Morphology and Viability of Pollen from Three Hardy Water Lilies and Their Cross-Compatibility with Nymphaea hybrid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Observation of the Microstructures of Hardy Water Lily Pollen Grains
2.3. Cross Breeding Experiment
2.3.1. Collection, Storage, and Viability of Hardy Water Lily Pollen Grains
2.3.2. Artificial Pollination Experiment
2.4. Data Analysis
3. Results
3.1. Pollen Characteristics of the Three Hardy Water Lily Varieties
3.2. Characteristics of Pollen Grooves and Exine Ornamentations of the Three Hardy Water Lily Varieties
3.3. Viability of Pollen from the Three Hardy Water Lilies
3.4. Seed-Setting Rates of Different Hybrid Combinations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.J.; Wei, Q.; Chen, C.; Zhan, Y.; Wu, Y.P.; Yu, G. Breeding progress of waterlilies in China. J. Plant Genet. Res. 2019, 20, 829–835. [Google Scholar] [CrossRef]
- Yin, D.D.; Yuan, R.Y.; Wu, Q.; Li, S.S.; Shao, S.; Xu, Y.J.; Hao, X.H.; Wang, L.S. Assessment of flavonoids and volatile compounds in tea infusions of water lily flowers and their antioxidant activities. Food Chem. 2015, 187, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.B.; Karakas, F.P.; Turker, A.U. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pac. J. Trop. Med. 2013, 6, 616–624. [Google Scholar] [CrossRef]
- Thippeswamy, B.S.; Mishra, B.; Veerapur, V.P.; Gupta, G. Anxiolytic activity of Nymphaea alba Linn. in mice as experimental models of anxiety. Indian J. Pharmacol. 2011, 43, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Bhandarkar, M.R.; Khan, A. Antihepatotoxic effect of Nymphaea stellata willd.; against carbon tetrachloride induced hepatic damage in albino rats. J. Ethnopharmacol. 2004, 91, 61–64. [Google Scholar] [CrossRef]
- Conard, H.S. The Waterlilies: A Monograph of the Genus Nymphaea; The Carnegie Institution of Washington: Washington, DC, USA, 1905. [Google Scholar]
- Heslop-Harrisson, J. Nymphaea L. J. Ecol. 1955, 43, 719–734. [Google Scholar] [CrossRef]
- Kupriyanova, L.A. Pollen morphology of Nymphaea species in the European part of the USSR. Bot. Zhurn 1976, 61, 1558–1563. [Google Scholar]
- Xu, F.; de Craene, L.P.R. Pollen morphology and ultrastructure of selected species from Annonaceae. Plant Syst. Evol. 2013, 299, 11–24. [Google Scholar] [CrossRef]
- Cai, M.; Zhu, H.; Wang, H. Pollen morphology of the genus Lasianthus (Rubiaceae) and related taxa from Asia. J. Syst. Evol. 2008, 46, 60–70. [Google Scholar] [CrossRef]
- Wang, X.R.; Tang, H.R.; Huang, L.; He, Z.Z.; Dong, X.L.; Fu, H.Q.; Deng, Q.X. Comparative studies on pollen submicroscopic morphology of some wild species and cultivars of Bramble (Rubus L.). Acta Hortic. Sin. 2007, 34, 1395. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, H.; Zhang, L.; Zang, D.K. Pollen morphology and cultivar classification of the genus Chaenomeles. Sci. Sil. Sin. 2008, 44, 53. [Google Scholar] [CrossRef]
- Walker, J.W. Aperture evolution in the pollen of primitive angiosperms. Am. J. Bot. 1974, 61, 1112–1137. [Google Scholar] [CrossRef]
