evolutionary Game. Evolution 1990, 44, 732–746. [Google Scholar] [CrossRef]
- Vázquez, D.P.; Simberloff, D. Ecological Specialization and Susceptibility to Disturbance: Conjectures and Refutations. Am. Nat. 2002, 159, 606–623. [Google Scholar] [CrossRef]
- Munday, P.L. Habitat Loss, Resource Specialization, and Extinction on Coral Reefs. Glob. Change Biol. 2004, 10, 1642–1647. [Google Scholar] [CrossRef]
- Tilman, D. Competition and Biodiversity in Spatially Structured Habitats. Ecology 1994, 75, 2–16. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. Bioscience 2020, 70, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Marsh-Matthews, E.; Matthews, W.J. Spatial Variation in Relative Abundance of a Widespread, Numerically Dominant Fish Species and Its Effect on Fish Assemblage Structure. Oecologia 2000, 125, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Mestre, L.; Narimanov, N.; Menzel, F.; Entling, M.H. Non-consumptive Effects Between Predators Depend on the Foraging Mode of Intraguild Prey. J. Anim. Ecol. 2020, 89, 1690–1700. [Google Scholar] [CrossRef]
- Monterroso, P.; Díaz-Ruiz, F.; Lukacs, P.M.; Alves, P.C.; Ferreras, P. Ecological Traits and the Spatial Structure of Competitive Coexistence Among Carnivores. Ecology 2020, 101, e03059. [Google Scholar] [CrossRef]
- Bergholz, K.; Sittel, L.-P.; Ristow, M.; Jeltsch, F.; Weiss, L. Pollinator guilds Respond Contrastingly at Different Scales to Landscape Parameters of Land-Use Intensity. Ecol. Evol. 2022, 12, e8708. [Google Scholar] [CrossRef]
- Smith, J.M.; Mather, M.E. Using Assemblage Data in Ecological Indicators: A Comparison and Evaluation of Commonly Available Statistical Tools. Ecol. Indic. 2012, 13, 253–262. [Google Scholar] [CrossRef]
- Parisi, C.; De Marco, G.; Labar, S.; Hasnaoui, M.; Grieco, G.; Caserta, L.; Inglese, S.; Vangone, R.; Madonna, A.; Alwany, M.; et al. Biodiversity Studies for Sustainable Lagoon: Thermophilic and Tropical Fish Species vs. Endemic Commercial Species at Mellah Lagoon (Mediterranean, Algeria). Water 2022, 14, 635. [Google Scholar] [CrossRef]
- Tonn, W.M.; Magnuson, J.J. Patterns in the Species Composition and Richness of Fish Assemblages in Northern Wisconsin Lakes. Ecology 1982, 63, 1149–1166. [Google Scholar] [CrossRef]
- Cooke, S.; Philipp, D.P. (Eds.) Centrarchid Fishes: Diversity, Biology and Conservation; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 264–292. [Google Scholar]
- Jacquemin, S.J.; Pyron, M. A Century of Morphological Variation in Cyprinidae Fishes. BMC Ecol. 2016, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, L.; Perrow, M.R.; Sayer, C.D.; Tomlinson, M.L.; Davidson, T.A. Relationships Between Fish Feeding guild and Trophic Structure in English Lowland Shallow Lakes Subject to Anthropogenic Influence: Implications for Lake Restoration. Aquat. Ecol. 2006, 40, 391–405. [Google Scholar] [CrossRef]
- Whitehouse, G.A.; Buckley, T.W.; Danielson, S.L. Diet Compositions and Trophic guild Structure of the Eastern Chukchi Sea Demersal Fish Community. Deep Sea Res. II 2017, 135, 95–110. [Google Scholar] [CrossRef]
- Wang, S.; Tang, J.P.; Su, L.H.; Fan, J.J.; Chang, H.Y.; Wang, T.T.; Wang, L.; Lin, H.J.; Yang, Y. Fish Feeding Groups, Food Selectivity, and Diet Shifts Associated with Environmental Factors and Prey Availability Along a Large Subtropical River, China. Aquat. Sci. 2019, 81, 31. [Google Scholar] [CrossRef]
- Goswami, M.; Bhattacharyya, P.; Mukherjee, I.; Tribedi, P. Functional Diversity: An Important Measure of Ecosystem Functioning. Adv. Microbiol. 2017, 07, 82–93. [Google Scholar] [CrossRef]
- Gomes, L.C.; Dias, R.M.; Ruaro, R.; Benedito, E. Functional Diversity: A Review on Freshwater Fish Research. Neotrop. Ichthyol. 2023, 21, e230022. [Google Scholar] [CrossRef]
- Milardi, M.; Green, A.J.; Mancini, M.; Trotti, P.; Kiljunen, M.; Torniainen, J.; Castaldelli, G. Invasive Catfish in Northern Italy and Their Impacts on Waterbirds. NeoBiota 2022, 72, 109–128. [Google Scholar] [CrossRef]
- Aglieri, G.; Baillie, C.; Mariani, S.; Cattano, C.; Calò, A.; Turco, G.; Spatafora, D.; Di Franco, A.; Di Lorenzo, M.; Guidetti, P.; et al. Environmental DNA Effectively Captures Functional Diversity of Coastal Fish Communities. Mol. Ecol. 2021, 30, 3127–3139. [Google Scholar] [CrossRef]
- McKinley, S.J.; Saunders, B.J.; Rastoin-Laplane, E.; Salinas-de-León, P.; Harvey, E.S. Functional Diversity of Reef Fish Assemblages in the Galapagos Archipelago. J. Exp. Mar. Biol. Ecol. 2022, 549, 151695. [Google Scholar] [CrossRef]
