Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (391)

Search Parameters:
Keywords = seed-setting rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5694 KB  
Article
Cultural Methods for the Control of the Invasive Japanese Stiltgrass (Microstegium vimineum) in Stream Restoration
by Robert A. Sullivan and Douglas A. DeBerry
Plants 2026, 15(3), 477; https://doi.org/10.3390/plants15030477 - 3 Feb 2026
Viewed by 35
Abstract
Microstegium vimineum (Japanese stiltgrass) is one of the most invasive plant species in the eastern United States, posing a consistent problem to practitioners working in stream restoration and often necessitating treatment using non-selective herbicides to reduce invasion. Herbicide use frequently results in collateral [...] Read more.
Microstegium vimineum (Japanese stiltgrass) is one of the most invasive plant species in the eastern United States, posing a consistent problem to practitioners working in stream restoration and often necessitating treatment using non-selective herbicides to reduce invasion. Herbicide use frequently results in collateral damage to desirable native species and can lead to reinvasion after treatment. This study evaluated alternatives to herbicide referred to collectively as cultural controls, the use of which draws conceptually from the interaction of stress and disturbance in plant communities that predicts reduced invasion and increased competitive success of native species with higher levels of environmental stress. We tested several preventative cultural approaches, including (intended stressor in parentheses): (1) canopy shade (light limitation), (2) sawdust soil amendments (short-term nitrogen limitation), (3) wood mulch soil amendments (longer-term nitrogen limitation), and (4) double seeding rates (native species competition), as well as a combination of these treatments. Over a two-year field study within a restored stream corridor, we found that high carbon: nitrogen ratio soil amendments such as sawdust were the most effective at attenuating M. vimineum invasion and that shade promoted native species competition with this invader. Our results suggest a set of best practices that stream restoration practitioners could consider during the design and construction phases of a stream restoration project, particularly on sites with increased risk of M. vimineum incursion. Full article
(This article belongs to the Special Issue Plant Invasions and Their Interactions with the Environment)
Show Figures

Figure 1

13 pages, 1557 KB  
Article
Improvement of Resistance to Rice Blast and Bacterial Blight by CRISPR/Cas9-Mediated Mutagenesis of OsERF922 and Xa41 in Rice
by Liyong Zhang, Zhiying Zhou, Ruomin Wu, Yanhua Chen, Shixun Huang, Cirenqunzong, Yan Yue, Bin Wang, Minfeng Song, Huabin Xie, Tao Guo, Chun Chen, Zhaxiluobu and Jiafeng Wang
Agronomy 2026, 16(3), 349; https://doi.org/10.3390/agronomy16030349 - 30 Jan 2026
Viewed by 144
Abstract
Rice blast and bacterial blight are two major diseases that seriously threaten rice production. Developing rice germplasm with enhanced resistance to multiple diseases while maintaining favorable agronomic traits is essential for sustainable breeding. In this study, two rice landraces from Motuo County, Xizang [...] Read more.
Rice blast and bacterial blight are two major diseases that seriously threaten rice production. Developing rice germplasm with enhanced resistance to multiple diseases while maintaining favorable agronomic traits is essential for sustainable breeding. In this study, two rice landraces from Motuo County, Xizang Autonomous Region, China, Benglinba and Gare, were used to simultaneously edit OsERF922 and Xa41 using a structurally optimized dual-target CRISPR/Cas9 vector, pRGEB32-2T. A total of 32 and 28 T0 transgenic plants were generated in the Benglinba and Gare backgrounds, respectively. Targeted mutagenesis generated eight homozygous oserf922 mutants and three homozygous xa41 mutants in Benglinba, and four and five homozygous mutants in Gare. Twelve double homozygous mutant lines (nine Benglinba and three Gare) were selected for further analysis. Disease resistance assays showed that these double mutants exhibited significantly enhanced resistance to the rice blast fungus strain GDYJ7 and the bacterial blight pathogen strain GDXO-1, with markedly reduced lesion size or lesion length compared with wild-type plants (p < 0.001, Student’s t-test). Importantly, three independent T-DNA-free double mutant lines from each genetic background displayed no significant differences from their corresponding wild types in major agronomic traits, including plant height, effective panicle number, panicle length, seed-setting rate, or thousand-grain weight (p > 0.05). Grain quality parameters, such as brown rice rate, milled rice rate, amylose content, and gel consistency, were also unaffected. Overall, this study generated rice materials with enhanced resistance to rice blast and bacterial blight while maintaining elite agronomic and quality traits, providing valuable germplasm resources and a feasible strategy for the precise improvement of disease resistance in rice landraces from Xizang Autonomous Region. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