- Walker, J.W. Evolutionary significance of the exine in the pollen of primitive angiosperms. In The Evolutionary Significance of the Exine; Ferguson, I.K., Muller, J., Eds.; Academic Press: London, UK, 1976. [Google Scholar]
- Walker, J.W.; Doyle, J.A. The bases of angiosperm phylogeny: Palynology. Ann. Mo. Bot. Gard. 1975, 62, 664–723. [Google Scholar] [CrossRef]
- Donoghue, M.J.; Doyle, J.A. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. In Evolution, Systematics, and Fossil History of the Hamamelidae; Crane, P.R., Blackmore, S., Eds.; Clarendon: Oxford, UK, 1989; pp. 17–45. [Google Scholar]
- Doyle, J.A.; Hotton, C.L. Diversification of early angiosperm pollen in a cladistic context. In Pollen and Spores: Patterns of Diversification; Blackmore, S., Barnes, S.H., Eds.; Clarendon: Oxford, UK, 1991; pp. 169–195. [Google Scholar]
- Doyle, J.A.; Donoghue, M.J. Phylogenies and angiosperm diversification. Paleobiology 1993, 19, 141–167. [Google Scholar] [CrossRef]
- Doyle, J.A.; Endress, P.K. Morphological phylogenetic analysis of basal angiosperms: Comparison and combination with molecular data. Int. J. Plant Sci. 2000, 161, S121–S153. [Google Scholar] [CrossRef]
- Wiersema, J.H. Reproductive biology of Nymphaea (Nymphaeaceae). Ann. Mo. Bot. Gard. 1988, 75, 795–804. [Google Scholar] [CrossRef]
- Taylor, M.L.; Cooper, R.L.; Schenider, E.L.; Jeffrey, M.O. Pollen structure and development in Nymphaeales: Insights into character evolution in an ancient angiosperm lineage. Am. J. Bot. 2015, 102, 1685–1702. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Huang, M.S.; Lu, X.M.; Zhang, Y. Correlation between diurnal variation of purification effects and physiological characteristics of Nymphaea tetragona. J. Jiangsu Univ. Nat. Sci. Ed. 2011, 32, 482–486. [Google Scholar] [CrossRef]
- Shi, N.; Liu, X.J.; Du, F.F.; Chang, Y.J.; Li, N.W.; Yao, D.R. GC-MS analysis on components of essential oil from fresh flowers of tropical water lily. J. Plant Resour. Environ. 2017, 26, 104–106. [Google Scholar] [CrossRef]
- Volkova, P.A.; Shipunov, A.B. Morphological variation of Nymphaea (Nymphaeaceae) in European Russia. Nord. J. Bot. 2007, 25, 329–338. [Google Scholar] [CrossRef]
- Bodhipadma, K.; Noichinda, S.; Thaiyanto, P.; Leung, D. Morphology, viability, and germinability of pollen from two forms of Nymphaea nouchali var. Versicolor, a day-blooming waterlily. Sci. Asia 2013, 39, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Coiro, M.; Barone Lumaga, M.R. Aperture evolution in Nymphaeaceae: Insights from a micromorphological and ultrastructural investigation. Grana 2013, 52, 192–201. [Google Scholar] [CrossRef]
- Jiang, H.F.; Zhou, H.Y.; Shi, B.J.; Shan, C.Y.; Xu, H.; Zhang, J.; Zhang, W.M. Extraction, isolation and structural determination of the polysaccharides from Nymphaea hybrid. Chin. Wild Plant Res. 2017, 36, 19–22. [Google Scholar] [CrossRef]
- Zhang, H.H.; Wu, H.Y.; Zhou, Q.; Zhao, R.N.; Zhu, Z.L. Flowering characteristics and reproductive biology of Nymphaea hybrid, a precious water lily. Sci. Hortic. 2021, 287, 110268. [Google Scholar] [CrossRef]
