(E)-3-Heptyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium Iodide as Solvatochromic and Fluorogenic Dye for Spectroscopy Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Photophysical Properties of Dye 2 Compared to Dye 1
2.2.1. Comparison of the Dye 1 and Dye 2 Spectral Behavior in Solvents with Different Polarity
2.2.2. Comparison of the Spectral Behavior of Dye 1 and Dye 2 in the Absence and in the Presence of dsDNA or RNA
3. Materials and Methods
3.1. General
3.2. Synthesis of (E)-3-heptyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium Iodide (2)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komljenovic, D.; Wiessler, M.; Waldeck, W.; Ehemann, V.; Pipkorn, R.; Schrenk, H.-H.; Debus, J.; Braun, K. NIR-Cyanine Dye Linker: A Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring. Theranostics 2016, 6, 131–141. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Yue, X.; Dai, Z. Cyanine conjugates in cancer theranostics. Bioact. Mater. 2021, 6, 794–809. [Google Scholar] [CrossRef] [PubMed]
- Armitage, B.A. Cyanine Dye–DNA Interactions: Intercalation, Groove Binding, and Aggregation. In DNA Binders and Related Subjects; Waring, M.J., Chaires, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 55–76. [Google Scholar]
- Glazer, A.N.; Rye, H.S. Stable dye–DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature 1992, 359, 859–861. [Google Scholar] [CrossRef]
- Rye, H.S.; Yue, S.; Wemmer, D.E.; Quesada, M.A.; Haugland, R.P.; Mathies, R.A.; Glazer, A.N. Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: Properties and applications. Nucleic Acids Res. 1992, 20, 2803–2812. [Google Scholar] [CrossRef]
- Glavaš-Obrovac, L.; Piantanida, I.; Marczi, S.; Mašić, L.; Timcheva, I.I.; Deligeorgiev, T.G. Minor structural differences of monomethine cyanine derivatives yield strong variation in their interactions with DNA, RNA as well as on their in vitro antiproliferative activity. Bioorg. Med. Chem. 2009, 17, 4747–4755. [Google Scholar] [CrossRef]
- Tumir, L.M.; Crnolatac, I.; Deligeorgiev, T.; Vasilev, A.; Kaloyanova, S.; Branilovic, M.G.; Tomic, S.; Piantanida, I. Kinetic Differentiation between Homo- and Alternating AT DNA by Sterically Restricted Phosphonium Dyes. Chem. Eur. J. 2012, 18, 3859–3864. [Google Scholar] [CrossRef]
- Rožman, A.; Crnolatac, I.; Deligeorgiev, T.; Piantanida, I. Strong impact of chloro substituent on TOTO and YOYO ds-DNA/RNA sensing. J. Lumin. 2019, 205, 87–96. [Google Scholar] [CrossRef]
- Vasilev, A.; Lesev, N.; Dimitrova, S.; Nedelcheva-Veleva, M.; Stoynov, S.; Angelova, S. Bright fluorescent dsDNA probes: Novel polycationic asymmetric monomethine cyanine dyes based on thiazolopyridine-quinolinium chromophore. Color. Techn. 2015, 131, 94–103. [Google Scholar] [CrossRef]
- Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Drexhage, K.-H.; Yarmoluk, S.M. Synthesis of novel monomeric and homodimeric cyanine dyes with thioacetyl substituents for nucleic acid detection. Dyes Pigm. 2007, 72, 28–32. [Google Scholar] [CrossRef]
- Deligeorgiev, T.; Vasilev, A.; Drexhage, K.-H. Synthesis of novel monomeric cyanine dyes containing 2-hydroxypropyl and 3-chloro-2-hydroxypropyl substituents—Noncovalent labels for nucleic acids. Dyes Pigm. 2007, 73, 69–75. [Google Scholar] [CrossRef]
- Vasilev, A.A.; Miteva, M.; Ishkitiev, N.; Dragneva, M.; Topalova, L.; Kandinska, M.I. Styryl Hemicyanine Dye (E)-3-Methyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium Iodide for Nucleic Acids and Cell Nucleoli Visualization. Molbank 2022, 2022, M1392. [Google Scholar] [CrossRef]
- Tyler, A.R.; Okoh, A.O.; Lawrence, C.L.; Jones, V.C.; Moffatt, C.; Smith, R.B. N-Alkylated 2,3,3-trimethylindolenines and 2-methylbenzothiazoles. Potential lead compounds in the fight against Saccharomyces cerevisiaeInfections. Eur. J. Med. Chem. 2013, 64, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ueji, K.; Ichimura, S.; Tamaki, Y.; Miyamura, K. Effects of alkyl chain substitution on the crystal structure of benzothiazole-derived squarylium dyes. Cryst. Eng. Comm. 2014, 16, 10139–10147. [Google Scholar] [CrossRef]