28 pages, 8781 KB  
Article
Intelligent Evolutionary Optimisation Method for Ventilation-on-Demand Airflow Augmentation in Mine Ventilation Systems Based on JADE
by Gengxin Niu and Cunmiao Li
Buildings 2026, 16(3), 568; https://doi.org/10.3390/buildings16030568 - 29 Jan 2026
Viewed by 104
Abstract
For mine ventilation-on-demand (VOD) scenarios, conventional joint optimisation of airflow augmentation and energy saving in mine ventilation systems is often constrained in practical engineering applications by shrinkage of the feasible region, limited adjustable resistance margins, and strongly multi-modal objective functions. These factors tend [...] Read more.
For mine ventilation-on-demand (VOD) scenarios, conventional joint optimisation of airflow augmentation and energy saving in mine ventilation systems is often constrained in practical engineering applications by shrinkage of the feasible region, limited adjustable resistance margins, and strongly multi-modal objective functions. These factors tend to result in low solution efficiency, pronounced sensitivity to initial values and insufficient solution robustness. In response to these challenges, a two-layer intelligent evolutionary optimisation framework, termed ES–Hybrid JADE with Competitive Niching, is developed in this study. In the outer layer, four classes of evolutionary algorithms—CMAES, DE, ES, and GA—are comparatively assessed over 50 repeated test runs, with a combined ranking based on convergence speed and solution quality adopted as the evaluation metric. ES, with a rank_mean of 2.0, is ultimately selected as the global hyper-parameter self-adaptive regulator. In the inner layer, four algorithms—COBYLA, JADE, PSO and TPE—are compared. The results indicate that JADE achieves the best overall performance in terms of terminal objective value, multi-dimensional performance trade-offs and robustness across random seeds. Furthermore, all four inner-layer algorithms attain feasible solutions with a success rate of 1.0 under the prescribed constraints, thereby ensuring that the entire optimisation process remains within the feasible domain. The proposed framework is applied to an exhaust-type dual-fan ventilation system in a coal mine in Shaanxi Province as an engineering case study. By integrating GA-based automatic ventilation network drawing (longest-path/connected-path) with roadway sensitivity analysis and maximum resistance increment assessment, two solution schemes—direct optimisation and composite optimisation—are constructed and compared. The results show that, within the airflow augmentation interval [0.40, 0.55], the two schemes are essentially equivalent in terms of the optimal augmentation effect, whereas the computation time of the composite optimisation scheme is reduced significantly from approximately 29 min to about 13 s, and a set of multi-modal elite solutions can be provided to support dispatch and decision-making. Under global constraints, a maximum achievable airflow increment of approximately 0.66 m3·s−1 is obtained for branch 10, and optimal dual-branch and triple-branch cooperative augmentation combinations, together with the corresponding power projections, are further derived. To the best of our knowledge, prior VOD airflow-augmentation studies have not combined feasibility-region contraction (via sensitivity- and resistance-margin gating) with a two-layer ES-tuned JADE optimiser equipped with Competitive Niching to output multiple feasible optima. This work provides new insight that the constrained airflow-augmentation problem is intrinsically multimodal, and that retaining multiple basins of attraction yields dispatch-ready elite solutions while achieving orders-of-magnitude runtime reduction through prediction-based constraints. The study demonstrates that the proposed two-layer intelligent evolutionary framework combines fast convergence with high solution stability under strict feasibility constraints, and can be employed as an engineering algorithmic core for energy-efficiency co-ordination in mine VOD control. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 4221 KB  
Article
Mining Thermotolerant Candidate Genes Co-Responsive to Heat Stress in Wheat Flag Leaves and Grains Using WGCNA Analysis
by Liangpeng Chen, Zhengcong Xu, Wensheng Lin, Junkang Rong and Xin Hu
Agronomy 2026, 16(3), 300; https://doi.org/10.3390/agronomy16030300 - 25 Jan 2026
Viewed by 201
Abstract
As a critically important global food crop, wheat has been increasingly threatened by the frequent occurrence of extreme high-temperature events, which impairs its growth and development, resulting in reduced seed-setting rate, compromised grain quality and diminished yield. Therefore, identifying heat-tolerant genes and enhancing [...] Read more.
As a critically important global food crop, wheat has been increasingly threatened by the frequent occurrence of extreme high-temperature events, which impairs its growth and development, resulting in reduced seed-setting rate, compromised grain quality and diminished yield. Therefore, identifying heat-tolerant genes and enhancing thermotolerance through molecular breeding are essential strategies for wheat improvement. In this study, we retrieved spatial transcriptomic data from the public database PRJNA427246, which captured gene expression profiles in flag leaves and grains of the heat-sensitive wheat cultivar Chinese Spring (CS) under 37 °C heat stress at time points of 0 min, 5 min, 10 min, 30 min, 1 h, and 4 h. Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct co-expression networks for flag leaf and grain transcriptomes. One highly significant module was identified in each tissue, along with 35 hub genes that showed a strong temporal association with heat stress progression. Notably, both modules contained the previously characterized thermotolerance gene TaMBF1c, suggesting that additional heat-responsive genes may be present within these modules. Simultaneous analysis of the expression data from four groups (encompassing different tissues and high-temperature treatments) for the 35 core genes revealed that genes from the TaHSP20 family, TaMBF1c family, and other related genes exhibit coordinated expression patterns in terms of the temporal dynamics and tissue distribution of stress responses. Additionally, 27 genes of the small heat shock protein (HSP20) family are predicted to be involved in the endoplasmic reticulum-associated degradation (ERAD) pathway. They assist in clearing misfolded proteins induced by stress, thereby helping to maintain endoplasmic reticulum homeostasis and cellular functions under stress conditions. Finally, the expression levels of three core genes, TaHSP20-1, TaPCDP4, and TaMBF1c-D, were validated by qRT-PCR in two wheat cultivars with distinct thermotolerance: S116 (Zhehuamai 2008) and S128 (Yangmai 33). These findings provide new insights into the molecular mechanisms underlying heat tolerance in wheat and offer valuable genetic resources for breeding thermotolerant varieties. Full article
(This article belongs to the Special Issue Enhancing Wheat Yield Through Sustainable Farming Practices)
Show Figures

