Seasonal and Spatial Patterns of Ecotoxicological Indices of Trace Elements in Superficial Sediments of the Marchica Lagoon Following Restoration Actions during the Last Decade
Abstract
:1. Introduction
- characterize the variation in trace element concentrations of Pb, Cr, Zn, Cu, Co, and Ba and their correlation to major elements Si, Al, Fe, Mn, Ca, Ti, K, and P, grain size, and total organic carbon (TOC) in the surface sediments of the Marchica Lagoon following restoration actions during the wet and dry seasons, in order to establish the main factors controlling the distribution of some toxic metals;
- assess the ecotoxicological risk by comparing the concentration of trace elements with sediment-quality guidelines (SQGs) and assessment indices as good indicators: contamination factor (CF), pollution-load index (PLI), enrichment factor (EF), geoaccumulation index (Igeo), and the mean sediment-quality-guidelines quotient (m-ERM-Q) to examine the potential biological effects of the toxicity of trace elements in surface sediment [28,29,30,31,32,33,34];
- determine the potential sources of trace elements in the sediment;
- identify highly polluted areas by clustering the stations with pollution similarity and comparing the distribution with previous studies.
2. Materials and Methods
2.1. Site Description
2.2. Environmental Sampling
2.3. Analysis Methods
2.4. Statistical Methods
2.5. Sediment Contamination and Risk Assessment Indices
3. Results
3.1. Seasonal Distribution of the Geochemical Parameters in Marchica Lagoon Sediment
3.1.1. Physicochemical Lagoon Parameters
3.1.2. Granulometry and TOC
3.1.3. Major and Trace Elements
3.2. Spatial Pattern and Correlation of the Geochemical Parameters, Granulometry, and TOC in Marchica Lagoon Sediment
3.3. Ecological Risk of the Trace Elements in Marchica Lagoon Sediment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Ruzafa, A.; Pérez-Ruzafa, I.M.; Newton, A.; Marcos, C. Coastal lagoons: Environmental variability, ecosystem complexity, and goods and services uniformity. In Coasts and Estuaries; Elsevier: Amsterdam, The Netherlands, 2019; pp. 253–276. [Google Scholar]
- Newton, A.; Brito, A.C.; Icely, J.D.; Derolez, V.; Clara, I.; Angus, S.; Schernewski, G.; Inácio, M.I.; Lillebø, A.; Sousa, I.A.; et al. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 2018, 44, 50–65. [Google Scholar] [CrossRef]
- Velasco, A.M.; Pérez-Ruzafa, A.; Martínez-Paz, J.M.; Marcos, C. Ecosystem services and main environmental risks in a coastal lagoon (Mar Menor, Murcia, SE Spain): The public perception. J. Nat. Conserv. 2018, 43, 180–189. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Kennish, M.J.; Paerl, H.W. Coastal Lagoons: Critical Habitats of Environmental Change; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–15. [Google Scholar]
- Levin, L.A.; Boesch, D.F.; Covich, A.; Dahm, C.; Erséus, C.; Ewel, K.C.; Kneib, R.T.; Moldenke, A.; Palmer, M.A.; Weslawski, J.M.; et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 2001, 4, 430–451. [Google Scholar] [CrossRef]
- Eisenreich, S.J.; Bernasconi, C.; Campostrini, P. Climate Change and the European Water Dimension; EU Report No. 21553; Joint Research Centre, European Commission: Ispra, Italy, 2005. [Google Scholar]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Watson, R. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.S.; Selkoe, K.A.; Micheli, F.; Kappel, C.V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 2007, 21, 1301–1315. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island press: Washington, DC, USA, 2005; Volume 5, p. 563. [Google Scholar]
- Zhang, H.; Walker, T.R.; Davis, E.; Ma, G. Ecological risk assessment of metals in small craft harbour sediments in Nova Scotia, Canada. Mar. Pollut. Bull. 2019, 146, 466–475. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.; Holmer, M.; et al. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Castillo, M.A.; Trujillo, I.S.; Alonso, E.V.; de Torres, A.G.; Pavón, J.C. Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, Region of Andalucía, Southern Spain). Mar. Pollut. Bull. 2013, 76, 427–434. [Google Scholar] [CrossRef]
- Affian, K.; Robin, M.; Maanan, M.; Digbehi, B.; Djagoua, E.V.; Kouamé, F. Heavy metal and polycyclic aromatic hydrocarbons in Ebrié lagoon sediments, Côte d’Ivoire. Environ. Monit. Assess. 2009, 159, 531–541. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Fernández, A.I.; Marcos, C.; Gilabert, J.; Quispe, J.I.; García-Charton, J.A. Spatial and temporal variations of hydrological conditions, nutrients and chlorophyll a in a Mediterranean coastal lagoon (Mar Menor, Spain). Hydrobiologia 2005, 550, 11–27. [Google Scholar] [CrossRef]