- Díaz, S.; Purvis, A.; Cornelissen, J.H.C.; Mace, G.M.; Donoghue, M.J.; Ewers, R.M.; Jordano, P.; Pearse, W.D. Functional Traits, the Phylogeny of Function, and Ecosystem Service Vulnerability. Ecol. Evol. 2013, 3, 2958–2975. [Google Scholar] [CrossRef]
- Lamothe, K.A.; Alofs, K.M.; Jackson, D.A.; Somers, K.M. Functional Diversity and Redundancy of Freshwater Fish Communities Across Biogeographic and Environmental Gradients. Divers. Distrib. 2018, 24, 1612–1626. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding Community Ecology from Functional Traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the Concept of Trait Be Functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Kremer, C.T.; Williams, A.K.; Finiguerra, M.; Fong, A.A.; Kellerman, A.; Paver, S.F.; Tolar, B.B.; Toscano, B.J. Realizing the Potential of Trait-Based Aquatic Ecology: New Tools and Collaborative Approaches. Limnol. Oceanogr. 2017, 62, 253–271. [Google Scholar] [CrossRef]
Common Name | Scientific Name | Abundance | Occurrence | Functional Guild | Proportion of Abundance | |||
---|---|---|---|---|---|---|---|---|
N | % | % | Pool | Riffle | Run | |||
Central Stoneroller | Campostoma anomalum | 265 | 3.4 | 25.9 | Riffle Specialist | 0.03 | 0.95 | 0.02 |
Suckermouth Minnow | Phenacobius mirabilis | 204 | 2.6 | 34.5 | Riffle Specialist | 0.04 | 0.85 | 0.11 |
Orangespotted Sunfish | Lepomis humilis | 271 | 3.5 | 37.1 | Pool Specialist | 0.79 | 0.03 | 0.18 |
Bluntnose Minnow | Pimephales notatus | 128 | 1.6 | 25 | Riffle Generalist | 0.18 | 0.56 | 0.26 |
Longear Sunfish | Lepomis megalotis | 44 | 0.6 | 25 | Pool Generalist | 0.7 | 0.07 | 0.23 |
Red Shiner | Cyprinella lutrensis | 4641 | 60 | 94 | Riffle-Run Generalist | 0.1 | 0.56 | 0.34 |
Bluntface Shiner | Cyprinella camura | 66 | 0.9 | 18.1 | Riffle-Run Generalist | 0.06 | 0.62 | 0.32 |
Sand Shiner | Notropis stramineus | 722 | 9.3 | 56.9 | Pool-Run Generalist | 0.32 | 0.1 | 0.58 |
Mimic Shiner | Notropis volucellus | 387 | 5 | 40.5 | Pool-Run Generalist | 0.32 | 0.1 | 0.58 |
Bullhead Minnow | Pimephales vigilax | 523 | 6.7 | 85.3 | Generalist | 0.44 | 0.22 | 0.34 |
Slenderhead Darter | Percina phoxocephala | 289 | 3.7 | 66.4 | Generalist | 0.23 | 0.48 | 0.29 |
(A) Abundance | |||||
Pool vs. Riffle Habitat | Pool vs. Run Habitat | Riffle vs. Run Habitat | |||
Species | DC% | Species | DC% | Species | DC% |
Red Shiner | 0.55 | Red Shiner | 0.46 | Red Shiner | 0.54 |
Central Stoneroller | 0.07 | Sand Shiner | 0.13 | Sand Shiner | 0.08 |
Bullhead Minnow | 0.05 | Bullhead Minnow | 0.10 | Central Stoneroller | 0.07 |
Orangespotted Sunfish | 0.05 | Orangespotted Sunfish | 0.08 | Bullhead Minnow | 0.07 |
Suckermouth Minnow | 0.05 | Mimic Shiner | 0.07 | Suckermouth Minnow | 0.05 |
(B) Presence/Absence | |||||
Pool vs. Riffle Habitat | Pool vs. Run Habitat | Riffle vs. Run Habitat | |||
Species | DC% | Species | DC% | Species | DC% |
Suckermouth Minnow | 0.10 | Sand Shiner | 0.10 | Central Stoneroller | 0.10 |
Central Stoneroller | 0.10 | Orangespotted Sunfish | 0.09 | Suckermouth Minnow | 0.10 |
Orangespotted Sunfish | 0.09 | Slenderhead Darter | 0.09 | Sand Shiner | 0.09 |
Slenderhead Darter | 0.08 | Mimic Shiner | 0.09 | Mimic Shiner | 0.07 |
Sand Shiner | 0.07 | Longear Sunfish | 0.08 | Slenderhead Darter | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hitchman, S.M.; Mather, M.E.; Smith, J.M. Empirical Assessments of the Type and Strength of Stream Fish Habitat Associations Can Advance Understanding of Functional Diversity and Promote Effective Conservation. Diversity 2024, 16, 722. https://doi.org/10.3390/d16120722
Hitchman SM, Mather ME, Smith JM. Empirical Assessments of the Type and Strength of Stream Fish Habitat Associations Can Advance Understanding of Functional Diversity and Promote Effective Conservation. Diversity. 2024; 16(12):722. https://doi.org/10.3390/d16120722
Chicago/Turabian StyleHitchman, Sean M., Martha E. Mather, and Joseph M. Smith. 2024. "Empirical Assessments of the Type and Strength of Stream Fish Habitat Associations Can Advance Understanding of Functional Diversity and Promote Effective Conservation" Diversity 16, no. 12: 722. https://doi.org/10.3390/d16120722
APA StyleHitchman, S. M., Mather, M. E., & Smith, J. M. (2024). Empirical Assessments of the Type and Strength of Stream Fish Habitat Associations Can Advance Understanding of Functional Diversity and Promote Effective Conservation. Diversity, 16(12), 722. https://doi.org/10.3390/d16120722