Figure 1

16 pages, 3748 KB  
Article
Systematic Analysis of Reproductive Barrier Types and Strengths in Interspecific Hybridization Involving Magnolia crassipes
by Zhe Zhang, Yingbing Hu, Chenfei Huang, Minhuan Zhang, Xingliang Wu, Xiaoling Jin and Yan Huang
Plants 2026, 15(3), 374; https://doi.org/10.3390/plants15030374 - 25 Jan 2026
Viewed by 232
Abstract
Magnolia crassipes is a valuable species in Magnolia sect. Michelia known for its unique purple flowers, but interspecific reproductive barriers limit its use in breeding. Using M. crassipes as the maternal parent, we performed 13 pollination combinations (one selfed control and crosses with [...] Read more.
Magnolia crassipes is a valuable species in Magnolia sect. Michelia known for its unique purple flowers, but interspecific reproductive barriers limit its use in breeding. Using M. crassipes as the maternal parent, we performed 13 pollination combinations (one selfed control and crosses with 12 taxa spanning five sections). We assessed reproductive processes from pollen–stigma interaction to seed and seedling performance, and verified hybrids using SSR markers. Reproductive barriers are strongly associated with phylogenetic distance, shifting from pollen-adhesion failure in crosses with donors from distant-section, to abnormal pollen-tube guidance in cross with M. denudata, and to fruit initiation in crosses with pollen donors from sect. Michelia. Among these Michelia-donor crosses, prezygotic barrier strength varied among combinations, as reflected by differences in stigma germination and ovule entry rates, which strongly influenced the potential for fruit set success. Postzygotic barriers further reduced reproductive success via seed abortion (peaking at 83.8%). However, all germinated hybrids exhibited normal early growth. Notably, backcrossing with the F1 hybrid M. ‘Danxia’ significantly improved reproductive compatibility (seed abortion rate 6.3% and germination rate 100%). This study clarifies the key barriers in M. crassipes hybridization and provides a basis and practical strategies for its genetic utilization. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