- Boutahar, L.; Maanan, M.; Bououarour, O.; Richir, J.; Pouzet, P.; Gobert, S.; Bazairi, H. Biomonitoring environmental status in semi-enclosed coastal ecosystems using Zostera noltei meadows. Ecol. Indic. 2019, 104, 776–793. [Google Scholar] [CrossRef]
- Wei, X.; Han, L.; Gao, B.; Zhou, H.; Lu, J.; Wan, X. Distribution, bioavailability, and potential risk assessment of the metals in tributary sediments of Three Gorges Reservoir: The impact of water impoundment. Ecol. Indic. 2016, 61, 667–675. [Google Scholar] [CrossRef]
- Duan, K.; Li, K.; Liang, S.; Li, Y.; Su, Y.; Wang, X. Optimizing a coastal monitoring network using a water-quality response grid (WRG)-based sampling design for improved reliability and efficiency. Mar. Pollut. Bull. 2019, 145, 480–489. [Google Scholar] [CrossRef]
- De Lacerda, L.D. Biogeochemistry of heavy metals in coastal lagoons; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1994; Volume 60, pp. 221–241. [Google Scholar]
- Farmer, J.G. The perturbation of historical pollution records in aquatic sediments. Environ. Geochem. Health 1991, 13, 76–83. [Google Scholar] [CrossRef]
- Selfati, M.; El Ouamari, N.; Franco, A.; Lenfant, P.; Lecaillon, G.; Mesfioui, A.; Bazairi, H. Fish assemblages of the Marchica lagoon (Mediterranean, Morocco): Spatial patterns and environmental drivers. Reg. Stud. Mar. Sci. 2019, 32, 100896. [Google Scholar] [CrossRef]
- Najih, M.; Berday, N.; Lamrini, A.; Nachite, D.; Zahri, Y. Situation de la pêche aux petits métiers après l’ouverture du nouveau chenal dans la lagune de Nador. Rev. Maroc. Sci. Agron. Vét. 2015, 3, 19–30. [Google Scholar]
- Dakki, M. Diagnostic pour l’aménagement des zones humides du nord-est du Maroc: Sebkha Bou Areg (lagune de Nador); final report, UNEP/Secr. Etat Env./Départ. Eaux & Forêt, Maroc; MedWetCoast project Morocco: Arles, France, 2003; p. 55. [Google Scholar]
- Malouli, I.M.; Zahri, Y.; Houssa, R.; Abdelaoui, B.; El Ouamari, N. Pêche artisanale dans la lagune de Nador: Exploitation et aspects socio-économiques. Available online: http://webco.faocopemed.org/old_copemed/vldocs/0000762/case_std_nador.pdf (accessed on 28 November 2020).
- UNEP; EEA. Priority Issues in the Mediterranean Environment; Report No 4; United Nations Environment Program; European Environment Agency: Nairobi, Kenya; Copenhagen, Denmark, 2006. [Google Scholar]
- SEEE; I.N.R.H. Eutrophication Study of Nador Lagoon; UNEP Report; (MEDPOL program): Nairobi, Kenya, 2009; p. 71. [Google Scholar]
- Agency for the Development of the Marchica Lagoon. 2010. Available online: http://www.agencemarchica.gov.ma/ (accessed on 28 November 2020).
- Long, E.R.; MacDonald, D.D.; Severn, C.G.; Hong, C.B. Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environ. Toxicol. Chem. Int. J. 2000, 19, 2598–2601. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef]
- Long, E.R.; MacDonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Müller, G. Heavy metals in the sediment of the Rhine-Changes Seity. Umsch. Wiss. Tech. 1979, 79, 778–783. [Google Scholar]
- Hamoumi, N.; Hourimeche, A.; Chafik, M.; Hazim, M.E.; Terhzaz, L.; Kharbaoui, R.; Louaya, A. Contrôle et évolution des Milieux Sédimentaires de la Lagune de Nador (Littoral Méditerranéen Oriental, Maroc). In Proceedings of the Second Coastal and Maritime Mediterranean Conference, Tangier, Morocco, 22–24 November 2011; pp. 177–180. Available online: http://www.paralia.fr (accessed on 28 November 2020).
- Karim, B.M. Etude Géochimique de la Lagune de Nador (Maroc Oriental): Impacts des Facteurs Anthropiques. Ph.D. Thesis, Université Mohamed V-Agdal, Rabat, Morocco, 2005. [Google Scholar]
- Raji, O.; Dezileau, L.; Tessier, B.; Niazi, S.; Snoussi, M.; Von Grafenstein, U.; Poujol, A. Climate and tectonic-driven sedimentary infill of a lagoon as revealed by high resolution seismic and core data (the Nador lagoon, NE Morocco). Mar. Geol. 2018, 398, 99–111. [Google Scholar] [CrossRef]
- Karim, H.; Ahmed, D.M.; Mohammed, I.; Benyounes, D.A. Circulation marine de la lagune de Nador (Maroc) par modélisation hydrodynamique. Eur. Sci. J. 2015, 11, 418–428. [Google Scholar]
- Guelorget, O.; Perthuisot, J.P.; Frisoni, G.F.; Monti, D. The role of confinement in the biogeological organization of Nador Lagoon (Morocco). Oceanol. Acta 1987, 10, 435–444. [Google Scholar]
- Bloundi, M.K.; Duplay, J.; Quaranta, G. Heavy metal contamination of coastal lagoon sediments by anthropogenic activities: The case of Nador (East Morocco). Environ. Geol. 2009, 56, 833–843. [Google Scholar] [CrossRef]
- National Institute of Fisheries Research. Morocco. Available online: https://www.inrh.ma (accessed on 28 November 2020).