- Pardal, A.C.; Ramos, S.S.; Santos, P.F.; Reis, L.V.; Almeida, P. Synthesis and Spectroscopic Characterisation of N-Alkyl Quaternary Ammonium Salts Typical Precursors of Cyanines. Molecules 2002, 7, 320–330. [Google Scholar] [CrossRef]
- Dimroth, K.; Reichardt, C.; Siepmann, T.; Bohlmann, F. Über Pyridinium-N-phenol-betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln. Justus. Liebigs. Ann. Chem. 1963, 661, 1–37. [Google Scholar] [CrossRef]
- Brooker, L.G.S.; Craig, A.C.; Heseltine, D.W.; Jenkins, P.W.; Lincoln, L.L. Color and constitution. XIII. 1 Merocyanines as solvent property indicators2. J. Am. Chem. Soc. 1965, 87, 2443–2450. [Google Scholar] [CrossRef]
- Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Reichardt, C. Solvatochromism, thermochromism, piezochromism, halochromism, and chiro-solvatochromism of pyridinium N-phenoxide betaine dyes. Chem. Soc. Rev. 1992, 21, 147–153. [Google Scholar] [CrossRef]
- Da Silva, D.; Ricken, I.; Silva, R.; Machado, V. Solute–solvent and solvent–solvent interactions in the preferential solvation of Brooker’s merocyanine in binary solvent mixtures. J. Phys. Org. Chem. 2002, 15, 420–427. [Google Scholar] [CrossRef]
- Morley, J.O.; Morley, R.M.; Docherty, R.; Charlton, M.H. Fundamental studies on Brooker’s merocyanine. J. Am. Chem. Soc. 1997, 119, 10192–10202. [Google Scholar] [CrossRef]
- Benson, H.G.; Murrell, J.N. Some studies of benzenoid-quinonoid resonance. Part 2. The effect of solvent polarity on the structure and properties of merocyanine dyes. J. Chem. Soc. Faraday Trans. II 1972, 68, 137–143. [Google Scholar] [CrossRef]
- Cavalli, V.; Da Silva, D.C.; Machado, C.; Machado, V.G.; Soldi, V. The fluorosolvatochromism of Brooker’s merocyanine in pure and in mixed solvents. J. Fluoresc. 2006, 16, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Poongavanam, V.; Kang, D.; Bertagnin, C.; Lu, H.; Kong, X.; Ju, H.; Lu, X.; Gao, P.; Tian, Y.; et al. Optimization of N-Substituted Oseltamivir Derivatives as Potent Inhibitors of Group-1 and -2 Influenza A Neuraminidases, Including a Drug-Resistant Variant. J. Med. Chem. 2018, 61, 6379–6397. [Google Scholar] [CrossRef] [PubMed]
Solvent (εr) | λmax1 | ε1 | λmax2 | ε2 | ET | ||
---|---|---|---|---|---|---|---|
1 | 2 | MeQMBr2 | |||||
Toluene (2.38) | 533 | 20,250 | 537 | 26,180 | 53.6 | 53.2 | 40.9 |
Chloroform (4.81) | 544 | 45,735 | 544 | 58,957 | 52.6 | 52.6 | 41.6 |
Dichloromethane (8.93) | 545 | 57,500 | 544 | 79,085 | 52.5 | 52.6 | 42.6 |
Acetone (20.7) | 511 | 38,440 | 516 | 53,657 | 56.0 | 55.4 | no data |
Ethanol (24.55) | 519 | 35,200 | 519 | 46,984 | 55.1 | 55.1 | 48.4 |
Methanol (32.7) | 515 | 31,170 | 519 | 45,825 | 55.5 | 55.1 | 51.1 |
DMF (36.71) | 512 | 32,440 | 524 | 51,811 | 55.8 | 54.6 | 45.4 |
Acetonitrile (37.5) | 510 | 38,427 | 514 | 52,458 | 56.0 | 55.6 | no data |
DMSO (46.68) | 512 | 32,439 | 519 | 49,400 | 55.8 | 55.1 | 45.7 |
Water (80.1) | 490 | 23,469 | 492 | 35,509 | 58.3 | 58.1 | no data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilev, A.A.; Kandinska, M.I.; Kostadinov, A.; Dietz, L.; Baluschev, S. (E)-3-Heptyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium Iodide as Solvatochromic and Fluorogenic Dye for Spectroscopy Applications. Molbank 2023, 2023, M1727. https://doi.org/10.3390/M1727
Vasilev AA, Kandinska MI, Kostadinov A, Dietz L, Baluschev S. (E)-3-Heptyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium Iodide as Solvatochromic and Fluorogenic Dye for Spectroscopy Applications. Molbank. 2023; 2023(3):M1727. https://doi.org/10.3390/M1727
Chicago/Turabian StyleVasilev, Aleksey A., Meglena I. Kandinska, Anton Kostadinov, Laura Dietz, and Stanislav Baluschev. 2023. "(E)-3-Heptyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium Iodide as Solvatochromic and Fluorogenic Dye for Spectroscopy Applications" Molbank 2023, no. 3: M1727. https://doi.org/10.3390/M1727
APA StyleVasilev, A. A., Kandinska, M. I., Kostadinov, A., Dietz, L., & Baluschev, S. (2023). (E)-3-Heptyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium Iodide as Solvatochromic and Fluorogenic Dye for Spectroscopy Applications. Molbank, 2023(3), M1727. https://doi.org/10.3390/M1727