20 pages, 20223 KB  
Article
Integrating Morphological, Molecular, and Climatic Evidence to Distinguish Two Cryptic Rice Leaf Folder Species and Assess Their Potential Distributions
by Qian Gao, Zhiqian Li, Jihong Tang, Jingyun Zhu, Yan Wu, Baoqian Lyu and Gao Hu
Insects 2026, 17(1), 126; https://doi.org/10.3390/insects17010126 - 22 Jan 2026
Viewed by 206
Abstract
The larvae and damage symptoms of Cnaphalocrocis medinalis and Cnaphalocrocis patnalis exhibit a high degree of similarity, which often leads to confusion between the two species. This has posed challenges for research on their population dynamics and the development of effective control measures. [...] Read more.
The larvae and damage symptoms of Cnaphalocrocis medinalis and Cnaphalocrocis patnalis exhibit a high degree of similarity, which often leads to confusion between the two species. This has posed challenges for research on their population dynamics and the development of effective control measures. To better understand their morphological and damage characteristics, population dynamics, species identification based on COI gene fragments, and potential future distribution, a searchlight trap monitoring program was conducted for C. medinalis and its closely related species C. patnalis across four sites in Longhua, Haitang, and Yazhou districts in Hainan Province from 2021 to 2023. The MaxEnt model was utilized to predict the potential global distribution of both species, incorporating known occurrence points and climate variables. The trapping results revealed that both species reached peak abundance between April and June, with a maximum of 1500 individuals captured in May at Beishan Village, Haitang District. Interannual population fluctuations of both species generally followed a unimodal pattern. Genetic analyses revealed distinct differences in the mitochondrial COI gene fragment, confirming that C. medinalis and C. patnalis are closely related yet distinct species. The population peak of C. patnalis occurred slightly earlier than that of C. medinalis, and its field damage was more severe. Infestations during the booting to heading stages of rice significantly reduced seed-setting rates and overall yield. Model predictions indicated that large areas of southern Eurasia are suitable for the survival of both species, with precipitation during the wettest month identified as the primary environmental factor shaping their potential distributions. At present, moderately and highly suitable habitats for C. medinalis account for 2.50% and 2.27% of the global land area, respectively, whereas those for C. patnalis account for 2.85% and 1.19%. These results highlight that climate change is likely to exacerbate the damage caused by both rice leaf-roller pests, particularly the emerging threat posed by C. patnalis. Overall, this study provides a scientific basis for invasion risk assessment and the development of integrated management strategies targeting the combined impacts of C. medinalis and C. patnalis. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

18 pages, 4155 KB  
Article
Functional Analysis of OsDRP2B in Rice Root Development
by Lihuiying Jia, Zhiqiang Guo, Yunyan Hua, Qi Zhu, Fengyi Zhou, Qiuping Li, Xu Li, Mengsha Li, Mengting Wang, Yujie Chen, Xiaofei Wang, Tao Ma and Wona Ding
Plants 2026, 15(2), 313; https://doi.org/10.3390/plants15020313 - 21 Jan 2026
Viewed by 267
Abstract
Rice (Oryza sativa L.) root system plays a critical role in water and nutrient uptake, influencing overall plant growth and crop yield. In this study, we characterized the Osdrp2b mutant, which exhibits a short-root phenotype and was identified through map-based cloning. The [...] Read more.
Rice (Oryza sativa L.) root system plays a critical role in water and nutrient uptake, influencing overall plant growth and crop yield. In this study, we characterized the Osdrp2b mutant, which exhibits a short-root phenotype and was identified through map-based cloning. The Osdrp2b mutation was traced to the gene encoding a dynamin-related protein, and the mutant displayed reduced cell elongation and impaired cell division in the root tip. Further analysis revealed that ROS (reactive oxygen species) accumulation was elevated in the mutant roots, and treatment with ROS inhibitors restored root elongation in the Osdrp2b mutant, indicating that altered ROS homeostasis is associated with the phenotype. Transcriptomic analysis highlighted the differential expression of genes involved in cell wall organization and hydrogen peroxide catabolism. Agronomic evaluations of the Osdrp2b mutant demonstrated compromised shoot growth, reduced tiller number, and lower seed setting rates, indicating the impact of the mutation on rice yield. Overall, these results suggest that OsDRP2B is involved in regulating root growth, potentially through effects on ROS homeostasis and associated signaling networks. These findings provide a basis for future studies on improving rice root development and agronomic performance. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Graphical abstract