- Xu, L.P.; Yu, F.Y. Microstructure of pistils and stamens in Styrax tonkinensis. J. Nanjing For. Univ. 2017, 41, 34–40. [Google Scholar] [CrossRef]
- Niu, L.X.; Zhang, Y.L. The study on pollen morphology of the wild Vitis varieties in China. Acta Hortic. Sin. 2000, 27, 361–363. [Google Scholar]
- Erdtman, G. Handbook of Palynology; Munksgaard: Copenhagen, Denmark, 1969. [Google Scholar]
- Zhang, Y.D. Research on pollen viability of hardy water lily in Qingdao. Adv. Ornam. Hortic. China 2015, 57–61. [Google Scholar]
- Huang, G.Z.; Deng, H.Q.; Li, Z.X.; Li, G. Water Lilies; China for Press: Beijing, China, 2008. [Google Scholar]
- Wang, F.X. Pollen Flora of China; Science Press: Beijing, China, 1995. [Google Scholar]
- Song, Y.Y.; Zhao, C.H.; Zhao, Y.Y.; Liu, J.X. Pollen morphology of Aletris L. (Nartheciaceae) and its systematic significance. Microsc. Res. Tech. 2019, 82, 2061–2071. [Google Scholar] [CrossRef]
- Li, H.C.; Wu, T.Y.; Gong, L.; Luo, J. Floral phenotypes and pollen morphological characteristics of 13 Species from Calanthe in Tibet. Bull. Bot. Res. 2021, 41, 547–556. [Google Scholar] [CrossRef]
- Hu, K.X.; Zhang, X.M.; Zheng, Y.F. Characteristics of pollen germination of Primula obconica. J. Northwest For. Univ. 2017, 32, 170–173. [Google Scholar] [CrossRef]
- Wang, Q.L.; Lu, L.D.; Wu, X.Q.; Li, Y.Q.; Lin, J.X. Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol. 2003, 23, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.H.; Lv, F.D.; Wang, S.; Guo, Y.F.; Jiang, H.B.; Huang, M.Z.; Chang, S.S. Comparison of pollen characteristics and fertility of six cultivars of blueberry. Nonwood For. Res. 2016, 34, 101–108. [Google Scholar] [CrossRef]
- Dai, H.J.; Zhu, Z.B.; Shen, X.L.; Zhou, J.M.; He, J.H. Essences and approaches of distant hybridization in crops breeding. Genomics Appl. Biol. 2010, 29, 144–149. [Google Scholar] [CrossRef]
- Deng, Y.M.; Teng, N.J.; Chen, S.M.; Chen, F.D.; Guan, Z.Y.; Song, A.P.; Chang, Q.S. Reproductive barriers in the intergeneric hybridization between Chrysanthemum grandiflorum (Ramat.) Kitam. and Ajania przewalskii Poljak. (Asteraceae). Euphytica 2010, 174, 41–50. [Google Scholar] [CrossRef]
- Geng, X.M.; Zhang, C.Y.; Luo, F.X.; Wang, L.G. Study on seed setting of wild Rhododendron in China. Jiangsu Agric. Sci. 2013, 41, 159–161. [Google Scholar] [CrossRef]
- Preston, R.E. The intrafloral phenology of Streptanthus tortuosus (Brassicaceae). Am. J. Bot. 1991, 78, 1044–1053. [Google Scholar] [CrossRef]
- Soares, T.L.; Jesus, O.N.; Souza, E.H.; Oliveira, E.J. Floral development stage and its implications for the reproductive success of Passiflora L. Sci. Hortic. 2018, 238, 333–342. [Google Scholar] [CrossRef]
- Peng, X.L.; Liao, K.; Jia, Y.; Liu, H.; Ma, W.; Xu, L. Study on the cross compatibility among 9 apricot cultivars in Xinjiang. J. Fruit Sci. 2015, 32, 192–199. [Google Scholar] [CrossRef]
- Sun, C.Q.; Ma, Z.H.; Zhang, Z.C.; Sun, G.S.; Dai, Z.L. Factors influencing cross barriers in interspecific hybridizations of water lily. J. Am. Soc. Hortic. Sci. 2018, 143, 130–135. [Google Scholar] [CrossRef]