- Gee, G.W.; Or, D. 2.4 Particle-size analysis. Methods Soil Anal. Part 4 Phys. Methods 2002, 5, 255–293. [Google Scholar]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Andrews, J.E.; Samways, G.; Shimmield, G.B. Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber Estuary, UK. Sci. Total Environ. 2008, 405, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Littoral - Environnement - Télédétection – Géomatique, (LETG), UMR 6554, University of Nantes. Available online: https://letg.cnrs.fr (accessed on 28 November 2020).
- National Center for Energy, Sciences and Nuclear Techniques. Morocco. Available online: https://www.cnesten.org.ma (accessed on 28 November 2020).
- National Laboratory of Studies and Monitoring of Pollution. Morocco. Available online: https://labo.environnement.gov.ma (accessed on 28 November 2020).
- Jackson, J.E. A User’s Guide to Principal Components; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 587. [Google Scholar]
- Clarke, K.R.; Gorley, R. PRIMER v6: User Manual/Tutorial. PRIMER-E: Plymouth; Plymouth Marine Laboratory: Plymouth, UK.
- Niencheski, L.F.; Windom, H.L.; Smith, R. Distribution of particulate trace metal in Patos Lagoon Estuary (Brazil). Mar. Pollut. Bull. 1994, 28, 96–102. [Google Scholar] [CrossRef]
- Schropp, S.J.; Lewis, F.G.; Windom, H.L.; Ryan, J.D.; Calder, F.D.; Burney, L.C. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries 1990, 13, 227–235. [Google Scholar] [CrossRef]
- Bruland, K.W.; Bertine, K.; Koide, M.; Goldberg, E.D. History of metal pollution in southern California coastal zone. Environ. Sci. Technol. 1974, 8, 425–432. [Google Scholar] [CrossRef]
- Okay, O.S.; Ozmen, M.; Güngördü, A.; Yılmaz, A.; Yakan, S.D.; Karacık, B.; Schramm, K.W. Heavy metal pollution in sediments and mussels: Assessment by using pollution indices and metallothionein levels. Environ. Monit. Assess. 2016, 188, 352. [Google Scholar] [CrossRef] [Green Version]
- Maanan, M.; Landesman, C.; Maanan, M.; Zourarah, B.; Fattal, P.; Sahabi, M. Evaluation of the anthropogenic influx of metal and metalloid contaminants into the Moulay Bousselham lagoon, Morocco, using chemometric methods coupled to geographical information systems. Environ. Sci. Pollut. Res. 2013, 20, 4729–4741. [Google Scholar] [CrossRef]
- Blomqvist, S.; Larsson, U.; Borg, H. Heavy metal decrease in the sediments of a Baltic Bay following tertiary sewage treatment. Mar. Pollut. Bull. 1992, 24, 258–266. [Google Scholar] [CrossRef]
- White, K.D.; Tittlebaum, M.E. Metal distribution and contamination in sediments. J. Environ. Eng. 1985, 111, 161–175. [Google Scholar] [CrossRef]
- Maanan, M.; Saddik, M.; Maanan, M.; Chaibi, M.; Assobhei, O.; Zourarah, B. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol. Indic. 2015, 48, 616–626. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S.; Holland, H.D.; Turekian, K.K. Composition of the continental crust. Crust 2003, 3, 1–64. [Google Scholar]
- Long, E.R.; Field, L.J.; MacDonald, D.D. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. Int. J. 1998, 17, 714–727. [Google Scholar] [CrossRef]
- Long, E.R.; MacDonald, D.D. Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum. Ecol. Risk Assess. 1998, 4, 1019–1039. [Google Scholar] [CrossRef]
- Muller, G. The heavy metal pollution of the sediments of Neckars and its tributary: A stocktaking. Chem. Zeit 1981, 105, 157–164. [Google Scholar]
- Aknaf, A.; Akodad, M.; Hmeid, H.A.; Layachi, M.; Mesfioui, A.; Andich, K.; Baghour, M. Granulometric Analysis and Environtment of Deposits of Surface Sediments of the Marchica Lagoon (North-East of Morocco). In Euro-Mediterranean Conference for Environmental Integration; Springer: Cham, Switzerland, 2017; pp. 1677–1678. [Google Scholar]
- Lefebvre, A.; Guelorget, O.; Perthuisot, J.P.; Dafir, J.E. Évolution biologique de la lagune de Nador (Maroc) au cours de la période 1982–1993. Ocean. Acta 1997, 20, 371–385. [Google Scholar]
- Mohamed, N.; Driss, N.; Nadia, B.; Roberto, P.; Abdeljaouad, L.; Nor-Dine, R. Charactérization of the new status of Nador lagoon (Morocco) after the implementation of the management plan. J. Mar. Sci. Eng. 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- El Barjy, M.; Maanan, M.; Maanan, M.; Salhi, F.; Tnoumi, A.; Zourarah, B. Contamination and environmental risk assessment of heavy metals in marine sediments from Tahaddart estuary (NW of Morocco). Hum. Ecol. Risk Assess. Int. J. 2020, 26, 87–102. [Google Scholar] [CrossRef]
- Watts, M.J.; Mitra, S.; Marriott, A.L.; Sarkar, S.K. Source, distribution and ecotoxicological assessment of multielements in superficial sediments of a tropical turbid estuarine environment: A multivariate approach. Mar. Pollut. Bull. 2017, 115, 130–140. [Google Scholar] [CrossRef]
- Hu, B.; Cui, R.; Li, J.; Wei, H.; Zhao, J.; Bai, F.; Ding, X. Occurrence and distribution of heavy metals in surface sediments of the Changhua River Estuary and adjacent shelf (Hainan Island). Mar. Pollut. Bull. 2013, 76, 400–405. [Google Scholar] [CrossRef]
- Whitney, P.R. Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments. J. Geochem. Explor. 1975, 4, 251–263. [Google Scholar] [CrossRef]