16 pages, 1639 KB  
Article
Distant Hybridization of Kazakh Wheat Varieties with Wild Aegilops Species: Cytogenetic Compatibility, Fertilization Dynamics, and Breeding Implications
by Kenenbay Kozhakhmetov, Sholpan Bastaubayeva, Nazira Slyamova, Altynai Zhakataeva, Kasymkhan Koylanov and Zhandos Zholdasbayuly
Agronomy 2026, 16(1), 128; https://doi.org/10.3390/agronomy16010128 - 5 Jan 2026
Viewed by 275
Abstract
Distant hybridization between bread wheat (Triticum aestivum L.) and wild Aegilops species is a valuable approach to take to broaden genetic diversity, but it is frequently impeded by reproductive barriers. This study evaluated crossability, pollen tube dynamics, meiotic behavior, somatic chromosome numbers, [...] Read more.
Distant hybridization between bread wheat (Triticum aestivum L.) and wild Aegilops species is a valuable approach to take to broaden genetic diversity, but it is frequently impeded by reproductive barriers. This study evaluated crossability, pollen tube dynamics, meiotic behavior, somatic chromosome numbers, and pollen fertility in twelve Kazakh wheat cultivars crossed with Ae. triaristata Willd., Ae. cylindrica Host, Ae. triuncialis L., and Ae. squarrosa L. under field-based controlled pollination. Hybridization success varied significantly among combinations, with Ae. triaristata showing the highest compatibility (26.0% in Bezostaya 1 × Ae. triaristata), while Ae. squarrosa produced the lowest seed set. In compatible crosses, pollen tubes reached the ovary within 20–30 min, whereas delayed elongation (>60 min) was associated with fertilization failure. Meiotic analysis revealed incomplete homologous pairing (3–7 bivalents per PMC) and high abnormality rates (>90%). Somatic chromosome counts (2n) of selected F1 hybrids confirmed extensive aneuploidy and partial chromosome elimination. Pollen fertility was generally below 20%. These results identify Ae. triaristata as a promising donor species for pre-breeding in Kazakhstan and underscores the importance of integrating classical cytology with molecular approaches to overcome hybridization barriers. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

23 pages, 3375 KB  
Article
Spatially Gated Mixture of Experts for Missing Data Imputation in Pavement Management Systems
by Bongjun Ji, Seungyeon Han and Mun-Sup Lee
Systems 2026, 14(1), 48; https://doi.org/10.3390/systems14010048 - 31 Dec 2025
Viewed by 333
Abstract
Accurate imputation of missing pavement-condition data is critical for proactive infrastructure management, yet it is complicated by spatial non-stationarity—deterioration patterns and data quality vary markedly across regions. This study proposes a Spatially Gated Mixture-of-Experts (SG-MoE) imputation model that explicitly encodes spatial heterogeneity by [...] Read more.
Accurate imputation of missing pavement-condition data is critical for proactive infrastructure management, yet it is complicated by spatial non-stationarity—deterioration patterns and data quality vary markedly across regions. This study proposes a Spatially Gated Mixture-of-Experts (SG-MoE) imputation model that explicitly encodes spatial heterogeneity by (i) clustering road segments using geographic coordinates and (ii) supervising a gating network to route each sample to region-specialized expert regressors. Using a large-scale national pavement management database, we benchmark SG-MoE against a strong baseline under controlled missingness mechanisms (MCAR: missing completely at random; MAR: missing at random; MNAR: missing not at random) and missing rates (10–50%). Across scenarios, SG-MoE consistently matches or improves upon the baseline; the largest gains occur under MCAR and the challenging MNAR setting, where spatial specialization reduces systematic underestimation of high crack-rate sections. The results provide practical guidance on when spatially aware ensembling is most beneficial for infrastructure imputation at scale. We additionally report comparative results under three missingness mechanisms. Across five random seeds, SG-MoE is comparable to the single LightGBM baseline under MCAR/MAR and achieves its largest gains under MNAR (e.g., sMAPE improves by 0.82 points at 10% MNAR missingness). Full article
(This article belongs to the Section Artificial Intelligence and Digital Systems Engineering)
Show Figures