Parent Type | Variety/Strain | Flower Colour | Petal Type | Plant Type |
---|---|---|---|---|
Female parent | NH-1 | Yellow | Double petals | Medium and large plant type |
NH-2 | Pink | Double petals | ||
NH-3 | Blue–purple | Double petals | ||
Male parent | N. ‘Peter Slocum’ | Pale pink | Double petals | Large plant type |
N. ‘Rose Arey’ | Dark pink | Double petals | Medium and large plant type | |
N. ‘Perry’s Fire Opal’ | Dark pink | Double petals | Medium and large plant type |
Variety | Length of Polar Axis/μm | Length of Equatorial Axis/μm | Polar Axis/Equatorial Axis | Pollen Size (Polar Axis × Equatorial Axis)/μm2 | Pollen Shape |
---|---|---|---|---|---|
N. ‘Rose Arey’ | 18.31 ± 2.40 a | 32.51 ± 2.28 b | 0.56 ± 0.05 ab | 18.31(15.63–21.09) × 32.51(29.49–35.9) | Oblate |
N. ‘Perry’s Fire Opal’ | 18.80 ± 2.57 a | 37.64 ± 2.80 a | 0.50 ± 0.06 b | 18.80(16.67–23.18) × 37.64(34.17–39.74) | Oblate |
N. ‘Peter Slocum’ | 20.47 ± 2.02 a | 34.84 ± 3.01 ab | 0.59 ± 0.06 a | 20.47(17.58–23.05) × 34.84(31.25–38.28) | Oblate |
Variety | Length/μm | Width/μm | Length/Width | Shape of Pollen Grooves |
---|---|---|---|---|
N. ‘Rose Arey’ | 25.03 ± 3.43 b | 2.94 ± 0.70 a | 8.79 ± 1.88 a | Oblong |
N. ‘Perry’s Fire Opal’ | 31.70 ± 1.88 a | 3.12 ± 1.16 a | 11.42 ± 4.32 a | Oblong |
N. ‘Peter Slocum’ | 26.33 ± 2.43 b | 3.46 ± 0.74 a | 7.88 ± 1.70 a | Oblong |
Variety | Germination Rate/% |
---|---|
N. ‘Rose Arey’ | 74.20 ± 1.79 b |
N. ‘Perry’s Fire Opal’ | 56.48 ± 12.18 b |
N. ‘Peter Slocum’ | 14 ± 4.45 a |
Female Parent | Male Parent | Number of Pollinated Flowers | Number of Seed-Setting Flowers | Seed-Setting Rate/% |
---|---|---|---|---|
NH-1 | N. ‘Peter Slocum’ | 52 | 0 | 0 |
N. ‘Rose Arey’ | 54 | 8 | 14.81 | |
N. ‘Perry’s Fire Opal’ | 50 | 6 | 12.00 | |
NH-2 | N. ‘Peter Slocum’ | 51 | 0 | 0 |
N. ‘Rose Arey’ | 48 | 16 | 33.33 | |
N. ‘Perry’s Fire Opal’ | 59 | 13 | 22.03 | |
NH-3 | N. ‘Peter Slocum’ | 45 | 0 | 0 |
N. ‘Rose Arey’ | 47 | 12 | 25.53 | |
N. ‘Perry’s Fire Opal’ | 76 | 8 | 10.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhou, Q.; Wu, H.; Sheng, Q.; Zhu, Z. Morphology and Viability of Pollen from Three Hardy Water Lilies and Their Cross-Compatibility with Nymphaea hybrid. Diversity 2022, 14, 92. https://doi.org/10.3390/d14020092
Zhang H, Zhou Q, Wu H, Sheng Q, Zhu Z. Morphology and Viability of Pollen from Three Hardy Water Lilies and Their Cross-Compatibility with Nymphaea hybrid. Diversity. 2022; 14(2):92. https://doi.org/10.3390/d14020092
Chicago/Turabian StyleZhang, Huihui, Qi Zhou, Huaiyan Wu, Qianqian Sheng, and Zunling Zhu. 2022. "Morphology and Viability of Pollen from Three Hardy Water Lilies and Their Cross-Compatibility with Nymphaea hybrid" Diversity 14, no. 2: 92. https://doi.org/10.3390/d14020092
APA StyleZhang, H., Zhou, Q., Wu, H., Sheng, Q., & Zhu, Z. (2022). Morphology and Viability of Pollen from Three Hardy Water Lilies and Their Cross-Compatibility with Nymphaea hybrid. Diversity, 14(2), 92. https://doi.org/10.3390/d14020092