- Horowitz, A.J.; Elrick, K.A. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl. Geochem. 1987, 2, 437–451. [Google Scholar] [CrossRef]
- Barik, S.S.; Prusty, P.; Singh, R.K.; Tripathy, S.; Farooq, S.H.; Sharma, K. Seasonal and spatial variations in elemental distributions in surface sediments of Chilika Lake in response to change in salinity and grain size distribution. Environ. Earth Sci. 2020, 79, 1–18. [Google Scholar] [CrossRef]
- Jain, C.K.; Malik, D.S.; Yadav, R. Metal fractionation study on bed sediments of Lake Nainital, Uttaranchal, India. Environ. Monit. Assess. 2007, 130, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Maicu, F.; Abdellaoui, B.; Bajo, M.; Hilmi, K.; Umgiesser, G. The use of the SHYFEM numerical model to assess the improvement in the hydrodynamics and in the water renewal of the Nador Lagoon (Morocco) after the construction of a new inlet. In Proceedings of the 20th EGU 2018 General Assembly Conference, Vienna, Austria, 4–13 April 2018; p. 12657. [Google Scholar]
- Cadmus, P.; Brinkman, S.F.; May, M.K. Chronic toxicity of ferric iron for North American aquatic organisms: Derivation of a chronic water quality criterion using single species and mesocosm data. Arch. Environ. Contam. Toxicol. 2018, 74, 605–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmann, G. Toxic metals. In Metal Pollution in The Aquatic Environment; Springer: Berlin/Heidelberg, Germany, 1981; pp. 3–70. [Google Scholar]
- Azzeddine, K.; El Hassan, T. Assessment of Metallic Contamination of Water Resources in the Area Around the Abandoned Mining Site of Ouixane (North East Morocco). In Proceedings of the 4th Edition of International Conference on Geo-IT and Water Resources 2020, Geo-IT and Water Resources 2020, Al-Hoceima, Morocco, 11–12 March 2020; pp. 1–6. [Google Scholar]
- Lakrim, M.; Mesrar, L.; El Aroussi, O.; Lahrach, A.; Beaabidate, L.; Garouani, A.; Chaouni, A.; Tabyaoui, H.; Jabrane, R. Impact Study of Mining Waste of the Nador Mine on the Environment (North-Eastern of Morocco). Rev. Ljee 2014. [Google Scholar]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils; Springer: Dordrecht, The Netherlands, 2013; pp. 11–50. [Google Scholar]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- González, I.; Águila, E.; Galán, E. Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management. Environ. Geol. 2007, 52, 1581–1593. [Google Scholar] [CrossRef]
- Ruiz, F.; Abad, M.; Olías, M.; Galán, E.; González, I.; Aguilá, E.; Cantano, M. The present environmental scenario of the Nador Lagoon (Morocco). Environ. Res. 2006, 102, 215–229. [Google Scholar] [CrossRef]
- Inani, I. Dynamique sédimentaire et pollution dans la lagune de Nador. Ph.D. Thesis, Université Mohammed V-Agdal, Rabat, Morocco, 1995. [Google Scholar]
- Oujidi, B.; Tahri, M.; Layachi, M.; Abid, A.; Bouchnan, R.; Selfati, M.; Snoussi, M. Effects of the watershed on the seasonal variation of the surface water quality of a post-restoration coastal wetland: The case of the Nador lagoon (Mediterranean sea, Morocco). Reg. Stud. Mar. Sci. 2020, 35, 101127. [Google Scholar] [CrossRef]
- Barhoumi, B.; Elbarhoumi, A.; Clérandeau, C.; Al-Rawabdeh, A.M.; Atyaoui, A.; Touil, S.; Cachot, J. Using an integrated approach to assess the sediment quality of an Mediterranean lagoon, the Bizerte lagoon (Tunisia). Ecotoxicology 2016, 25, 1082–1104. [Google Scholar] [CrossRef]
- Arienzo, M.; Masuccio, A.A.; Ferrara, L. Evaluation of sediment contamination by heavy metals, organochlorinated pesticides, and polycyclic aromatic hydrocarbons in the Berre coastal lagoon (southeast France). Arch. Environ. Contam. Toxicol. 2013, 65, 396–406. [Google Scholar] [CrossRef]
- Tan, İ.; Aslan, E. Metal pollution status and ecological risk assessment in marine sediments of the inner Izmit Bay. Reg. Stud. Mar. Sci. 2020, 33, 100850. [Google Scholar] [CrossRef]
- Katsaros, D.; Panagiotaras, D.; Kontopoulos, N.; Avramidis, P. Sediments characteristics and heavy metals distribution of a very shallow protected coastal lagoon, Prokopos Lagoon, Mediterranean Sea Western Greece. Feb-Fresenius Environ Bull. 2017, 26, 6093. [Google Scholar]
- Atzori, G.; Aru, V.; Marincola, F.C.; Chiarantini, L.; Medas, D.; Sarais, G.; Cabiddu, S. Sediments distribution of trace metals in a coastal lagoon (Southern Sardinia, Mediterranean Sea): Assessment of contamination and ecological risk. Chem. Ecol. 2018, 34, 727–746. [Google Scholar] [CrossRef]
- Melegy, A.A.; El-Bady, M.S.; Metwally, H.I. Monitoring of the changes in potential environmental risk of some heavy metals in water and sediments of Burullus Lake, Egypt. Bull. Natl. Res. Cent. 2019, 43, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kanellopoulos, T.D.; Eleftheriadi, E.; Karageorgis, A.P.; Kambouri, G.; Papageorgiou, A.; Stavrakaki, I. Sediment grain size and elemental geochemistry in the coastal area of SW Messinia and the Gialova Lagoon. In COASTAL H2020 Programme 2020, The SW Messinia Case Study: Environmental Assessment of the Freshwater and Marine Systems; Karageorgis, A.P., Kanellopoulos, T.D., Eds.; Final Scientific Report; Hellenic Centre for Marine Research: Anavyssos, Greece; pp. 48–54.