Figure 1

20 pages, 2951 KB  
Article
Vibration-Excited Combined Harvester for Dual Harvesting of Ears and Stalks: Design and Experiments
by Xinxin Wang, Yang Wang, Qian Wang, Xiang Li, Ruo Liu, Junlin Liu, Yansong Gong, Yushuai Liu and Duanyang Geng
Agriculture 2026, 16(1), 104; https://doi.org/10.3390/agriculture16010104 - 31 Dec 2025
Viewed by 285
Abstract
Aiming at the reliability of ear picking and the consistency of stalk chopping length in the process of corn ear and stalk harvesting, a new type of corn harvester with both ear and stalk harvesting based on exciting ear picking was developed. Based [...] Read more.
Aiming at the reliability of ear picking and the consistency of stalk chopping length in the process of corn ear and stalk harvesting, a new type of corn harvester with both ear and stalk harvesting based on exciting ear picking was developed. Based on the vertical cutting table, the machine realizes the excitation of the ear during the process of stalk transportation by rotating the eight-edged special-shaped pick-up roll, and the stable and orderly transportation of stalks before cutting is realized by the way of clamping and conveying with the rear rollers. By analyzing the configuration and parameter determination methods of the main working parts, the high-efficiency and low-loss harvest of the ear was realized, and the consistency of the cut length of the stalk was guaranteed. A discrete element model (DEM) of ear-bearing maize plants was established using EDEM (version 2024, Altair Engineering, Troy, MI, USA) simulation software, and a five-factor, three-level quadratic orthogonal rotation experiment was conducted based on Response Surface Methodology (RSM). The simulation results indicated that the optimal operational quality was achieved under the following parameters: a header angle of 10°, a snapping roller speed of 942 rpm, a clamping roller speed of 215 rpm, and a moving blade speed of 1450 rpm. Furthermore, multiple sets of field trials were conducted at various forward speeds to validate these findings. The mean values of seed loss rate, ear loss rate, and seed breakage rate are 0.51%, 0.55%, and 0.32%, respectively, for the harvester at operating speeds of 4 km/h, 6 km/h, 8 km/h, and 10 km/h. The σ values are 97%, 98%, 97%, and 98%. The field harvesting performance indexes meet the requirements of technical specifications for evaluating the operation quality of corn combine harvester, and meet the design requirements of low loss, high efficiency, and consistency of stem chopping length. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 3023 KB  
Article
Integrated Transcriptome and Metabolome Analysis Revealed the Molecular Mechanisms of Cold Stress in Japonica Rice at the Booting Stage
by Wendong Ma, Zhenhua Guo, Peng Li, Hu Cao, Yongsheng Cai, Xirui Zhang, Xiao Han, Yanjiang Feng, Jinjie Li and Zichao Li
Agriculture 2026, 16(1), 19; https://doi.org/10.3390/agriculture16010019 - 21 Dec 2025
Viewed by 434
Abstract
Japonica rice is susceptible to cold stress at the booting stage, yet the systematic molecular mechanisms underlying varietal disparities in cold tolerance at this stage remain poorly understood. To fill this research gap, cold-tolerant LG1934 (V3) and cold-sensitive KD8 (V6) were subjected to [...] Read more.
Japonica rice is susceptible to cold stress at the booting stage, yet the systematic molecular mechanisms underlying varietal disparities in cold tolerance at this stage remain poorly understood. To fill this research gap, cold-tolerant LG1934 (V3) and cold-sensitive KD8 (V6) were subjected to low-temperature treatment (15 °C) for 0 h (T1), 72 h (T3), and 120 h (T5) at the booting stage, followed by analyses of agronomic traits, antioxidant physiology, metabolome, transcriptome, and weighted gene co-expression network analysis (WGCNA). Phenotypic results showed that low temperature was the main driver of differences in panicle length, seed setting rate, and grain weight between the two varieties, with V3 exhibiting significantly stronger cold tolerance. Under cold stress, V3 maintained higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), accompanied by lower O2 accumulation and higher contents of malondialdehyde (MDA), H2O2, and proline compared to V6. Metabolomic analysis identified 56 differential accumulated metabolites (DAMs), with amino acids and their derivatives (notably L-aspartic acid) as key contributors. RNA-seq analysis identified 472 common differentially expressed genes (DEGs) that were enriched in alanine, aspartate, and glutamate metabolism, with 20 transcription factors (TFs) from TCP, WRKY, and bHLH families screened. The WGCNA revealed nine DEM-correlated modules, with orange and pink modules positively associated with L-aspartic acid. Eleven core TFs were identified, among which OsPCF5 acted as a hub regulator that activated OsASN1 transcription to promote L-aspartate biosynthesis, enhancing ROS scavenging and cold tolerance. This study systematically demonstrated the cold tolerance molecular network in japonica rice at the booting stage, highlighting the antioxidant system and L-aspartate-mediated pathway, and the core genes provided valuable resources for cold-tolerance breeding. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

21 pages, 2046 KB  
Article
Mitigation of Greenhouse Gas Emissions Through Straw Management and Oxygenated and Biochar-Based Fertilizers
by Qi Sun, Yu-Feng Wang, Hao Jiang, Huichang Bian, Xiao-Jun Wang, Yan Li, Hong-Sheng Gao, Xue Pan, Shuai Hao and Xue-Jia Gu
Plants 2025, 14(24), 3791; https://doi.org/10.3390/plants14243791 - 12 Dec 2025
Viewed by 449
Abstract
Straw returning is a common agricultural practice that can enhance rice (Oryza sativa L.) yield in paddy systems. However, it also leads to a significant increase in greenhouse gas emissions (GHG). Fortunately, this negative impact can be mitigated by implementing enhanced oxygenation [...] Read more.
Straw returning is a common agricultural practice that can enhance rice (Oryza sativa L.) yield in paddy systems. However, it also leads to a significant increase in greenhouse gas emissions (GHG). Fortunately, this negative impact can be mitigated by implementing enhanced oxygenation strategies during rice cultivation. This study explored the effects of various oxygenation measures on GHG under straw-returning conditions through controlled pot experiments. Six distinct treatments were applied. These included straw not returned (NR, no straw applied), straw returned (SR), controlled irrigation (CI), oxygenation irrigation (OI), application of oxygenated fertilizer (OF, CaO2), and use of biochar-based fertilizer (CF). All treatment groups, with the exception of the NR group, involved the return of straw to the field. Creating rice production methods that increase yield and decrease emissions is of great importance to agricultural ecology. We postulated that using aeration methods under straw return conditions would stabilize rice yield and reduce GHG. The experimental results were consistent with our hypothesis. The experiment evaluated multiple parameters, including rice yield, leaf photosynthetic performance, soil ammonium and nitrate nitrogen (N) levels, and greenhouse gas emissions. The findings revealed that different oxygenation approaches significantly promoted rice tillering. Oxygenation measures have been shown to enhance rice yield by 19% to 65%. The highest tiller numbers were observed in the SR (22.75) and CF (21.6) treatments. Among all treatments, the CF achieved the highest seed setting rate at 0.94, which was notably greater than that of the other treatments. Total plant biomass was also significantly higher in the straw returning treatment (109.36 g), surpassing all other treatments. In terms of soil nitrogen dynamics, the OF treatment resulted in the highest nitrate nitrogen content. Meanwhile, the ammonium nitrogen concentrations across the four oxygenation treatments (CI, OI, OF, CF) ranged from approximately 7 to 8.9 mg kg−1. Regarding GHG, the CF treatment exhibited the lowest methane emissions, which were 33% lower compared to the straw returning treatment. The OF led to a 22% reduction in carbon dioxide emissions (CO2) relative to straw returning. Most notably, the CF reduced nitrous oxide emissions by 37% compared to the straw returning treatment. Overall, SR was found to substantially increase GHG. In contrast, all tested oxygenation measures—CI, OI, OF, and CF—were effective in suppressing GHG to varying degrees. Among these, the CF and OF demonstrated the most balanced and outstanding effects, both in reducing emissions and maintaining stable rice yields. Full article
Show Figures

Figure 1

20 pages, 3466 KB  
Article
Rice Responds to Different Light Conditions by Adjusting Leaf Phenotypic and Panicle Traits to Optimize Shade Tolerance Stability and Yield
by Shihui Yang, Lingyi Li, Guangyuan Wang, Yan Liu, Ying Kong, Xianghui Li, Yufei Liu, Zhensheng Lei, Shareef Gul, Guanghua He and Hesheng Yao
Agronomy 2025, 15(12), 2855; https://doi.org/10.3390/agronomy15122855 - 12 Dec 2025
Viewed by 419
Abstract
Prolonged low-light stress during growth significantly reduces rice yield in southwest China. In order to systematically study the dynamic response of rice to long-term shading, field experiments were conducted in Chongqing, China, from 2021 to 2022, investigating the effects of 50% and 75% [...] Read more.
Prolonged low-light stress during growth significantly reduces rice yield in southwest China. In order to systematically study the dynamic response of rice to long-term shading, field experiments were conducted in Chongqing, China, from 2021 to 2022, investigating the effects of 50% and 75% shading from the seedling to heading stage on morphological characteristics, physiological traits, and yield formation in 12 rice cultivars. The results showed that shading reduced tiller number, leaf mass per area, total dry mass, leaf area index, panicle number, seed-setting rate, and yield. Meanwhile, rice acclimated to low light by increasing plant height, leaf chlorophyll content, and leaf-total mass ratio. In particular, leaf width in low-light treatments was narrower under short-term shading but became wider under long-term shading compared to natural light. Moreover, under 50% shading condition, rice optimized panicle structure by increasing grain number per panicle and primary and secondary branch numbers to compensate for adverse effects. Cultivars, including Le you 918 and Shen 9 you 28, exhibited high yield and strong shade tolerance. Overall, rice acclimates to low light through the synergistic interactions of various traits, with leaf phenotypic adjustments and panicle structure optimization being crucial for improving yield under low light. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