Pollution Index. | Formulation | Ecotoxicological Assessment | ||||||
---|---|---|---|---|---|---|---|---|
Enrichment factor (EF) | (CTrace metal/CFe) Sample/(CTrace metal/CFe)Background | EF < 2 | 2 < EF < 5 | 5 < EF < 20 | 20 < EF < 40 | EF > 40 | ||
[29] | Minimal pollution | Moderate pollution | Significant pollution | Very strong pollution | Extreme pollution | |||
Geoaccumulation index (Igeo) | log2 (CTrace metal/1.5 CBackground) | Igeo < 0 | 0 < Igeo < 1 | 1 < Igeo < 2 | 2 < Igeo < 3 | 3 < Igeo < 4 | 4 < Igeo < 5 | Igeo > 5 |
[34,61] | Unpolluted | Unpolluted to moderately polluted | Moderately polluted | Moderately to strongly polluted | Strongly polluted | Strongly to extremely polluted | Extremely polluted | |
Contamination factor (CF) | CTracemetalSamplen/CTracemetalBackground | CF < 1 | 1 ≤ CF < 2 | 2 ≤ CF < 3 | CF ≥ 3 | |||
[32] | Not polluted | Mildly polluted | Moderately polluted | Strongly polluted | ||||
Pollution-load index (PLI) | PLI = (CF1 × CF2 × CF3 × CFn)1/n | PLI < 1 | 1 ≤ PLI < 2 | 2 ≤ PLI < 3 | PLI ≥ 3 | |||
[33] | Unpolluted | Moderately polluted | Strongly polluted | Very strongly polluted | ||||
Mean effect range medium quotient (m-ERM-Q) [28] | ∑ (CTracemetalSamplei/ERMi)/n ERM i: values of effects range–median guidelines for metal I [31] | < 0.1 9% probability of toxicity | 0.1–0.5 21% probability of toxicity | 0.5–1.5 49% probability of toxicity | > 1.5 76% probability of toxicity |
T °C | pH | O2 (mg/l) | Sal (g/l) | ||
---|---|---|---|---|---|
Wet Season | Min–Max | 16.7–18.4 | 7.64–8.54 | 4.9–11.83 | 22.1–36.9 |
Mean ± SD | 17.52 ± 0.46 | 8.25 ± 0.21 | 9.64 ± 1.58 | 35.28 ± 3.98 | |
Dry Season | Min–Max | 26–28.2 | 7.82–8.72 | 4.91–7.33 | 34.5–38.5 |
Mean ± SD | 27.09 ± 0.75 | 8.38 ± 0.29 | 6.57 ± 0.73 | 37.21 ± 0.97 |
Station | Season | Granulometry (%) | TOC % | Facies Group | Major Elements (%) | Trace Elements (mg/kg) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | Al | Fe | Mn | Si | Ti | Ca | P | K | Cu | Zn | Pb | Cr | Co | Ba | ||||
S1 | Wet | 80.7 | 18.6 | 0.7 | 3.20 | Muddy Sand | 4.86 | 4.00 | 0.049 | 14.10 | 0.35 | 12.11 | 0.14 | 1.94 | 15.37 | 3.42 | 204.58 | 24.86 | < DL | 179.56 |
Dry | 36.2 | 62.7 | 1.1 | 3.26 | Sandy Mud | 5.41 | 4.06 | 0.052 | 14.24 | 0.36 | 12.54 | 0.13 | 1.86 | 33.14 | 6.75 | 3039.51 | 30.92 | 8.61 | 197.23 | |
S2 | Wet | 64.4 | 34.6 | 1.1 | 3.95 | Muddy Sand | 7.98 | 10.49 | 0.094 | 16.36 | 0.35 | 4.87 | 0.05 | 1.78 | 297.87 | 191.13 | 320.96 | 75.06 | < DL | 296.69 |
Dry | 16.7 | 81.1 | 2.3 | 2.93 | Sandy Mud | 8.89 | 10.56 | 0.099 | 16.29 | 0.35 | 4.90 | 0.05 | 1.87 | 651.72 | 346.36 | 291.58 | 94.44 | < DL | 415.23 | |
S3 | Wet | 87.4 | 12.4 | 0.2 | 6.19 | Muddy Sand | 3.25 | 3.12 | 0.037 | 14.39 | 0.28 | 16.14 | 0.13 | 1.42 | 8711 | 40.17 | 192.06 | 53.85 | < DL | 207.60 |
Dry | 24.0 | 74.6 | 1.3 | 6.50 | Sandy Mud | 3.46 | 3.15 | 0.036 | 14.72 | 0.28 | 16.82 | 0.12 | 1.43 | 86.4 | 39.75 | 175.97 | 45.22 | 7.47 | 186.34 | |