15 pages, 4516 KB  
Article
Effects of Exogenous IBA on Cutting Propagation in Different Cutting Types of Bougainvillea spectabilis ‘Yunnan Purple’
by Die Hu and Longsheng Hu
Horticulturae 2025, 11(12), 1496; https://doi.org/10.3390/horticulturae11121496 - 10 Dec 2025
Viewed by 580
Abstract
Bougainvillea spectabilis ‘Yunnan Purple’ is a relatively cold-tolerant variety, but its low pollen viability and poor seed set have limited large-scale reproduction. To establish an efficient propagation protocol, cuttings from three types of Bougainvillea spectabilis ‘Yunnan Purple’ were treated with varying concentrations of [...] Read more.
Bougainvillea spectabilis ‘Yunnan Purple’ is a relatively cold-tolerant variety, but its low pollen viability and poor seed set have limited large-scale reproduction. To establish an efficient propagation protocol, cuttings from three types of Bougainvillea spectabilis ‘Yunnan Purple’ were treated with varying concentrations of exogenous indole-3-butyric acid (IBA). Rooting parameters, growth indicators, and physiological metrics were measured, and the optimal treatment was identified through comprehensive membership function evaluation. The results showed that cutting types significantly influenced rooting, root development, plant growth, organic compound content (soluble sugars, starch, and protein), and abscisic acid (ABA) content. Conversely, IBA concentration significantly affected rooting, root architecture, polyphenol oxidase (PPO) activity, and the levels of indole-3-acetic acid (IAA) and Brassinolide (BR). This comprehensive evaluation identified lignified shoots (LS) treated with 100 mg/L IBA (LS-100) as the optimal protocol, which achieved a rooting rate of 63% and significantly improved root formation, plant growth, root activity, organic compound content, PPO activity, and the levels of IAA and BR. This study provides valuable insights and technical guidance for the large-scale cutting propagation of Bougainvillea spectabilis ‘Yunnan Purple’. Full article
(This article belongs to the Special Issue Propagation and Flowering of Ornamental Plants)
Show Figures

Figure 1

19 pages, 359 KB  
Article
A Deterministic Comparison of Classical Machine Learning and Hybrid Deep Representation Models for Intrusion Detection on NSL-KDD and CICIDS2017
by Miguel Arcos-Argudo, Rodolfo Bojorque and Andrés Torres
Algorithms 2025, 18(12), 749; https://doi.org/10.3390/a18120749 - 28 Nov 2025
Viewed by 1172
Abstract
Intrusion detection systems (IDSs) must balance detection quality with operational transparency. We present a deterministic, leakage-free comparison of three classical classifiers: Naïve Bayes (NB), Logistic Regression (LR), and Linear Discriminant Analysis (LDA). We also propose a hybrid pipeline that trains LR on Autoencoder [...] Read more.
Intrusion detection systems (IDSs) must balance detection quality with operational transparency. We present a deterministic, leakage-free comparison of three classical classifiers: Naïve Bayes (NB), Logistic Regression (LR), and Linear Discriminant Analysis (LDA). We also propose a hybrid pipeline that trains LR on Autoencoder embeddings (AE). Experiments use NSL-KDD and CICIDS2017 under two regimes (with/without SMOTE (Synthetic Minority Oversampling Technique) applied only on training data). All preprocessing (one-hot encoding, scaling, and imputation) is fitted on the training split; fixed seeds and deterministic TensorFlow settings ensure exact reproducibility. We report a complete metric set—Accuracy, Precision, Recall, F1, Area Under the Curve (AUC), and False Alarm Rate (FAR)—and release a replication package (code, preprocessing artifacts, and saved prediction scores) to regenerate all reported tables and metrics. On NSL-KDD, AE+LR yields the highest AUC (≈0.904) and the strongest F1 among the evaluated models (e.g., 0.7583 with SMOTE), while LDA slightly edges LR on Accuracy/F1. NB attains very high Precision (≈0.98) but low Recall (≈0.24), resulting in the weakest F1, yet a low FAR due to conservative decisions. On CICIDS2017, LR delivers the best Accuracy/F1 (0.9878/0.9752 without SMOTE), with AE+LR close behind; both approach ceiling AUC (≈0.996). SMOTE provides modest gains on NSL-KDD and limited benefits on CICIDS2017. Overall, LR/LDA remain strong, interpretable baselines, while AE+LR improves separability (AUC) without sacrificing a simple, auditable decision layer for practical IDS deployment. Full article
Show Figures

Figure 1

Back to TopTop