S4 | Wet | 95.1 | 4.9 | 0.1 | 5.34 | Sand | 0.21 | 1.07 | 0.039 | 9.06 | 0.09 | 33.50 | 0.18 | 0.29 | 10.01 | 2.68 | 145.15 | 20.96 | < DL | 65.31 |
Dry | 100.0 | 0.0 | 0.0 | 4.11 | Sand | 0.23 | 1.07 | 0.038 | 9.36 | 0.09 | 33.10 | 0.19 | 0.29 | 13.39 | 2.14 | 112.46 | 7.43 | 10.43 | 66.84 | |
S5 | Wet | 95.0 | 4.9 | 0.1 | 5.43 | Sand | 0.47 | 1.77 | 0.049 | 9.53 | 0.10 | 33.53 | 0.16 | 0.45 | 13.51 | 2.43 | 131.83 | 6.25 | <DL | 89.30 |
Dry | 100.0 | 0.0 | 0.0 | 3.86 | Sand | 0.56 | 1.73 | 0.048 | 9.18 | 0.10 | 33.06 | 0.16 | 0.44 | 16.59 | 8.27 | 123.86 | 8.60 | 11.08 | 80.65 | |
S6 | Wet | 94.3 | 5.5 | 0.2 | 5.30 | Sand | 5.34 | 4.29 | 0.054 | 18.48 | 0.37 | 9.95 | 0.08 | 2.16 | 12.41 | 2.54 | 146.19 | 2.24 | < DL | 97.60 |
Dry | 10.9 | 85.5 | 3.5 | 2.08 | Sandy Mud | 4.97 | 4.31 | 0.055 | 18.57 | 0.37 | 9.37 | 0.09 | 2.09 | 98.73 | 34.95 | 155.62 | 63.70 | 8.85 | 250.87 | |
S7 | Wet | 90.5 | 9.1 | 0.4 | 0.17 | Sand | 6.80 | 11.78 | 0.102 | 20.20 | 0.52 | 4.19 | 0.08 | 2.58 | 200.4 | 63.48 | 225.34 | 35.54 | < DL | 986.22 |
Dry | 92.6 | 7.0 | 0.3 | 0.38 | Sand | 6.94 | 11.61 | 0.104 | 20.37 | 0.53 | 4.32 | 0.11 | 2.78 | 209.69 | 65.96 | 141.53 | 33.29 | < DL | 924.62 | |
S8 | Wet | 75.9 | 23.6 | 0.5 | 5.89 | Muddy Sand | 3.84 | 3.86 | 0.039 | 18.13 | 0.40 | 13.14 | 0.11 | 1.87 | 89.48 | 22.67 | 165.52 | 26.97 | < DL | 464.99 |
Dry | 15.2 | 83.0 | 1.9 | 1.84 | Sandy Mud | 3.66 | 3.94 | 0.040 | 18.22 | 0.41 | 13.21 | 0.11 | 2.06 | 97.15 | 44.19 | 140.13 | 37.56 | 19.80 | 482.91 | |
S9 | Wet | 78.5 | 20.6 | 0.9 | 1.94 | Muddy Sand | 3.59 | 3.59 | 0.035 | 17.89 | 0.40 | 14.01 | 0.11 | 1.50 | 58.75 | 8.40 | 2389.36 | 36.56 | < DL | 243.14 |
Dry | 42.3 | 55.5 | 2.2 | 2.09 | Sandy Mud | 3.92 | 3.61 | 0.036 | 18.22 | 0.40 | 14.06 | 0.10 | 1.61 | 39.79 | 9.40 | 130.27 | 38.2 | 13.12 | 203.24 | |
S10 | Wet | 70.7 | 27.7 | 1.5 | 2.36 | Muddy Sand | 2.71 | 3.19 | 0.048 | 14.65 | 0.30 | 21.05 | 0.13 | 1.33 | 34.92 | 3.69 | 156.50 | 25.84 | < DL | 257.20 |
Dry | 91.8 | 7.3 | 0.8 | 2.03 | Sand | 2.89 | 3.35 | 0.048 | 15.12 | 0.30 | 20.92 | 0.13 | 1.24 | 25.59 | 4.35 | 121.50 | 8.33 | 11.33 | 307.42 | |
S11 | Wet | 62.0 | 36.6 | 1.3 | 2.20 | Muddy Sand | 4.39 | 3.68 | 0.037 | 20.27 | 0.40 | 11.27 | 0.09 | 2.12 | 67.28 | 18.45 | 179.79 | 77.17 | < DL | 205.68 |
Dry | 20.4 | 77.2 | 2.4 | 2.79 | Sandy Mud | 4.82 | 3.76 | 0.037 | 20.63 | 0.40 | 11.46 | 0.09 | 1.91 | 73.55 | 30.00 | 120.86 | 65.27 | 18.2 | 181.75 | |
S12 | Wet | 60.5 | 38.9 | 0.6 | 1.74 | Muddy Sand | 4.50 | 3.62 | 0.035 | 18.86 | 0.42 | 11.95 | 0.08 | 1.80 | 6448 | 16.57 | 156.27 | 64.82 | < DL | 195.65 |
Dry | 9.2 | 87.0 | 3.8 | 2.35 | Mud | 4.37 | 3.67 | 0.035 | 19.13 | 0.42 | 11.85 | 0.08 | 2.04 | 58.89 | 21.31 | 124.12 | 76.89 | 13.02 | 207.51 | |
S13 | Wet | 60.3 | 38.6 | 1.1 | 3.63 | Muddy Sand | 4.81 | 4.04 | 0.047 | 18.76 | 0.40 | 11.25 | 0.08 | 2.03 | 74.28 | 26.9 | 163.14 | 59.04 | < DL | 157.17 |
Dry | 11.9 | 83.6 | 4.4 | 1.93 | Sandy Mud | 5.44 | 4.10 | 0.048 | 18.82 | 0.40 | 10.50 | 0.09 | 2.16 | 97.86 | 33.05 | 135.93 | 87.40 | 11.08 | 227.57 |
T °C | pH | O2 | Sal | Sand | Silt | Clay | TOC | Al | Fe | Mn | Si | P | K | Ca | Ti | Cu | Zn | Pb | Cr | Co | Ba | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T °C | 1 | |||||||||||||||||||||
pH | −0.46 | 1 | ||||||||||||||||||||
O2 | 0.16 | 0.22 | 1 | |||||||||||||||||||
Sal | 0.24 | 0.39 | 0.35 | 1 | ||||||||||||||||||
Sand | −0.21 | −0.19 | −0.19 | −0.41 | 1 | |||||||||||||||||
Silt | 0.21 | 0.19 | 0.19 | 0.19 | −1 ** | 1 | ||||||||||||||||
Clay | −0.09 | 0.51 | 0.24 | 0.24 | −0.86 ** | 0.85 ** | 1 | |||||||||||||||
TOC | 0.64* | −0.51 | −0.06 | −0.06 | 0.16 | −0.16 | −0.41 | 1 | ||||||||||||||
Al | 0.07 | −0.13 | 0.17 | 0.17 | −0.48 | 0.48 | 0.48 | −0.42 | 1 | |||||||||||||
Fe | 0.07 | −0.22 | −0.07 | −0.07 | −0.45 | 0.45 | 0.44 | −0.40 | 0.95 ** | 1 | ||||||||||||
Mn | 0.14 | −0.33 | −0.25 | −0.25 | 0.22 | −0.22 | −0.18 | 0.00 | 0.54 | 0.62 * | 1 | |||||||||||
Si | −0.41 | 0.16 | −0.19 | −0.19 | −0.59 * | 0.59 * | 0.65 * | −0.64 * | 0.56 * | 0.60 * | −0.05 | 1 | ||||||||||
P | 0.12 | −0.16 | −0.25 | −0.25 | 0.82 ** | −0.82 ** | −0.82 ** | 0.42 | −0.72 ** | −0.68 * | −0.04 | −0.75 ** | 1 | |||||||||
K | −0.17 | −0.09 | −0.29 | −0.29 | −0.51 | 0.51 | 0.53 | −0.44 | 0.76 ** | 0.84 ** | 0.29 | 0.85 ** | −0.65 * | 1 | ||||||||
Ca | 0.05 | 0.12 | −0.02 | −0.02 | 0.56 * | −0.56 * | −0.54 | 0.45 | −0.95 ** | −0.95 ** | −0.47 | −0.74 ** | 0.81 ** | −0.86 ** | 1 | |||||||
Ti | −0.42 | 0.07 | −0.16 | −0.16 | −0.45 | 0.45 | 0.45 | −0.71 ** | 0.51 | 0.58 | −0.09 | 0.84 ** | −0.57 * | 0.76 * | −0.62 * | 1 | ||||||
Cu | 0.08 | −0.49 | −0.16 | −0.16 | −0.52 | 0.52 | 0.24 | −0.07 | 0.57 * | 0.60 * | 0.18 | 0.53 | −0.65 * | 0.54 | −0.68 * | 0.45 | 1 | |||||
Zn | −0.02 | −0.26 | 0.02 | 0.02 | −0.66 * | 0.66 * | 0.38 | −0.14 | 0.43 | 0.42 | −0.14 | 0.54 | −0.68 * | 0.44 | −0.54 | 0.48 | 0.86 ** | 1 | ||||
Pb | 0.27 | −0.39 | 0.31 | 0.31 | −0.19 | 0.19 | 0.07 | −0.18 | 0.59 * | 0.50 | 0.15 | 0.09 | −0.23 | 0.29 | −0.42 | 0.31 | 0.42 | 0.34 | 1 | |||
Cr | 0.06 | 0.07 | 0.31 | 0.31 | −0.81 ** | 0.81 ** | 0.70 ** | −0.31 | 0.60 * | 0.50 | −0.16 | 0.63 * | −0.86 * | 0.48 | −0.67 * | 0.42 | 0.71 ** | 0.74 ** | 0.37 | 1 | ||
Co | −0.19 | 0.42 | −0.18 | −0.18 | −0.21 | 0.21 | 0.30 | −0.19 | −0.44 | −0.35 | −0.64 * | 0.26 | 0.003 | −0.03 | 0.33 | 0.30 | −0.28 | −0.17 | −0.31 | −0.06 | 1 | |
Ba | −0.19 | −0.22 | −0.16 | −0.16 | −0.23 | 0.23 | 0.12 | −0.51 | 0.33 | 0.44 | 0.09 | 0.45 | −0.39 | 0.31 | −0.40 | 0.60 * | 0.61 * | 0.60 * | 0.41 | 0.36 | 0.03 | 1 |
Lagoon Samples n = 26 (Wet and Dry) | Sediment-Quality Guidelines (SQGs) | |||||||
---|---|---|---|---|---|---|---|---|
Metal (mg/kg) | Minimum–Maximum | Mean ± SD | Sediment-Quality Guidelines for Marine Water | Background Values | LBG | |||
TEL | PEL | ERL | ERM | UCC | ||||
Cu | 2.14–346.36 | 40.35 ± 73.09 | 18.7 | 108 | 34 | 270 | 28 | 37.5 |
Zn | 10.01–8711.00 | 674.45 ± 2062.05 | 124 | 271 | 150 | 410 | 67 | 70.0 |
Pb | 112.46–3039.51 | 361.16 ± 700.63 | 30.2 | 112 | 46.7 | 218 | 17 | 20.0 |
Cr | 2.24–94.44 | 42.55 ± 26.95 | 52.3 | 160 | 81 | 370 | 92 | 55.0 |
Co | 0.00–19.80 | 5.12 ± 6.56 | - | - | - | - | 17.3 | - |
Ba | 65.31–986.22 | 276.09 ± 227.55 | - | - | - | - | 624 | - |
Locality | Pb | Zn | Cr | Cu | Co | References | |
---|---|---|---|---|---|---|---|
Previous Study | Marchica Lagoon, Morocco | 131.83–2389.36 | 10.01–8711 | 2.24–77.17 | 2.43–191.13 | <LD | Present Study (Wet Season) |
112.46–3039.51 | 13.39–651.72 | 7.43–94.44 | 2.14–346.36 | <LD−19.80 | Present Study (Dry Season) | ||
15–362 | 55.1–1250 | 22.4–172 | 10.2–398.4 | - | [57] | ||
11–297 | 4–1190 | 9–139 | 4–466 | 0–120 | [40] | ||
3–416 | 13–1190 | - | 6–466 | - | [80] | ||
2.8–14 | 62–303 | 46–92.7 | 20–163 | - | [81] | ||
Mediterranean Sea | Berre lagoon. France | 12–104 | 56.5–215 | 17.1–119 | 7–60.7 | - | [84] |
Málaga Bay. Spain | 7.92–37.1 | - | 4.31–26.0 | 6.57–21.2 | - | [13] | |
Bizerte Lagoon. Tunisia | 62.8–211.2 | 318.6–1825.5 | 7.2–30.8 | 4.0–45.2 | - | [83] | |
Burullus Lake. Egypt | 5–42 | 35–190 | 23–144 | 15–80 | - | [88] | |
Izmit Bay. Turkey | 10–33.8 | 123.6–363.2 | 40.9–120.8 | 49.9–105.3 | - | [85] | |
Santa Gillalagoon. Sardinia | 45.8–216 | 51–140 | 12.1–52 | - | - | [87] | |
Prokoposlagoon. Greece | 4.86–22.18 | 14.87–60.22 | 17.88–117.97 | 6.44–27.92 | - | [86] | |
Gialova Lagoon, Greece | 10–31 | 20–51 | 99–154 | 15–40 | 5–15 | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oujidi, B.; El Bouch, M.; Tahri, M.; Layachi, M.; Boutoumit, S.; Bouchnan, R.; Ouahidi, H.; Bounakhla, M.; El Ouamari, N.; Maanan, M.; et al. Seasonal and Spatial Patterns of Ecotoxicological Indices of Trace Elements in Superficial Sediments of the Marchica Lagoon Following Restoration Actions during the Last Decade. Diversity 2021, 13, 51. https://doi.org/10.3390/d13020051
Oujidi B, El Bouch M, Tahri M, Layachi M, Boutoumit S, Bouchnan R, Ouahidi H, Bounakhla M, El Ouamari N, Maanan M, et al. Seasonal and Spatial Patterns of Ecotoxicological Indices of Trace Elements in Superficial Sediments of the Marchica Lagoon Following Restoration Actions during the Last Decade. Diversity. 2021; 13(2):51. https://doi.org/10.3390/d13020051
Chicago/Turabian StyleOujidi, Bouchra, Mohammed El Bouch, Mounia Tahri, Mostafa Layachi, Soilam Boutoumit, Rachid Bouchnan, Hassan Ouahidi, Moussa Bounakhla, Najib El Ouamari, Mohamed Maanan, and et al. 2021. "Seasonal and Spatial Patterns of Ecotoxicological Indices of Trace Elements in Superficial Sediments of the Marchica Lagoon Following Restoration Actions during the Last Decade" Diversity 13, no. 2: 51. https://doi.org/10.3390/d13020051
APA StyleOujidi, B., El Bouch, M., Tahri, M., Layachi, M., Boutoumit, S., Bouchnan, R., Ouahidi, H., Bounakhla, M., El Ouamari, N., Maanan, M., Bazairi, H., Mhammdi, N., & Snoussi, M. (2021). Seasonal and Spatial Patterns of Ecotoxicological Indices of Trace Elements in Superficial Sediments of the Marchica Lagoon Following Restoration Actions during the Last Decade. Diversity, 13(2), 51. https://doi.org/10.3390/d13020051